organic compounds
DL-Histidine DL-tartrate
aUniversity of Greenwich, Medway Campus, Anson, Chatham Maritime, Kent ME4 4TB, England, and bPfizer Ltd, IPC 049, Ramsgate Road, Sandwich, Kent CT13 9NJ, England
*Correspondence e-mail: matthew_johnson@sandwich.pfizer.com
The DL-histidine DL-tartrate, C6H10N3O2+·C4H5O6−, has been determined as part of an ongoing study of the fundamental effects of on salt formation and hydrates. Discrete single-enantiomer chains of histidine are linked in two dimensions by hydrogen bonds to a racemic pair of tartrate molecules.
ofComment
This study was undertaken to identify the effects of DL-Histidine and DL-tartrate samples were purchased from Fluka and used in the crystallization. The of the title compound, (I), contains one molecule of histidine as a monocation (protonated at the amine and imidazole N atoms and deprotonated at the carboxylic acid) and the tartrate as a monoanion (Fig. 1).
on the formation of salts, specifically the way may affect hydration, as a result of interactions between a chiral drug and a chiral counter-ion.The histidines form chains of single enantiomers (Fig. 2) linked along the b axis by hydrogen bonds from the NH group of the imidazole ring to a carboxyl O atom of the next histidine, similar to those described by Suresh & Vijayan (1987). The tartrate anions form dimers containing one D- and one L-tartrate ion in each pair (Fig. 2). The dimers are formed by means of a carboxylic acid O atom bonding to a neighbouring tartrate utilizing a side OH group [2.817 (2) Å]. Each histidine molecule in a chain is linked to the next chain below (viewed down the a axis in Fig. 2) by a single hydrogen bond from a carboxyl O atom to an NH group of the ammonium group [2.749 (2) Å]. The tartrates link the chains of histidine in two dimensions to create a three-dimensional hydrogen-bond network.
Experimental
A 5 ml saturated aqueous solution of DL-histidine was mixed with a 5 ml saturated aqueous solution of DL-tartaric acid and the vial was covered with a pierced film. This was placed in a larger glass vial containing 25 ml of methanol, sealed, and allowed to stand for three weeks at room temperature.
Crystal data
|
Data collection
Refinement
|
The unit-cell dimensions and angles were compared to those reported for the parent histidine enantiomers by Edington & Harding (1974) and Madden et al. (1972). All H atoms were placed geometrically [C—H = 0.93–0.98, N—H = 0.86–0.89 and O—H = 0.82 Å; Uiso(H) = 1.2 or 1.5 times Ueq(parent atom)] and refined using a riding model.
Data collection: SMART (Siemens, 1994); cell SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Materials Studio (Accelrys, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536804015296/dn6150sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804015296/dn6150Isup2.hkl
Data collection: SMART (Siemens, 1994); cell
SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Materials Studio (Accelrys, 2001); software used to prepare material for publication: SHELXL97.C6H10N3O2+·C4H5O6− | F(000) = 640 |
Mr = 305.25 | Dx = 1.575 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P2ybc | Cell parameters from 2967 reflections |
a = 4.9695 (5) Å | θ = 1.9–28.0° |
b = 13.4392 (12) Å | µ = 0.14 mm−1 |
c = 19.2749 (18) Å | T = 295 K |
β = 90.253 (2)° | Needle, colourless |
V = 1287.3 (2) Å3 | 0.50 × 0.10 × 0.10 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 2967 independent reflections |
Radiation source: fine-focus sealed tube | 2207 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 67 pixels mm-1 | θmax = 28.0°, θmin = 1.9° |
Thin–slice ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997; Blessing, 1995) | k = −17→17 |
Tmin = 0.843, Tmax = 0.990 | l = −25→25 |
7512 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0666P)2] where P = (Fo2 + 2Fc2)/3 |
2967 reflections | (Δ/σ)max = 0.001 |
194 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1685 (3) | 0.73187 (12) | 0.66501 (9) | 0.0318 (4) | |
C2 | 0.2198 (4) | 0.77519 (13) | 0.72645 (10) | 0.0386 (4) | |
H2 | 0.1342 | 0.7610 | 0.7681 | 0.046* | |
C3 | 0.4909 (4) | 0.84349 (13) | 0.65168 (10) | 0.0372 (4) | |
H3 | 0.6224 | 0.8836 | 0.6319 | 0.045* | |
C4 | −0.0369 (4) | 0.65675 (12) | 0.64434 (10) | 0.0358 (4) | |
H4A | −0.1390 | 0.6824 | 0.6052 | 0.043* | |
H4B | −0.1609 | 0.6473 | 0.6825 | 0.043* | |
C5 | 0.0819 (3) | 0.55634 (11) | 0.62459 (9) | 0.0298 (4) | |
H5 | 0.2238 | 0.5664 | 0.5901 | 0.036* | |
C6 | 0.1981 (3) | 0.49876 (11) | 0.68674 (8) | 0.0286 (4) | |
C7 | 0.8407 (4) | 0.92923 (12) | 0.38923 (9) | 0.0392 (4) | |
C8 | 0.6893 (4) | 0.85823 (12) | 0.43616 (9) | 0.0376 (4) | |
H8 | 0.4990 | 0.8773 | 0.4372 | 0.045* | |
C9 | 0.7135 (3) | 0.75243 (11) | 0.40876 (8) | 0.0281 (4) | |
H9 | 0.6004 | 0.7473 | 0.3671 | 0.034* | |
C10 | 0.6010 (3) | 0.67992 (12) | 0.46299 (8) | 0.0273 (3) | |
N1 | 0.4190 (3) | 0.84348 (11) | 0.71715 (8) | 0.0377 (4) | |
H1 | 0.4868 | 0.8807 | 0.7491 | 0.045* | |
N2 | 0.3426 (3) | 0.77602 (10) | 0.61863 (8) | 0.0364 (4) | |
H2A | 0.3533 | 0.7621 | 0.5752 | 0.044* | |
N3 | −0.1363 (3) | 0.49502 (9) | 0.59342 (7) | 0.0282 (3) | |
H3A | −0.2652 | 0.4854 | 0.6246 | 0.042* | |
H3B | −0.0698 | 0.4365 | 0.5803 | 0.042* | |
H3C | −0.2046 | 0.5264 | 0.5567 | 0.042* | |
O1 | 0.0532 (3) | 0.48152 (10) | 0.73684 (7) | 0.0461 (4) | |
O2 | 0.4328 (3) | 0.46847 (11) | 0.68080 (7) | 0.0495 (4) | |
O3 | 0.7603 (3) | 0.92187 (10) | 0.32456 (7) | 0.0481 (4) | |
H3D | 0.8607 | 0.9543 | 0.2996 | 0.072* | |
O4 | 1.0095 (3) | 0.98561 (11) | 0.41035 (7) | 0.0591 (4) | |
O5 | 0.7946 (4) | 0.85996 (10) | 0.50444 (7) | 0.0601 (5) | |
H5A | 0.8650 | 0.9141 | 0.5119 | 0.090* | |
O6 | 0.9796 (2) | 0.72979 (9) | 0.38935 (6) | 0.0358 (3) | |
H6 | 1.0753 | 0.7274 | 0.4241 | 0.054* | |
O7 | 0.7460 (3) | 0.60922 (9) | 0.48094 (6) | 0.0404 (3) | |
O8 | 0.3696 (2) | 0.69787 (9) | 0.48593 (6) | 0.0373 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0383 (9) | 0.0256 (8) | 0.0315 (9) | 0.0024 (7) | −0.0027 (7) | 0.0006 (7) |
C2 | 0.0436 (10) | 0.0401 (10) | 0.0320 (9) | −0.0066 (8) | 0.0008 (8) | −0.0019 (7) |
C3 | 0.0361 (9) | 0.0333 (9) | 0.0423 (11) | −0.0002 (7) | 0.0060 (8) | −0.0009 (8) |
C4 | 0.0367 (10) | 0.0292 (8) | 0.0412 (10) | 0.0039 (7) | −0.0063 (8) | −0.0017 (7) |
C5 | 0.0297 (8) | 0.0269 (8) | 0.0327 (9) | −0.0001 (6) | −0.0035 (7) | 0.0009 (7) |
C6 | 0.0304 (9) | 0.0273 (8) | 0.0279 (8) | 0.0006 (7) | −0.0017 (7) | −0.0003 (6) |
C7 | 0.0551 (11) | 0.0276 (9) | 0.0348 (10) | 0.0012 (8) | 0.0075 (9) | 0.0001 (7) |
C8 | 0.0510 (11) | 0.0294 (9) | 0.0326 (9) | 0.0001 (8) | 0.0089 (8) | 0.0012 (7) |
C9 | 0.0297 (8) | 0.0304 (8) | 0.0241 (8) | 0.0012 (6) | 0.0000 (6) | −0.0001 (6) |
C10 | 0.0312 (9) | 0.0283 (8) | 0.0224 (8) | −0.0025 (7) | −0.0038 (6) | −0.0038 (6) |
N1 | 0.0421 (9) | 0.0369 (8) | 0.0343 (8) | −0.0071 (6) | −0.0015 (7) | −0.0104 (6) |
N2 | 0.0470 (9) | 0.0360 (8) | 0.0263 (7) | 0.0054 (6) | 0.0017 (6) | −0.0049 (6) |
N3 | 0.0316 (7) | 0.0257 (7) | 0.0272 (7) | 0.0007 (5) | −0.0008 (6) | 0.0008 (5) |
O1 | 0.0492 (8) | 0.0501 (8) | 0.0392 (8) | 0.0112 (6) | 0.0127 (6) | 0.0072 (6) |
O2 | 0.0344 (7) | 0.0703 (9) | 0.0438 (8) | 0.0153 (6) | 0.0063 (6) | 0.0235 (7) |
O3 | 0.0602 (9) | 0.0482 (8) | 0.0358 (8) | −0.0120 (7) | 0.0006 (6) | 0.0124 (6) |
O4 | 0.0872 (12) | 0.0490 (8) | 0.0411 (8) | −0.0283 (8) | 0.0049 (8) | −0.0044 (7) |
O5 | 0.1103 (13) | 0.0425 (8) | 0.0275 (7) | −0.0259 (8) | 0.0044 (8) | −0.0045 (6) |
O6 | 0.0343 (7) | 0.0434 (7) | 0.0297 (6) | 0.0033 (5) | 0.0052 (5) | 0.0001 (5) |
O7 | 0.0489 (7) | 0.0368 (7) | 0.0354 (7) | 0.0086 (6) | 0.0026 (6) | 0.0093 (5) |
O8 | 0.0314 (7) | 0.0471 (7) | 0.0335 (7) | −0.0024 (5) | 0.0036 (5) | −0.0007 (5) |
C1—C2 | 1.343 (3) | C7—C8 | 1.517 (2) |
C1—N2 | 1.381 (2) | C8—O5 | 1.414 (2) |
C1—C4 | 1.489 (2) | C8—C9 | 1.522 (2) |
C2—N1 | 1.362 (2) | C8—H8 | 0.9800 |
C2—H2 | 0.9300 | C9—O6 | 1.4092 (19) |
C3—N1 | 1.313 (2) | C9—C10 | 1.536 (2) |
C3—N2 | 1.329 (2) | C9—H9 | 0.9800 |
C3—H3 | 0.9300 | C10—O7 | 1.2407 (19) |
C4—C5 | 1.522 (2) | C10—O8 | 1.2574 (19) |
C4—H4A | 0.9700 | N1—H1 | 0.8600 |
C4—H4B | 0.9700 | N2—H2A | 0.8600 |
C5—N3 | 1.487 (2) | N3—H3A | 0.8900 |
C5—C6 | 1.537 (2) | N3—H3B | 0.8900 |
C5—H5 | 0.9800 | N3—H3C | 0.8900 |
C6—O1 | 1.229 (2) | O3—H3D | 0.8200 |
C6—O2 | 1.241 (2) | O5—H5A | 0.8200 |
C7—O4 | 1.200 (2) | O6—H6 | 0.8200 |
C7—O3 | 1.311 (2) | ||
C2—C1—N2 | 105.53 (15) | C7—C8—C9 | 109.92 (14) |
C2—C1—C4 | 131.08 (17) | O5—C8—H8 | 109.2 |
N2—C1—C4 | 123.29 (15) | C7—C8—H8 | 109.2 |
C1—C2—N1 | 108.13 (16) | C9—C8—H8 | 109.2 |
C1—C2—H2 | 125.9 | O6—C9—C8 | 111.69 (14) |
N1—C2—H2 | 125.9 | O6—C9—C10 | 112.87 (13) |
N1—C3—N2 | 107.93 (15) | C8—C9—C10 | 109.09 (13) |
N1—C3—H3 | 126.0 | O6—C9—H9 | 107.7 |
N2—C3—H3 | 126.0 | C8—C9—H9 | 107.7 |
C1—C4—C5 | 113.69 (14) | C10—C9—H9 | 107.7 |
C1—C4—H4A | 108.8 | O7—C10—O8 | 125.43 (15) |
C5—C4—H4A | 108.8 | O7—C10—C9 | 117.58 (14) |
C1—C4—H4B | 108.8 | O8—C10—C9 | 116.99 (14) |
C5—C4—H4B | 108.8 | C3—N1—C2 | 109.12 (15) |
H4A—C4—H4B | 107.7 | C3—N1—H1 | 125.4 |
N3—C5—C4 | 108.02 (13) | C2—N1—H1 | 125.4 |
N3—C5—C6 | 107.87 (12) | C3—N2—C1 | 109.29 (14) |
C4—C5—C6 | 113.34 (14) | C3—N2—H2A | 125.4 |
N3—C5—H5 | 109.2 | C1—N2—H2A | 125.4 |
C4—C5—H5 | 109.2 | C5—N3—H3A | 109.5 |
C6—C5—H5 | 109.2 | C5—N3—H3B | 109.5 |
O1—C6—O2 | 124.38 (16) | H3A—N3—H3B | 109.5 |
O1—C6—C5 | 119.22 (15) | C5—N3—H3C | 109.5 |
O2—C6—C5 | 116.30 (14) | H3A—N3—H3C | 109.5 |
O4—C7—O3 | 125.44 (16) | H3B—N3—H3C | 109.5 |
O4—C7—C8 | 122.86 (17) | C7—O3—H3D | 109.5 |
O3—C7—C8 | 111.69 (16) | C8—O5—H5A | 109.5 |
O5—C8—C7 | 111.23 (15) | C9—O6—H6 | 109.5 |
O5—C8—C9 | 107.99 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O8 | 0.86 | 1.93 | 2.7689 (19) | 166 |
N1—H1···O2i | 0.86 | 1.84 | 2.6871 (19) | 169 |
N3—H3A···O2ii | 0.89 | 1.87 | 2.7532 (18) | 173 |
N3—H3B···O7iii | 0.89 | 2.09 | 2.7937 (18) | 135 |
N3—H3B···O6iii | 0.89 | 2.35 | 3.1374 (18) | 147 |
N3—H3C···O7ii | 0.89 | 1.85 | 2.7178 (18) | 164 |
O3—H3D···O1iv | 0.82 | 1.77 | 2.5856 (17) | 173 |
O5—H5A···O4v | 0.82 | 2.11 | 2.8174 (19) | 145 |
O5—H5A···O4 | 0.82 | 2.30 | 2.7015 (19) | 111 |
O6—H6···O8vi | 0.82 | 1.92 | 2.7152 (18) | 162 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x+1, −y+3/2, z−1/2; (v) −x+2, −y+2, −z+1; (vi) x+1, y, z. |
References
Accelrys (2001). Materials Studio. Accelrys Inc., San Diego, CA, USA. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Edington, P. & Harding, M. M. (1974). Acta Cryst. B30, 204–206. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. & Hoy, A. (1972). Acta Cryst. B28, 2382–2389. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Siemens (1994). SMART (Version 5.622) and SAINT (Version 6.02). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Suresh, C. G. & Vijayan, M. (1987). J. Biosci. 12, 13. CrossRef Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.