organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­pyridinium bis­­(pyrocatecholato-κ2O,O′)­borate catechol solvate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: jon.charmant@bris.ac.uk

(Received 20 May 2004; accepted 1 June 2004; online 12 June 2004)

Unlike the previously reported salts of the 4-methyl­pyridinium cation and the bis­(pyrocatecholato)­borate anion [Clegg et al. (1998[Clegg, W., Scott, A. J., Lawlor, F. L., Norman, N. C., Marder, T. B., Dai, C. & Nguyen, P. (1998). Acta Cryst. C54, 1875-1880.]). Acta Cryst. C54, 1875–1880], the title compound, C6H8N+·C12H8BO4·C6H6O2, is a solvate containing a mol­ecule of catechol. The crystal packing is influenced by N—H⋯O and O—H⋯O hydrogen bonds.

Comment

In addition to the ammonium cations [NH4]+ (Goddard et al., 1993[Goddard, R., Niemeyer, C. M. & Reetz, M. T. (1993). Acta Cryst. C49, 402-404.]) and [NH2Me2]+ (Clegg, Elsegood et al., 1998[Clegg, W., Elsegood, M. R. J., Lawlor, F. J., Norman, N. C., Pickett, N. L., Robins, E. G., Scott, A. J., Taylor, N. J. & Marder, T. B. (1998). Inorg. Chem. 37, 5289-5293.]), the bis­(pyrocatecholato)­borate anion [B(1,2-O2C6H4)2] has been found to crystallize with a number of pyridinium cations. These include [2-MeC5H4NH]+ and two polymorphs containing [4-MeC5H4NH]+ (Clegg, Scott et al., 1998[Clegg, W., Scott, A. J., Lawlor, F. L., Norman, N. C., Marder, T. B., Dai, C. & Nguyen, P. (1998). Acta Cryst. C54, 1875-1880.]). [NHEt3]+ (Mohr et al., 1990[Mohr, S., Heller, G., Timper, U. & Woller, K.-H. (1990). Z. Naturforsch. Teil B, 45, 308-322.]) and the unsubstituted pyridinium cation [C5H5NH]+ (Griffin et al., 1996[Griffin, W. P., White, A. J. P. & Williams, D. J. (1996). Polyhedron, 15, 2835-2839.]) also form salts with [B(1,2-O2C6H4)2], although in these cases a mol­ecule of catechol is incorporated into the structure. The structures of [1,10-phenH][B(1,2-O2C6H4)2] (phen = phenanthroline), and its di­chloro­methane solvate (Clegg, Scott et al., 1998[Clegg, W., Scott, A. J., Lawlor, F. L., Norman, N. C., Marder, T. B., Dai, C. & Nguyen, P. (1998). Acta Cryst. C54, 1875-1880.]) have also been determined as has the structure of the phospho­nium salt [PHMe3][B(1,2-O2C6H4)2] (Clegg, Scott et al., 1998[Clegg, W., Scott, A. J., Lawlor, F. L., Norman, N. C., Marder, T. B., Dai, C. & Nguyen, P. (1998). Acta Cryst. C54, 1875-1880.]) and a range of salts containing cationic rhodium or iridium phosphine complexes (Clegg et al., 1999[Clegg, W., Elsegood, M. R. J., Scott, A. J., Marder, T. B., Dai, C., Norman, N. C., Pickett, N. L. & Robins, E. G. (1999). Acta Cryst. C55, 733-739.]). In this paper, we report the structure of a [4-MeC5H4NH]+ salt of [(C6H4O2)2B] that, unlike the crystal structures previously reported for salts of [4-MeC5H4NH]+ and [(C6H4O2)2B] (Clegg, Scott et al., 1998[Clegg, W., Scott, A. J., Lawlor, F. L., Norman, N. C., Marder, T. B., Dai, C. & Nguyen, P. (1998). Acta Cryst. C54, 1875-1880.]), but in common with the pyridinium and triethyl­ammonium salts, includes a mol­ecule of catechol in the structure.[link]

[Scheme 1]

The molecular structure of (I[link]) is shown in Fig. 1[link]. The crystal structure contains hydrogen bonds between the catechol mol­ecules and the catecholate ligands of the [B(1,2-O2C6H4)2] anions. The 4-methyl­pyridinium cations also form hydrogen bonds to the catechol mol­ecules, producing a ribbon structure (see Fig. 2[link]). These ribbons crosslink through hydrogen bonds between the catecholate ligands and pyrid­inium cations to form a one-dimensional hydrogen-bonded polymer (see Fig. 3[link]).

[Figure 1]
Figure 1
The molecular structure of (I[link]), showing displacement ellipsoids drawn at the 50% probability level. The solvent catechol mol­ecule has been transformed by the symmetry operation (x, y, z − 1).
[Figure 2]
Figure 2
Stick representation (colour code: C grey, H white, O red, B pink, N blue) of the hydrogen-bonded (dashed lines) ribbon polymers formed in (I[link]).
[Figure 3]
Figure 3
Cross-linking hydrogen bonds (dashed lines) between ribbons in (I[link]). The colour code is as in Fig. 2[link].

Experimental

B2(cat)3 (0.1 g, 0.029 mmol) was dissolved in CH2Cl2 (4 ml) in a small Schlenk tube to which 4-picoline (0.04 g, 0.058 mmol) was added and the mixture stirred for 1 h at room temperature. After this time, hexane (4 ml) was added as an overlayer and solvent diffusion over a period of days at 243 K afforded colourless crystals of [4-MeC5H4NH][B(1,2-O2C6H4)2]. C18H16BNO4 requires: N 4.35, C 67.30, H 5.00%; found: N 4.40, C 67.65, H 5.75%. 11B {1H} NMR: δ 13.2 (s). Although the microanalytical data are consistent with the formula [4–MeC5H4NH][B(1,2-O2C6H4)2], confirmed by X-ray crystallography, one (colourless) crystal ex­amined was found to have the composition [4-MeC5H4NH][B(1,2-O2C6H4)2]·1,2-(HO)2C6H4. There are no obvious morphology differences between the two phases.

Crystal data
  • C6H8N+·C12H8BO4·C6H6O2

  • Mr = 431.24

  • Monoclinic, P21/n

  • a = 10.0007 (14) Å

  • b = 12.9573 (17) Å

  • c = 16.396 (3) Å

  • β = 96.872 (11)°

  • V = 2109.3 (6) Å3

  • Z = 4

  • Dx = 1.355 Mg m−3

  • Dm = 1.340 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4189 reflections

  • θ = 2.5–25.8°

  • μ = 0.10 mm−1

  • T = 100 (3) K

  • Block, colourless

  • 0.05 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.990

  • 23718 measured reflections

  • 4828 independent reflections

  • 3973 reflections with I > 2σ(I)'

  • Rint = 0.037

  • θmax = 27.5°

  • h = −12 → 12

  • k = −16 → 16

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.110

  • S = 1.03

  • 4828 reflections

  • 299 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0504P)2 + 0.7965P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—O1 1.3662 (17)
C6—O2 1.3681 (17)
C7—O3 1.3659 (17)
C12—O4 1.3756 (16)
B1—O2 1.4742 (19)
B1—O1 1.4746 (19)
B1—O4 1.4820 (19)
C19—O5 1.3731 (17)
C24—O6 1.3664 (18)
O2—B1—O1 105.58 (11)
O2—B1—O4 112.77 (12)
O1—B1—O4 113.49 (12)
O2—B1—O3 111.09 (12)
O1—B1—O3 110.74 (12)
O4—B1—O3 103.32 (11)
C1—O1—B1 105.89 (11)
C6—O2—B1 105.98 (11)
C7—O3—B1 108.12 (11)
C12—O4—B1 108.15 (11)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.872 (15) 2.425 (18) 2.8864 (17) 113.6 (14)
N1—H1⋯O5i 0.872 (15) 2.096 (17) 2.8621 (18) 146.3 (16)
N1—H1⋯O6i 0.872 (15) 2.587 (17) 3.1073 (18) 119.2 (14)
O5—H5⋯O3ii 0.864 (15) 1.788 (16) 2.6469 (15) 172.5 (17)
O6—H6⋯O4iii 0.871 (15) 1.793 (16) 2.6600 (15) 173.5 (18)
Symmetry codes: (i) x,y,z-1; (ii) 2-x,1-y,1-z; (iii) 1-x,1-y,1-z.

The NH H atom of the pyridinium cation and all hydroxy H atoms were located in difference maps. Distance restraints of 0.88 (3) and 0.84 (3) Å were applied to the N—H and O—H bond lengths, respectively. Methyl H atoms were located using a rotating group refinement, with C—H bond lengths constrained to 0.96 Å. All other H atoms were positioned in ideal geometries and refined by riding on their carrier atom. All H atoms were assigned displacement param­eters equal to 1.5 times (methyl and hydroxyl H atoms) or 1.2 times (all other H atoms) Ueq of their parent atom.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SHELXTL (Bruker, 2002); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

(I) top
Crystal data top
C6H8N+·C12H8BO4·C6H6O2F(000) = 904
Mr = 431.24Dx = 1.355 Mg m3
Dm = 1.340 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4189 reflections
a = 10.0007 (14) Åθ = 2.5–25.8°
b = 12.9573 (17) ŵ = 0.10 mm1
c = 16.396 (3) ÅT = 100 K
β = 96.872 (11)°Block, colourless
V = 2109.3 (6) Å30.05 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4828 independent reflections
Radiation source: fine-focus sealed tube3973 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.037
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.929, Tmax = 0.990l = 2121
23718 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.7965P]
where P = (Fo2 + 2Fc2)/3
4828 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81009 (14)0.73736 (12)0.08826 (8)0.0205 (3)
C20.83417 (16)0.79292 (13)0.15693 (9)0.0260 (3)
H20.84750.86550.15470.031*
C30.83815 (16)0.73753 (14)0.23020 (9)0.0301 (4)
H30.85410.77340.27860.036*
C40.81930 (16)0.63191 (14)0.23323 (9)0.0303 (4)
H40.82210.59660.28380.036*
C50.79609 (15)0.57553 (13)0.16294 (9)0.0262 (3)
H5A0.78400.50280.16480.031*
C60.79161 (14)0.63043 (12)0.09140 (8)0.0211 (3)
C70.90025 (14)0.66835 (10)0.17549 (8)0.0172 (3)
C80.98987 (15)0.66026 (11)0.24587 (9)0.0219 (3)
H81.08390.65330.24350.026*
C90.93661 (16)0.66266 (11)0.32102 (9)0.0243 (3)
H90.99570.65730.37070.029*
C100.79955 (16)0.67271 (11)0.32448 (9)0.0225 (3)
H100.76610.67340.37630.027*
C110.70917 (15)0.68191 (10)0.25224 (9)0.0195 (3)
H110.61500.68900.25410.023*
C120.76268 (14)0.68016 (10)0.17872 (8)0.0161 (3)
B10.79639 (16)0.68115 (13)0.04148 (10)0.0187 (3)
O10.80197 (10)0.77338 (8)0.01069 (6)0.0211 (2)
O20.76987 (10)0.59384 (8)0.01582 (6)0.0222 (2)
O30.92679 (10)0.66676 (8)0.09570 (6)0.0202 (2)
O40.69591 (10)0.68919 (8)0.10068 (6)0.0191 (2)
C130.6421 (2)0.43363 (13)0.34169 (10)0.0342 (4)
H13A0.72050.40800.37760.051*
H13B0.56400.38990.34790.051*
H13C0.62290.50480.35690.051*
C140.67129 (16)0.43076 (11)0.25411 (9)0.0224 (3)
C150.80203 (16)0.42629 (11)0.23393 (9)0.0236 (3)
H150.87580.42440.27620.028*
C160.82501 (16)0.42467 (11)0.15307 (10)0.0264 (3)
H160.91450.42170.13930.032*
C170.59375 (17)0.43127 (12)0.11020 (10)0.0290 (4)
H170.52210.43290.06660.035*
C180.56675 (16)0.43292 (12)0.19011 (10)0.0271 (3)
H180.47610.43560.20190.033*
N10.72116 (15)0.42732 (10)0.09378 (8)0.0266 (3)
H10.7377 (18)0.4251 (14)0.0428 (9)0.032*
C190.77804 (14)0.24734 (11)0.95478 (8)0.0177 (3)
C200.85497 (15)0.15817 (11)0.96525 (8)0.0205 (3)
H200.95050.16250.97230.025*
C210.79204 (16)0.06230 (12)0.96543 (9)0.0234 (3)
H210.84460.00110.97170.028*
C220.65281 (16)0.05611 (12)0.95649 (9)0.0253 (3)
H220.61010.00930.95680.030*
C230.57540 (15)0.14533 (12)0.94700 (8)0.0227 (3)
H230.47990.14070.94150.027*
C240.63701 (14)0.24125 (11)0.94544 (8)0.0188 (3)
O50.83169 (10)0.34485 (8)0.95439 (7)0.0216 (2)
H50.9133 (15)0.3402 (14)0.9425 (11)0.032*
O60.56912 (10)0.33270 (8)0.93487 (6)0.0233 (2)
H60.4834 (15)0.3205 (14)0.9229 (12)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0141 (7)0.0329 (8)0.0142 (7)0.0007 (6)0.0004 (5)0.0012 (6)
C20.0220 (8)0.0370 (9)0.0189 (7)0.0014 (6)0.0017 (6)0.0054 (6)
C30.0214 (8)0.0539 (11)0.0153 (7)0.0004 (7)0.0029 (6)0.0049 (7)
C40.0215 (8)0.0537 (11)0.0158 (7)0.0021 (7)0.0024 (6)0.0084 (7)
C50.0198 (7)0.0377 (9)0.0211 (7)0.0011 (6)0.0023 (6)0.0076 (6)
C60.0149 (7)0.0328 (8)0.0156 (7)0.0002 (6)0.0017 (5)0.0000 (6)
C70.0198 (7)0.0165 (6)0.0162 (7)0.0013 (5)0.0050 (5)0.0002 (5)
C80.0191 (7)0.0227 (7)0.0232 (7)0.0017 (6)0.0000 (6)0.0017 (6)
C90.0334 (9)0.0212 (7)0.0168 (7)0.0002 (6)0.0033 (6)0.0015 (6)
C100.0356 (9)0.0172 (7)0.0157 (7)0.0009 (6)0.0073 (6)0.0000 (5)
C110.0219 (7)0.0170 (7)0.0207 (7)0.0002 (5)0.0078 (6)0.0006 (5)
C120.0177 (7)0.0148 (6)0.0156 (7)0.0009 (5)0.0018 (5)0.0006 (5)
B10.0151 (7)0.0239 (8)0.0175 (8)0.0006 (6)0.0038 (6)0.0002 (6)
O10.0243 (5)0.0252 (5)0.0140 (5)0.0018 (4)0.0034 (4)0.0003 (4)
O20.0267 (6)0.0249 (5)0.0159 (5)0.0026 (4)0.0058 (4)0.0014 (4)
O30.0152 (5)0.0311 (6)0.0150 (5)0.0006 (4)0.0045 (4)0.0008 (4)
O40.0146 (5)0.0276 (5)0.0152 (5)0.0003 (4)0.0029 (4)0.0005 (4)
C130.0561 (12)0.0256 (8)0.0235 (8)0.0040 (8)0.0153 (8)0.0021 (6)
C140.0337 (9)0.0136 (6)0.0211 (7)0.0020 (6)0.0079 (6)0.0010 (5)
C150.0282 (8)0.0158 (7)0.0260 (8)0.0013 (6)0.0004 (6)0.0003 (6)
C160.0262 (8)0.0189 (7)0.0362 (9)0.0023 (6)0.0117 (7)0.0017 (6)
C170.0335 (9)0.0276 (8)0.0245 (8)0.0032 (7)0.0025 (7)0.0013 (6)
C180.0238 (8)0.0271 (8)0.0315 (8)0.0009 (6)0.0074 (6)0.0036 (6)
N10.0420 (8)0.0218 (6)0.0180 (6)0.0013 (6)0.0114 (6)0.0006 (5)
C190.0185 (7)0.0228 (7)0.0125 (6)0.0034 (5)0.0047 (5)0.0013 (5)
C200.0199 (7)0.0270 (8)0.0151 (7)0.0008 (6)0.0044 (5)0.0000 (6)
C210.0323 (9)0.0228 (7)0.0158 (7)0.0022 (6)0.0051 (6)0.0013 (6)
C220.0343 (9)0.0253 (8)0.0167 (7)0.0100 (6)0.0049 (6)0.0012 (6)
C230.0203 (7)0.0327 (8)0.0152 (7)0.0083 (6)0.0022 (5)0.0009 (6)
C240.0188 (7)0.0264 (7)0.0115 (6)0.0014 (6)0.0033 (5)0.0002 (5)
O50.0155 (5)0.0223 (5)0.0285 (6)0.0021 (4)0.0085 (4)0.0027 (4)
O60.0140 (5)0.0294 (6)0.0262 (6)0.0002 (4)0.0014 (4)0.0008 (4)
Geometric parameters (Å, º) top
C1—O11.3662 (17)C13—H13A0.9800
C1—C21.382 (2)C13—H13B0.9800
C1—C61.398 (2)C13—H13C0.9800
C2—C31.404 (2)C14—C151.388 (2)
C2—H20.9500C14—C181.390 (2)
C3—C41.382 (3)C15—C161.373 (2)
C3—H30.9500C15—H150.9500
C4—C51.407 (2)C16—N11.335 (2)
C4—H40.9500C16—H160.9500
C5—C61.377 (2)C17—N11.335 (2)
C5—H5A0.9500C17—C181.369 (2)
C6—O21.3681 (17)C17—H170.9500
C7—O31.3659 (17)C18—H180.9500
C7—C81.378 (2)N1—H10.871 (14)
C7—C121.392 (2)C19—O51.3731 (17)
C8—C91.400 (2)C19—C201.387 (2)
C8—H80.9500C19—C241.403 (2)
C9—C101.385 (2)C20—C211.393 (2)
C9—H90.9500C20—H200.9500
C10—C111.406 (2)C21—C221.385 (2)
C10—H100.9500C21—H210.9500
C11—C121.3764 (19)C22—C231.390 (2)
C11—H110.9500C22—H220.9500
C12—O41.3756 (16)C23—C241.389 (2)
B1—O21.4742 (19)C23—H230.9500
B1—O11.4746 (19)C24—O61.3664 (18)
B1—O41.4820 (19)O5—H50.864 (14)
B1—O31.4993 (18)O6—H60.871 (15)
C13—C141.499 (2)
O1—C1—C2128.04 (14)C12—O4—B1108.15 (11)
O1—C1—C6110.52 (12)C14—C13—H13A109.5
C2—C1—C6121.44 (14)C14—C13—H13B109.5
C1—C2—C3117.16 (15)H13A—C13—H13B109.5
C1—C2—H2121.4C14—C13—H13C109.5
C3—C2—H2121.4H13A—C13—H13C109.5
C4—C3—C2121.29 (15)H13B—C13—H13C109.5
C4—C3—H3119.4C15—C14—C18117.76 (14)
C2—C3—H3119.4C15—C14—C13121.74 (15)
C3—C4—C5121.34 (14)C18—C14—C13120.50 (15)
C3—C4—H4119.3C16—C15—C14120.16 (14)
C5—C4—H4119.3C16—C15—H15119.9
C6—C5—C4117.06 (16)C14—C15—H15119.9
C6—C5—H5A121.5N1—C16—C15119.82 (15)
C4—C5—H5A121.5N1—C16—H16120.1
O2—C6—C5128.12 (15)C15—C16—H16120.1
O2—C6—C1110.17 (12)N1—C17—C18119.74 (15)
C5—C6—C1121.71 (14)N1—C17—H17120.1
O3—C7—C8128.28 (13)C18—C17—H17120.1
O3—C7—C12110.14 (12)C17—C18—C14120.36 (15)
C8—C7—C12121.57 (13)C17—C18—H18119.8
C7—C8—C9117.23 (14)C14—C18—H18119.8
C7—C8—H8121.4C17—N1—C16122.16 (14)
C9—C8—H8121.4C17—N1—H1119.4 (12)
C10—C9—C8121.39 (13)C16—N1—H1118.4 (12)
C10—C9—H9119.3O5—C19—C20123.76 (13)
C8—C9—H9119.3O5—C19—C24116.08 (12)
C9—C10—C11120.87 (13)C20—C19—C24120.14 (13)
C9—C10—H10119.6C19—C20—C21119.93 (14)
C11—C10—H10119.6C19—C20—H20120.0
C12—C11—C10117.27 (14)C21—C20—H20120.0
C12—C11—H11121.4C22—C21—C20120.02 (14)
C10—C11—H11121.4C22—C21—H21120.0
O4—C12—C11128.09 (13)C20—C21—H21120.0
O4—C12—C7110.25 (12)C21—C22—C23120.21 (14)
C11—C12—C7121.66 (13)C21—C22—H22119.9
O2—B1—O1105.58 (11)C23—C22—H22119.9
O2—B1—O4112.77 (12)C24—C23—C22120.27 (14)
O1—B1—O4113.49 (12)C24—C23—H23119.9
O2—B1—O3111.09 (12)C22—C23—H23119.9
O1—B1—O3110.74 (12)O6—C24—C23124.31 (13)
O4—B1—O3103.32 (11)O6—C24—C19116.29 (12)
C1—O1—B1105.89 (11)C23—C24—C19119.40 (13)
C6—O2—B1105.98 (11)C19—O5—H5108.5 (12)
C7—O3—B1108.12 (11)C24—O6—H6109.4 (12)
O1—C1—C2—C3179.81 (14)O3—B1—O2—C6106.83 (13)
C6—C1—C2—C30.5 (2)C8—C7—O3—B1178.44 (14)
C1—C2—C3—C40.3 (2)C12—C7—O3—B11.39 (15)
C2—C3—C4—C50.3 (2)O2—B1—O3—C7121.96 (12)
C3—C4—C5—C60.7 (2)O1—B1—O3—C7121.05 (12)
C4—C5—C6—O2179.55 (14)O4—B1—O3—C70.79 (14)
C4—C5—C6—C10.4 (2)C11—C12—O4—B1179.18 (14)
O1—C1—C6—O20.45 (16)C7—C12—O4—B10.93 (15)
C2—C1—C6—O2179.84 (13)O2—B1—O4—C12119.94 (12)
O1—C1—C6—C5179.60 (13)O1—B1—O4—C12120.06 (12)
C2—C1—C6—C50.2 (2)O3—B1—O4—C120.09 (14)
O3—C7—C8—C9179.13 (13)C18—C14—C15—C160.3 (2)
C12—C7—C8—C91.0 (2)C13—C14—C15—C16179.44 (13)
C7—C8—C9—C100.0 (2)C14—C15—C16—N10.0 (2)
C8—C9—C10—C110.7 (2)N1—C17—C18—C140.2 (2)
C9—C10—C11—C120.2 (2)C15—C14—C18—C170.4 (2)
C10—C11—C12—O4179.01 (13)C13—C14—C18—C17179.38 (14)
C10—C11—C12—C70.9 (2)C18—C17—N1—C160.1 (2)
O3—C7—C12—O41.49 (15)C15—C16—N1—C170.2 (2)
C8—C7—C12—O4178.36 (12)O5—C19—C20—C21179.52 (13)
O3—C7—C12—C11178.61 (12)C24—C19—C20—C210.8 (2)
C8—C7—C12—C111.5 (2)C19—C20—C21—C221.0 (2)
C2—C1—O1—B1171.26 (15)C20—C21—C22—C230.2 (2)
C6—C1—O1—B18.08 (15)C21—C22—C23—C240.8 (2)
O2—B1—O1—C112.99 (14)C22—C23—C24—O6178.73 (13)
O4—B1—O1—C1137.00 (12)C22—C23—C24—C191.0 (2)
O3—B1—O1—C1107.34 (12)O5—C19—C24—O61.66 (18)
C5—C6—O2—B1171.28 (14)C20—C19—C24—O6179.55 (12)
C1—C6—O2—B18.77 (15)O5—C19—C24—C23178.63 (12)
O1—B1—O2—C613.27 (14)C20—C19—C24—C230.2 (2)
O4—B1—O2—C6137.73 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.87 (2)2.43 (2)2.8864 (17)114 (1)
N1—H1···O5i0.87 (2)2.10 (2)2.8621 (18)146 (2)
N1—H1···O6i0.87 (2)2.59 (2)3.1073 (18)119 (1)
O5—H5···O3ii0.86 (2)1.79 (2)2.6469 (15)173 (2)
O6—H6···O4iii0.87 (2)1.79 (2)2.6600 (15)174 (2)
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
 

References

First citationBruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Elsegood, M. R. J., Lawlor, F. J., Norman, N. C., Pickett, N. L., Robins, E. G., Scott, A. J., Taylor, N. J. & Marder, T. B. (1998). Inorg. Chem. 37, 5289–5293.  Web of Science CSD CrossRef CAS Google Scholar
First citationClegg, W., Elsegood, M. R. J., Scott, A. J., Marder, T. B., Dai, C., Norman, N. C., Pickett, N. L. & Robins, E. G. (1999). Acta Cryst. C55, 733–739.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClegg, W., Scott, A. J., Lawlor, F. L., Norman, N. C., Marder, T. B., Dai, C. & Nguyen, P. (1998). Acta Cryst. C54, 1875–1880.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoddard, R., Niemeyer, C. M. & Reetz, M. T. (1993). Acta Cryst. C49, 402–404.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGriffin, W. P., White, A. J. P. & Williams, D. J. (1996). Polyhedron, 15, 2835–2839.  CSD CrossRef Web of Science Google Scholar
First citationMohr, S., Heller, G., Timper, U. & Woller, K.-H. (1990). Z. Naturforsch. Teil B, 45, 308–322.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds