organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl­­oxy-2-bromo-3-(3-phenyl­allyl­­oxy)­benzene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 24 May 2004; accepted 1 June 2004; online 12 June 2004)

The title compound, C18H17BrO2, possesses normal geometrical parameters. A possible intramolecular C—H⋯O interaction is present. The crystal packing is influenced by ππ stacking.

Comment

The title compound, (I[link]) (Fig. 1[link]), arose during our studies to determine the philicity of aryl radicals by competitive cycliz­ation (Kirsop et al., 2004a[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004a). Acta Cryst. E60, o222-o224.],b).[link]

[Scheme 1]

Compound (I[link]) possesses normal geometrical parameters. A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I[link]) indicated that an intramolecular C—H⋯O interaction (Table 1[link]) may occur between an exo methyl­ene C1—H1A group and acceptor O1, which may help to stabilize an essentially planar arrangement of the atoms C1, C2, C3 and O1 [C1—C2—C3—O1 = −3.0 (6)°]. The acute C—H⋯O bond angle of 100° is consistent with the intramolecular nature of this interaction.

As well as van der Waals forces, the crystal packing in (I[link]) is influenced by ππ stacking interactions. Inversion symmetry results in dimeric associations of mol­ecules of (I[link]) with a Cg⋯Cgi separation of 3.767 (3) Å [Cg is the geometric centroid of atoms C13–C18; symmetry code: (i) −1 − x, 2 − y, −z]. The ring planes are exactly parallel and separated by 3.55 (3) Å. The lateral displacement of Cgi relative to the perpendicular from Cg to the mean plane for the atoms C13i–C18i is 1.25 (8) Å. The packing of (I[link]) is shown in Fig. 2[link].

[Figure 1]
Figure 1
The molecular structure of (I[link]) (30% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius and the possible intramolecular C—H⋯O interaction is shown as a dashed lines.
[Figure 2]
Figure 2
The packing in (I[link]) projected on to (100), with ππ stacking interactions involving the C13–C18 phenyl rings indicated by dashed lines and all C—H H atoms omitted for clarity (30% displacement ellipsoids).

Experimental

2-Bromo­benzene-1,3-diol (Kirsop et al., 2004b[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004b). Acta Cryst. C60, o353-o355.]; 5.00 g, 0.026 mol), allyl bromide (3.20 g, 0.026 mol) and potassium carbonate (8.00 g, 0.0579 mol) were added to 100 ml of dry acetone. The mixture was stirred at reflux under a nitro­gen atmosphere for 3 h. After cooling, the mixture was filtered and the solvent removed at reduced pressure to give a dark brown oil (4.64 g, 78%). Thin-layer chromatography (4:1 hexane–ethyl acetate) showed three sharp spots: at RF = 0.24 was unreacted starting material, at RF = 0.38 was 3-allyl­oxy-2-bromo­phenol, and at RF = 0.52 was 1,3-bis­(allyl­oxy)-2-bromo­benzene. These compounds were separated using flash column chromatography to give 3-allyl­oxy-2-bromo­phenol as a clear oil (1.85 g, 31%). 1H NMR: δH (CDCl3) 4.58 (2H, d, J = 4.9 Hz, CH2), 5.30 (1H, d, J = 10.7 Hz, CH), 5.47 (1H, d J = 17.1 Hz, CH) 5.74 (1H, s, OH), 6.05 (1H, m, CH), 6.45 (1H, d, J = 8.2 Hz, Ar-H), 6.66 (1H, d, J = 9.8 Hz, Ar-H), 7.12 (1H, t, J = 8.2 Hz, Ar-H). 13C NMR: δC 69.8, 100.6, 105.0, 108.6, 117.8, 128.6, 132.6, 153.6, 155.5. νmax (KBr)/cm−1: 3497, 2912, 1595, 1463, 1269, 1192, 1064, 767.

A mixture of 3-allyl­oxy-2-bromo­phenol (2.00 g, 0.009 mol), cinnamyl bromide (2.06 g, 0.011 mol) and potassium carbonate (8.0 g, 0.058 mol) was added to dry acetone (100 ml). The mixture was stirred at reflux under a nitro­gen atmosphere for 12 h. After cooling, the mixture was filtered and the solvent removed at reduced pressure to give a dark brown oil (1.92 g, 68%). Thin-layer chromatography (4:1 hexane–ethyl acetate) showed 1-allyl­oxy-2-bromo-3-(3-phenyl-allyl­oxy) benzene (I[link]) as a sharp spot at RF = 0.33. The crude product was purified by flash column chromatography to give (I) as a white powder (1.56 g, 51%). A sample of this powder was recrystallized from hot hexane–ethyl acetate (20:1) to give translucent rhombs and slabs (m.p. 353–355 K). 1H NMR: δH (CDCl3) 4.58 (2H, d, J = 4.1 Hz, CH2), 4.74 (2H, d, J = 3.9 Hz, CH2), 5.26 (1H, d, J = 9.6 Hz, CH2), 5.44 (1H, d, J = 17.0 Hz, CH2), 6.01–6.08 (1H, m, CH), 6.37–6.41 (1H, m, CH), 6.53 (1H, d, J = 7.0 Hz, Ar-H), 6.58 (1H, d, J = 7.0 Hz, Ar-H), 6.75 (1H, d, J = 9.2 Hz, CH), 7.14 (1H, t, J = 8.1 Hz, CH), 7.23 (1H, d, J = 6.2 Hz, Ar-H), 7.29 (2H, t, J = 8.3 Hz, Ar-H), 7.38 (2H, d, J = 7.2 Hz, Ar-H). 13C NMR: δC 70.0, 70.1, 102.7, 106.6, 106.7, 117.8, 124.2 (2 C), 126.8, 128.1, 128.2, 128.8 (2 C), 132.9, 133.1, 136.6, 156.6 (2 C). νmax (KBr)/cm−1: 1644, 1591, 1470, 1375, 1255, 1116, 1062, 767.

Crystal data
  • C18H17BrO2

  • Mr = 345.23

  • Monoclinic, P21/n

  • a = 7.2956 (4) Å

  • b = 14.8719 (8) Å

  • c = 14.7849 (7) Å

  • β = 95.171 (1)°

  • V = 1597.62 (14) Å3

  • Z = 4

  • Dx = 1.435 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3898 reflections

  • θ = 2.7–23.3°

  • μ = 2.57 mm−1

  • T = 293 (2) K

  • Slab, colourless

  • 0.47 × 0.32 × 0.18 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.362, Tmax = 0.628

  • 11903 measured reflections

  • 3131 independent reflections

  • 2142 reflections with I > 2σ(I)

  • Rint = 0.025

  • θmax = 26.0°

  • h = −8 → 8

  • k = −18 → 18

  • l = −17 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.06

  • 3131 reflections

  • 190 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.058P)2 + 0.1552P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1 0.93 2.39 2.715 (5) 100

All the H atoms were positioned geometrically and refined as riding on their carrier C atoms (C—H = 0.93 Å for aromatic and sp2-hybridized C atoms and C—H = 0.97 Å for sp3-hybridized C atoms) with the the constraint Uiso(H) = 1.2Ueq(carrier atom) applied.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
C18H17BrO2F(000) = 704
Mr = 345.23Dx = 1.435 Mg m3
Monoclinic, P21/nMelting point: 353-355 K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.2956 (4) ÅCell parameters from 3898 reflections
b = 14.8719 (8) Åθ = 2.7–23.3°
c = 14.7849 (7) ŵ = 2.57 mm1
β = 95.171 (1)°T = 293 K
V = 1597.62 (14) Å3Slab, colourless
Z = 40.47 × 0.32 × 0.18 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
3131 independent reflections
Radiation source: fine-focus sealed tube2142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 88
Tmin = 0.362, Tmax = 0.628k = 1818
11903 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.058P)2 + 0.1552P]
where P = (Fo2 + 2Fc2)/3
3131 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7164 (6)0.9837 (4)0.4453 (3)0.1019 (14)
H1A0.59550.99010.42040.122*
H1B0.77071.02830.48280.122*
C20.8077 (6)0.9138 (4)0.4283 (3)0.0988 (14)
H20.92790.91090.45500.119*
C30.7445 (5)0.8372 (3)0.3711 (3)0.0866 (11)
H3A0.81760.83250.31970.104*
H3B0.75810.78190.40580.104*
C40.4709 (5)0.7921 (2)0.2806 (2)0.0655 (9)
C50.5451 (6)0.7111 (2)0.2545 (3)0.0843 (11)
H50.66200.69360.27820.101*
C60.4451 (6)0.6577 (2)0.1939 (3)0.0904 (13)
H60.49640.60360.17720.109*
C70.2716 (5)0.6796 (2)0.1561 (3)0.0813 (11)
H70.20730.64150.11470.098*
C80.1952 (5)0.7604 (2)0.1815 (2)0.0651 (9)
C90.2946 (4)0.81529 (19)0.2437 (2)0.0599 (8)
C100.0783 (6)0.7392 (2)0.0806 (3)0.0902 (11)
H10A0.10800.68090.10500.108*
H10B0.00820.72980.02870.108*
C110.2497 (5)0.7898 (2)0.0529 (3)0.0787 (10)
H110.32700.80300.09780.094*
C120.3003 (6)0.8172 (3)0.0290 (3)0.0832 (11)
H120.22360.80210.07360.100*
C130.4657 (5)0.8693 (2)0.0587 (2)0.0714 (9)
C140.6087 (5)0.8823 (2)0.0051 (3)0.0759 (10)
H140.60350.85510.05170.091*
C150.7564 (6)0.9336 (3)0.0329 (3)0.0943 (12)
H150.85120.94070.00450.113*
C160.7669 (7)0.9751 (3)0.1160 (4)0.1047 (14)
H160.86771.01090.13480.126*
C170.6283 (9)0.9635 (4)0.1706 (3)0.1101 (17)
H170.63440.99150.22710.132*
C180.4786 (7)0.9101 (3)0.1426 (3)0.0964 (14)
H180.38560.90180.18090.116*
O10.5548 (3)0.85114 (16)0.33997 (17)0.0765 (7)
O20.0263 (3)0.79109 (15)0.14831 (17)0.0765 (7)
Br10.19441 (5)0.92522 (2)0.27726 (3)0.08017 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.091 (3)0.132 (4)0.080 (3)0.007 (3)0.005 (2)0.003 (3)
C20.066 (3)0.145 (5)0.084 (3)0.005 (3)0.002 (2)0.021 (3)
C30.064 (2)0.100 (3)0.096 (3)0.020 (2)0.012 (2)0.030 (3)
C40.063 (2)0.0543 (18)0.084 (2)0.0068 (15)0.0306 (18)0.0191 (18)
C50.080 (2)0.056 (2)0.123 (3)0.0145 (18)0.041 (2)0.023 (2)
C60.104 (3)0.0459 (19)0.129 (4)0.013 (2)0.054 (3)0.007 (2)
C70.094 (3)0.0520 (19)0.103 (3)0.0017 (18)0.038 (2)0.0010 (19)
C80.071 (2)0.0481 (17)0.080 (2)0.0007 (15)0.0282 (19)0.0050 (17)
C90.065 (2)0.0443 (16)0.074 (2)0.0052 (14)0.0266 (18)0.0068 (15)
C100.092 (3)0.071 (2)0.108 (3)0.011 (2)0.012 (2)0.021 (2)
C110.084 (3)0.071 (2)0.083 (3)0.0210 (19)0.019 (2)0.020 (2)
C120.093 (3)0.088 (3)0.073 (3)0.030 (2)0.027 (2)0.029 (2)
C130.084 (3)0.071 (2)0.060 (2)0.0312 (18)0.012 (2)0.0142 (18)
C140.089 (3)0.079 (2)0.060 (2)0.021 (2)0.012 (2)0.0101 (19)
C150.092 (3)0.097 (3)0.094 (3)0.016 (2)0.006 (3)0.021 (3)
C160.115 (4)0.085 (3)0.106 (4)0.020 (3)0.034 (3)0.018 (3)
C170.147 (5)0.112 (4)0.065 (3)0.056 (4)0.025 (3)0.004 (3)
C180.113 (4)0.115 (4)0.062 (3)0.051 (3)0.012 (2)0.016 (2)
O10.0589 (14)0.0716 (15)0.0984 (18)0.0117 (11)0.0044 (13)0.0088 (14)
O20.0765 (16)0.0618 (14)0.0917 (17)0.0025 (12)0.0096 (13)0.0180 (13)
Br10.0675 (3)0.0665 (2)0.1065 (3)0.01149 (16)0.0076 (2)0.0170 (2)
Geometric parameters (Å, º) top
C1—C21.271 (6)C10—O21.430 (4)
C1—H1A0.9300C10—C111.485 (5)
C1—H1B0.9300C10—H10A0.9700
C2—C31.467 (6)C10—H10B0.9700
C2—H20.9300C11—C121.298 (5)
C3—O11.434 (4)C11—H110.9300
C3—H3A0.9700C12—C131.468 (6)
C3—H3B0.9700C12—H120.9300
C4—O11.348 (4)C13—C181.377 (5)
C4—C51.390 (5)C13—C141.380 (5)
C4—C91.395 (4)C14—C151.353 (6)
C5—C61.358 (6)C14—H140.9300
C5—H50.9300C15—C161.371 (6)
C6—C71.376 (5)C15—H150.9300
C6—H60.9300C16—C171.361 (7)
C7—C81.389 (4)C16—H160.9300
C7—H70.9300C17—C181.383 (7)
C8—O21.363 (4)C17—H170.9300
C8—C91.385 (5)C18—H180.9300
C9—Br11.875 (3)
C2—C1—H1A120.0O2—C10—H10A110.2
C2—C1—H1B120.0C11—C10—H10A110.2
H1A—C1—H1B120.0O2—C10—H10B110.2
C1—C2—C3127.3 (4)C11—C10—H10B110.2
C1—C2—H2116.4H10A—C10—H10B108.5
C3—C2—H2116.4C12—C11—C10125.3 (4)
O1—C3—C2108.5 (3)C12—C11—H11117.4
O1—C3—H3A110.0C10—C11—H11117.4
C2—C3—H3A110.0C11—C12—C13127.0 (4)
O1—C3—H3B110.0C11—C12—H12116.5
C2—C3—H3B110.0C13—C12—H12116.5
H3A—C3—H3B108.4C18—C13—C14117.5 (4)
O1—C4—C5125.5 (3)C18—C13—C12119.4 (4)
O1—C4—C9116.2 (3)C14—C13—C12123.1 (4)
C5—C4—C9118.3 (4)C15—C14—C13121.8 (4)
C6—C5—C4119.4 (4)C15—C14—H14119.1
C6—C5—H5120.3C13—C14—H14119.1
C4—C5—H5120.3C14—C15—C16120.3 (5)
C5—C6—C7123.3 (3)C14—C15—H15119.8
C5—C6—H6118.3C16—C15—H15119.8
C7—C6—H6118.3C17—C16—C15119.3 (5)
C6—C7—C8118.1 (4)C17—C16—H16120.3
C6—C7—H7120.9C15—C16—H16120.3
C8—C7—H7120.9C16—C17—C18120.3 (4)
O2—C8—C9116.3 (3)C16—C17—H17119.9
O2—C8—C7124.3 (3)C18—C17—H17119.9
C9—C8—C7119.4 (3)C13—C18—C17120.7 (5)
C8—C9—C4121.5 (3)C13—C18—H18119.6
C8—C9—Br1119.8 (2)C17—C18—H18119.6
C4—C9—Br1118.7 (3)C4—O1—C3118.9 (3)
O2—C10—C11107.6 (3)C8—O2—C10118.6 (3)
C1—C2—C3—O13.0 (6)C11—C12—C13—C18165.4 (4)
O1—C4—C5—C6179.9 (3)C11—C12—C13—C1412.4 (6)
C9—C4—C5—C60.4 (5)C18—C13—C14—C150.4 (5)
C4—C5—C6—C70.2 (6)C12—C13—C14—C15177.4 (3)
C5—C6—C7—C80.2 (6)C13—C14—C15—C160.6 (6)
C6—C7—C8—O2178.9 (3)C14—C15—C16—C170.7 (6)
C6—C7—C8—C90.3 (5)C15—C16—C17—C180.1 (6)
O2—C8—C9—C4178.3 (3)C14—C13—C18—C171.2 (5)
C7—C8—C9—C40.9 (5)C12—C13—C18—C17176.7 (3)
O2—C8—C9—Br10.2 (4)C16—C17—C18—C131.1 (6)
C7—C8—C9—Br1179.1 (2)C5—C4—O1—C38.6 (5)
O1—C4—C9—C8179.5 (3)C9—C4—O1—C3171.9 (3)
C5—C4—C9—C81.0 (5)C2—C3—O1—C4175.2 (3)
O1—C4—C9—Br11.3 (4)C9—C8—O2—C10177.0 (3)
C5—C4—C9—Br1179.1 (2)C7—C8—O2—C102.2 (5)
O2—C10—C11—C12120.8 (4)C11—C10—O2—C8176.8 (3)
C10—C11—C12—C13178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.932.392.715 (5)100
 

References

First citationBruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004a). Acta Cryst. E60, o222–o224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004b). Acta Cryst. C60, o353–o355.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds