organic compounds
2,5-Bis(trimethylsilylethynyl)thieno[3,2-b]thiophene
aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khod 123, Sultanate of Oman, bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England, and cDepartment of Chemistry, University of Bath, Bath BA2 7AY, England, and CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
*Correspondence e-mail: p.r.raithby@bath.ac.uk
2,5-Bis(trimethylsilylethynyl)thieno[3,2-b]thiophene, C16H20S2Si2, is a trimethylsilyl-protected diyne. It is a precursor in the formation of platinum and gold diyne complexes and and polyyne polymers. These materials are of interest because of the π-conjugation that extends through the fused oligothienyl linker unit along the rigid backbone of the polymer. In the structure of the title compound, the oligothienyl group is planar, by and the trimethylsilyl-alkyne groups are essentially linear.
Comment
We report here the structural characterization of the title compound, 2,5-bis(trimethylsilylethynyl)thieno[3,2-b]thiophene, (I), which is a trimethylsilyl-protected diyne. It is a precursor in the formation of the following series of compounds: the terminal diyne, H—C≡C—R—C≡C—H, the dinuclear platinum(II) diyne, [(Ph)(PEt3)2Pt—C≡C—R—C≡C—Pt(PEt3)2(Ph)], and the platinum(II) polyyne, trans-[(nBu3P)2Pt—C≡C—R—C≡C—]∞ (R = thieno[3,2-b]thiophene-2,5-diyl). Rigid-rod platinum(II) polyynes with the general formula trans-[(nBu3P)2Pt—C≡C—R—C≡C—]∞ (R = conjugated aromatic/hetero-aromatic linker group) are considered to be good model systems to study the triplet in polymers and provide important information on the that occur within them (Khan, Al-Mandhary, Al-Suti, Hisham et al., 2002; Khan, Al-Mandhary, Al-Suti, Feeder et al., 2002; Khan et al., 2003). The incorporation of heavy transition metals, such as platinum, at regular intervals along the rigid polymer backbone introduces a large component of that allows emission from the triplet of the system via spin cross-over processes (Wittmann et al., 1994; Beljonne et al., 1996; Younus et al., 1998; Chawdhury et al., 1999). The novel photophysics of the platinum(II) polyynes leads to materials that are useful for applications in modern opto-electronic devices such as light emitting diodes (LEDs), lasers, photocells and field-effect transistors (FETs) (Wilson et al., 2000; Wilson, Chawdhury et al., 2001; Wilson, Dhoot et al., 2001).
The title compound, (I), crystallizes in the monoclinic P21/c, with two molecules in the such that each molecule sits on a crystallographic centre of symmetry at the centre of the bithiophene unit, at the mid-point of the C8—C8a bond (Fig. 1), and the contains half of one molecule. The bithiophene unit is planar. Within the bithiophene unit, the S—C bond lengths average 1.730 Å, and the C6—C7 and C8—C8a bond lengths (average 1.395 Å) are significantly shorter than the C7—C8 bond, 1.444 (3) Å, consistent with the normal bonding picture for bithiophene, and similar to those found in a binuclear platinum(II) complex bridged by a thieno[3,2-b]thiophene group (Sato et al., 2002). The bond parameters associated with the acetylenic units and the trimethylsilyl groups are similar to those in a number of other bis(trimethylsilyl) substituted diyne compounds (Khan, Ahrens et al., 2002, 2004).
There are no short intermolecular contacts within the crystal structure.
Experimental
To a solution of 2,5-dibromothieno[3,2-b]thiophene (2.0 g, 6.71 mmol) in iPr2NH–THF (70 ml, 1:1 v/v) under nitrogen was added a catalytic mixture of CuI (20 mg), Pd(OAc)2 (20 mg) and PPh3 (60 mg). The solution was stirred for 20 min at 323 K and then trimethylsilylethyne (1.64 g, 16.7 mmol) was added. The reaction mixture was left, with stirring, for 20 h at 348 K. The solution was allowed to cool down to room temperature, filtered and the solvent mixture removed under reduced pressure. The residue was subjected to silica using hexane to afford the title compound as a colourless solid in 85% yield (1.78 g).
Crystal data
|
Data collection
|
Refinement
|
All the aromatic and methyl H atoms were constrained as riding atoms, fixed to the parent atoms with distances of 0.95 and 0.98 Å, respectively, with Uiso(H) set at 1.2 (aromatic H atoms) or 1.5 (methyl H atoms) times Ueq(parent atom).
Data collection: COLLECT (Nonius, 1998); cell HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S160053680401414X/su6114sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680401414X/su6114Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C16H20S2Si2 | F(000) = 352 |
Mr = 332.62 | Dx = 1.217 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.173 (3) Å | Cell parameters from 3713 reflections |
b = 5.7317 (12) Å | θ = 2.9–25.0° |
c = 10.9836 (18) Å | µ = 0.42 mm−1 |
β = 108.220 (9)° | T = 170 K |
V = 907.3 (3) Å3 | Plate, colourless |
Z = 2 | 0.23 × 0.07 × 0.04 mm |
Nonius KappaCCD diffractometer | Rint = 0.022 |
88 2° φ and 32 2° ω scans | θmax = 25.1°, θmin = 3.8° |
2820 measured reflections | h = −17→18 |
1596 independent reflections | k = −6→6 |
1336 reflections with I > 2σ(I) | l = −13→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0404P)2 + 0.7998P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.39 e Å−3 |
1596 reflections | Δρmin = −0.26 e Å−3 |
94 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.55976 (4) | −0.07228 (11) | 0.35782 (6) | 0.0324 (2) | |
Si1 | 0.82072 (4) | 0.56440 (11) | 0.30149 (6) | 0.0245 (2) | |
C1 | 0.88762 (18) | 0.3625 (5) | 0.2313 (3) | 0.0378 (6) | |
H1A | 0.9153 | 0.2391 | 0.2932 | 0.057* | |
H1B | 0.9368 | 0.4493 | 0.2108 | 0.057* | |
H1C | 0.846 | 0.2927 | 0.1529 | 0.057* | |
C2 | 0.75124 (18) | 0.7738 (5) | 0.1809 (2) | 0.0370 (6) | |
H2A | 0.7053 | 0.6884 | 0.1127 | 0.055* | |
H2B | 0.7923 | 0.8614 | 0.1441 | 0.055* | |
H2C | 0.7194 | 0.8822 | 0.222 | 0.055* | |
C3 | 0.89848 (18) | 0.7245 (5) | 0.4417 (2) | 0.0403 (7) | |
H3A | 0.863 | 0.8458 | 0.4686 | 0.06* | |
H3B | 0.9492 | 0.7967 | 0.4177 | 0.06* | |
H3C | 0.9241 | 0.6152 | 0.5126 | 0.06* | |
C4 | 0.73868 (16) | 0.3931 (4) | 0.3582 (2) | 0.0290 (6) | |
C5 | 0.68058 (15) | 0.2953 (4) | 0.3936 (2) | 0.0269 (5) | |
C6 | 0.61124 (15) | 0.1820 (4) | 0.4346 (2) | 0.0259 (5) | |
C7 | 0.57692 (14) | 0.2577 (4) | 0.5332 (2) | 0.0235 (5) | |
H7 | 0.5956 | 0.394 | 0.584 | 0.028* | |
C8 | 0.50819 (15) | 0.0909 (4) | 0.5434 (2) | 0.0250 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0330 (4) | 0.0353 (4) | 0.0331 (4) | −0.0076 (3) | 0.0165 (3) | −0.0039 (3) |
Si1 | 0.0244 (4) | 0.0256 (4) | 0.0260 (4) | −0.0033 (3) | 0.0113 (3) | 0.0012 (3) |
C1 | 0.0400 (15) | 0.0373 (15) | 0.0427 (15) | 0.0019 (12) | 0.0226 (13) | 0.0000 (12) |
C2 | 0.0428 (15) | 0.0325 (14) | 0.0362 (14) | 0.0019 (12) | 0.0132 (12) | 0.0056 (12) |
C3 | 0.0372 (15) | 0.0473 (17) | 0.0367 (14) | −0.0116 (13) | 0.0119 (12) | −0.0053 (13) |
C4 | 0.0293 (13) | 0.0317 (14) | 0.0273 (12) | −0.0017 (11) | 0.0105 (10) | 0.0005 (10) |
C5 | 0.0255 (12) | 0.0291 (13) | 0.0262 (12) | −0.0006 (11) | 0.0083 (10) | 0.0012 (10) |
C6 | 0.0215 (12) | 0.0268 (13) | 0.0277 (12) | −0.0033 (10) | 0.0055 (10) | 0.0041 (10) |
C7 | 0.0188 (11) | 0.0307 (13) | 0.0218 (11) | −0.0074 (10) | 0.0076 (9) | 0.0041 (10) |
C8 | 0.0230 (12) | 0.0271 (12) | 0.0244 (11) | −0.0010 (10) | 0.0069 (10) | 0.0014 (9) |
S1—C8i | 1.718 (2) | C8—S1i | 1.718 (2) |
S1—C6 | 1.742 (2) | C1—H1A | 0.98 |
Si1—C4 | 1.840 (2) | C1—H1B | 0.98 |
Si1—C2 | 1.853 (3) | C1—H1C | 0.98 |
Si1—C1 | 1.858 (3) | C2—H2A | 0.98 |
Si1—C3 | 1.863 (3) | C2—H2B | 0.98 |
C4—C5 | 1.207 (3) | C2—H2C | 0.98 |
C5—C6 | 1.424 (3) | C3—H3A | 0.98 |
C6—C7 | 1.409 (3) | C3—H3B | 0.98 |
C7—C8 | 1.444 (3) | C3—H3C | 0.98 |
C8—C8i | 1.381 (4) | C7—H7 | 0.95 |
C8i—S1—C6 | 90.76 (11) | Si1—C1—H1C | 109.47 |
C4—Si1—C2 | 107.07 (11) | H1A—C1—H1B | 109.51 |
C4—Si1—C1 | 108.86 (12) | H1A—C1—H1C | 109.49 |
C2—Si1—C1 | 111.67 (12) | H1B—C1—H1C | 109.46 |
C4—Si1—C3 | 107.67 (11) | Si1—C2—H2A | 109.43 |
C2—Si1—C3 | 110.11 (13) | Si1—C2—H2B | 109.49 |
C1—Si1—C3 | 111.28 (13) | Si1—C2—H2C | 109.50 |
C5—C4—Si1 | 175.1 (2) | H2A—C2—H2B | 109.42 |
C4—C5—C6 | 179.3 (3) | H2A—C2—H2C | 109.49 |
C7—C6—C5 | 126.2 (2) | H2B—C2—H2C | 109.49 |
C7—C6—S1 | 114.33 (16) | Si1—C3—H3A | 109.46 |
C5—C6—S1 | 119.50 (17) | Si1—C3—H3B | 109.48 |
C6—C7—C8 | 107.8 (2) | Si1—C3—H3C | 109.47 |
C8i—C8—C7 | 115.1 (2) | H3A—C3—H3B | 109.47 |
C8i—C8—S1i | 112.0 (2) | H3A—C3—H3C | 109.44 |
C7—C8—S1i | 132.87 (18) | H3B—C3—H3C | 109.51 |
Si1—C1—H1A | 109.44 | C6—C7—H7 | 126.19 |
Si1—C1—H1B | 109.46 | C8—C7—H7 | 126.05 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
We thank the Sultan Qaboos University, Oman, the Royal Society of Chemistry for a Journals Grant for International Authors (to MSK), and the DAAD for funding (to BA).
References
Beljonne, D. Wittmann, H. F. Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868–3877. CrossRef CAS Web of Science Google Scholar
Chawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Younus, M., Raithby, P. R., Lewis, J. Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963–4970. Web of Science CrossRef CAS Google Scholar
Khan, M. S., Ahrens, B., Male, L. & Raithby, P. R. (2002). Acta Cryst. E58, o1220–o1221. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, M. S., Ahrens, B., Male, L. & Raithby, P. R. (2004). Acta Cryst. E60, o915–o916. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441–2448. Web of Science CSD CrossRef Google Scholar
Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358–1368. Web of Science CSD CrossRef Google Scholar
Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male. L., Friend, R. H., Köhler, A. & Wilson, J. S. (2003). Dalton Trans. pp. 65–73.E Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Nonius. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sato, M., Asami, A., Maruyama, G., Kosuge, M., Nakayama, J., Kumakura, S., Fujihara, T. & Unoura, K. (2002). J. Organomet. Chem. 654, 56–65. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Wilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M. & P. R. Raithby (2001). J. Am. Chem. Soc. 123, 9412–9417. Google Scholar
Wilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2001). Nature (London), 413, 828–831. Web of Science CrossRef PubMed CAS Google Scholar
Wilson, J. S., Köhler, A. Friend, R. H., Al-Suti, M. K., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627–7634. Web of Science CrossRef CAS Google Scholar
Wittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693–2698. CrossRef CAS Web of Science Google Scholar
Younus, M., Köhler, A. Cron, Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). Angew. Chem. Int. Ed. 37, 3036–3039. Web of Science CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.