organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis­(tri­methyl­silyl­ethynyl)­dithieno­[3,2-b:2′,3′-d]­thio­phene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khod 123, Sultanate of Oman, bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England, and cCCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
*Correspondence e-mail: p.r.raithby@bath.ac.uk

(Received 7 June 2004; accepted 14 June 2004; online 26 June 2004)

The title compound, C18H20S3Si2, is a precursor in the formation of platinum and gold di-yne complexes and poly-yne polymers. These materials are of interest because of the π-conjugation that extends through the fused oligothienyl linker unit along the rigid backbone of the polymer. In the structure of the title compound, the oligothienyl group is planar and the tri­methyl­silyl­alkyne groups are essentially linear.

Comment

The title compound, 2,6-bis­(tri­methyl­silyl­ethynyl)­dithi­eno­[3,2-b:2′,3′-d]­thio­phene, (I[link]), is a tri­methyl­silyl-protected di-yne. It is a precursor in the formation of the following series of compounds: the terminal di-yne, H—C≡C—R—C≡C—H, the dinuclear platinum(II) di-yne, [(Ph)(PEt3)2Pt—C≡C—R—C≡C—Pt(PEt3)2(Ph)], and the platinum(II) poly-yne, trans-[(nBu3P)2Pt—C≡C—R—C≡C—] (R = thieno­[3,2-b]­thio­phene-2,5-diyl). Rigid-rod platinum(II) poly-ynes with the general formula trans-[(nBu3P)2Pt—C≡C—R—C≡C—] (R = conjugated aromatic/heteroaromatic linker group) are considered to be good model systems to study the triplet excited state in polymers and provide important information on the photophysical processes that occur within them (Khan, Al-Mandhary, Al-Suti, Hisham et al., 2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358-1368.]; Khan, Al-Mandhary, Al-Suti, Feeder et al., 2002[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441-2448.]; Khan et al., 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male, L., Friend, R. H., Köhler, A. & Wilson, J. S. (2003). Dalton Trans. pp. 65-73.]). The incorporation of heavy transition metals, such as platinum, at regular intervals along the rigid polymer backbone introduces a large component of spin-orbit coupling that allows emission from the triplet excited state of the system via spin cross-over processes (Wittmann et al., 1994[Wittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693-2698.]; Beljonne et al., 1996[Beljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868-3877.]; Younus et al., 1998[Younus, M., Köhler, A., Cron, A., Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). Angew. Chem. Int. Ed. 37, 3036-3039.]; Chawdhury et al., 1999[Chawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Younus, M., Raithby, P. R., Lewis, J., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963-4970.]). The novel photophysics of the platinum(II) poly-ynes leads to materials that are useful for applications in modern opto-electronic devices such as light-emitting diodes (LEDs), lasers, photocells and field-effect transistors (FETs) (Wilson et al., 2000[Wilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627-7634.]; Wilson, Chawdhury et al., 2001[Wilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M. & Raithby, P. R. (2001). J. Am. Chem. Soc. 1213, 9412-9417.]; Wilson, Dhoot et al., 2001[Wilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2001). Nature (London), 413, 828-831.]).[link]

[Scheme 1]

The title compound, (I[link]), crystallizes in the monoclinic space group P21/n, with one mol­ecule in the asymmetric unit, so that there is no crystallographically imposed symmetry (Fig. 1[link]). The central dithieno­[3,2-b:2′,3′-d]­thio­phene group is essentially planar and the bond parameters associated with this group are similar to those found in other materials containing this thio­phene ring system (Li et al., 1998[Li, X.-C., Sirringhaus, H., Garnier, F., Holmes, A. B., Moratti, S. C., Feeder, N., Clegg, W., Teat, S. J. & Friend, R. H. (1998). J. Am. Chem. Soc. 120, 2206-2207.]; Osterod et al., 2001[Osterod, F., Peters, L., Kraft, A., Sano, T., Morrison, J. J., Feeder, N. & Holmes, A. B. (2001). J. Mater. Chem. 11, 1625-1633.]; Frey et al., 2002[Frey, J., Bond, A. D. & Holmes, A. B. (2002). Chem. Commun. pp. 2424-2425.]). The bond parameters for the acetyl­ene groups and the tri­methyl­silyl ligands are similar to those observed in related compounds (Khan, Ahrens et al., 2002[Khan, M. S., Ahrens, B., Male, L. & Raithby, P. R. (2002). Acta Cryst. E58, o1220-o1221.]; Khan et al., 2004[Khan, M. S., Ahrens, B., Male, L. & Raithby, P. R. (2004). Acta Cryst. E60, o915-o916.]).

There are a number of significant intermolecular interactions within the crystal structure. All three of the unique S atoms show contacts to symmetry-related S atoms: S1⋯S2 (related by the symmetry operation x − 1, y, z) at a distance of 3.338 (2) Å; S2⋯S1 (related by 1 + x, y, z) at a distance of 3.338 Å; S2⋯S2 (related by 2 + x, −y, −z) at a distance of 3.545 (2) Å; the S3⋯S2 (related by x − 1, y, z) distance is 3.404 (2) Å, which is the shortest. There is also an indication of the presence of π-stacking between pairs of adjacent dithieno­[3,2-b:2′,3′-d]­thio­phene ring systems, with centroid–centroid separations between the five-membered S1-containing ring and the S3-containing ring, related by the symmetry operation 1 − x, −y, −z, of 4.328 (5) Å, and the S2-containing ring and its symmetry-related partner (again by 1 − x, −y, −z) with a distance of 4.539 (5) Å.

[Figure 1]
Figure 1
View of (I[link]) (50% probability displacement ellipsoids). The disordered methyl group is not shown for clarity.

Experimental

5,5′-Di­bromo­dithieno­[3,2-b:2′,3′-d]­thio­phene (2.0 g, 5.64 mmol), tri­methyl­silyl­ethyne (1.46 g, 14.9 mmol) and iPr2NH–THF (70 ml, 1:1 v/v) were mixed with catalytic amounts of CuI (20 mg), Pd(OAc)2 (20 mg) and PPh3 (60 mg). The crude product was worked up to yield a dark-brown residue, which was then applied to a silica column in hexane and eluted with the same solvent. The title compound was obtained as a colourless crystalline solid in 78% isolated yield (1.72 g).

Crystal data
  • C18H20S3Si2

  • Mr = 388.7

  • Monoclinic, P21/n

  • a = 6.191 (2) Å

  • b = 28.671 (9) Å

  • c = 12.066 (4) Å

  • β = 92.51 (2)°

  • V = 2139.7 (13) Å3

  • Z = 4

  • Dx = 1.207 Mg m−3

  • Synchrotron radiation, λ = 0.6887 Å

  • Cell parameters from 11495 reflections

  • θ = 3.2–29.4°

  • μ = 0.46 mm−1

  • T = 150 (2) K

  • Plate, yellow

  • 0.07 × 0.05 × 0.01 mm

Data collection
  • Bruker AXS SMART 1K CCD diffractometer

  • Thin-slice ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS (Version 6.02a) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.996

  • 11094 measured reflections

  • 3062 independent reflections

  • 2494 reflections with I > 2σ(I)

  • Rint = 0.063

  • θmax = 22.5°

  • h = −6 → 6

  • k = −28 → 31

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.114

  • S = 1.17

  • 3062 reflections

  • 224 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0415P)2 + 1.5269P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

The crystal, a small thin plate, did not diffract significantly beyond 45° in 2θ and the final refinement θmax was limited to 22.5°. One of the methyl groups associated with Si1 showed positional disorder over two sites, C13 and C13A. These two atoms, and their associated H atoms, were refined with occupancies fixed at 50% each. All the aromatic and methyl H atoms were constrained as riding atoms, fixed to the parent atoms with distances of 0.95 and 0.98 Å, respectively, and U(H) = 1.2 (aromatic H atoms) and 1.5 (methyl H atoms) times Ueq(parent atom).

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: LSCELL (Clegg, 1997[Clegg, W. (1997). LSCELL. University of Newcastle upon Tyne, England.]); data reduction: SAINT (Bruker, 2000[Bruker (2000). SADABS (Version 6.02a) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: LSCELL (Clegg, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
C18H20S3Si2F(000) = 816
Mr = 388.7Dx = 1.207 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.6887 Å
a = 6.191 (2) ÅCell parameters from 11495 reflections
b = 28.671 (9) Åθ = 3.2–29.4°
c = 12.066 (4) ŵ = 0.46 mm1
β = 92.51 (2)°T = 150 K
V = 2139.7 (13) Å3Plate, yellow
Z = 40.07 × 0.05 × 0.01 mm
Data collection top
Bruker AXS SMART 1K CCD
diffractometer
2494 reflections with I > 2σ(I)
ω rotation with narrow frames scansRint = 0.063
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
θmax = 22.5°, θmin = 2.1°
Tmin = 0.969, Tmax = 0.996h = 66
11094 measured reflectionsk = 2831
3062 independent reflectionsl = 1313
Refinement top
Refinement on F2105 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0415P)2 + 1.5269P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.17Δρmax = 0.40 e Å3
3062 reflectionsΔρmin = 0.33 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.24574 (18)0.09576 (4)0.49942 (9)0.0297 (3)
Si20.37743 (19)0.27129 (4)0.36288 (10)0.0331 (3)
S10.31917 (14)0.03319 (4)0.17119 (8)0.0260 (3)
S20.91465 (14)0.05896 (3)0.00764 (8)0.0225 (2)
S30.34385 (14)0.12945 (3)0.05801 (8)0.0246 (3)
C10.3626 (7)0.06041 (15)0.3841 (3)0.0324 (10)
C20.4347 (6)0.03567 (14)0.3110 (3)0.0265 (9)
C30.5055 (6)0.00484 (13)0.2261 (3)0.0233 (8)
C40.7105 (6)0.00053 (13)0.1775 (3)0.0217 (8)
H40.83340.01710.19660.026*
C50.7125 (5)0.03560 (13)0.0962 (3)0.0189 (8)
C60.5143 (5)0.05650 (13)0.0822 (3)0.0210 (8)
C70.5230 (5)0.09124 (13)0.0006 (3)0.0193 (8)
C80.7281 (5)0.09704 (12)0.0481 (3)0.0178 (8)
C90.7440 (6)0.13197 (13)0.1298 (3)0.0216 (8)
H90.87420.140.16990.026*
C100.5506 (6)0.15279 (13)0.1443 (3)0.0236 (8)
C110.4998 (6)0.19001 (14)0.2161 (3)0.0262 (9)
C120.4528 (6)0.22214 (15)0.2739 (3)0.0330 (10)
C130.477 (2)0.1223 (5)0.5695 (11)0.044 (4)0.5
H13A0.5550.09810.60870.066*0.5
H13B0.42340.14590.62270.066*0.5
H13C0.57540.13710.5140.066*0.5
C13A0.4674 (17)0.1115 (4)0.5939 (10)0.034 (3)0.5
H13D0.54740.08330.61270.05*0.5
H13E0.40450.12560.66180.05*0.5
H13F0.5660.13370.55640.05*0.5
C140.0943 (8)0.14495 (17)0.4427 (4)0.0459 (12)
H14A0.19060.16330.39310.069*
H14B0.03820.16470.50360.069*
H14C0.02640.1330.40120.069*
C150.0619 (8)0.05777 (18)0.5829 (4)0.0483 (12)
H15A0.05920.04830.53830.072*
H15B0.00660.07480.64860.072*
H15C0.14060.030.60610.072*
C160.0780 (8)0.27513 (18)0.3558 (5)0.0570 (14)
H16A0.02660.27930.27850.085*
H16B0.03220.30180.39990.085*
H16C0.0170.24640.38530.085*
C170.4837 (9)0.25928 (18)0.5056 (4)0.0493 (13)
H17A0.41960.23040.53250.074*
H17B0.44660.28520.55420.074*
H17C0.64120.25590.50570.074*
C180.4935 (8)0.32505 (16)0.3055 (4)0.0456 (12)
H18A0.65160.32290.30950.068*
H18B0.44790.3520.34860.068*
H18C0.44250.32870.2280.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0310 (6)0.0330 (7)0.0245 (6)0.0033 (5)0.0053 (4)0.0055 (5)
Si20.0334 (6)0.0312 (7)0.0345 (6)0.0074 (5)0.0008 (5)0.0133 (5)
S10.0186 (5)0.0339 (6)0.0252 (5)0.0026 (4)0.0018 (4)0.0084 (4)
S20.0171 (5)0.0247 (5)0.0253 (5)0.0022 (4)0.0023 (4)0.0076 (4)
S30.0176 (5)0.0276 (5)0.0287 (5)0.0025 (4)0.0010 (4)0.0077 (4)
C10.035 (2)0.032 (2)0.029 (2)0.0014 (19)0.0036 (18)0.0013 (19)
C20.030 (2)0.030 (2)0.0194 (19)0.0008 (18)0.0001 (16)0.0008 (18)
C30.025 (2)0.026 (2)0.0192 (18)0.0020 (16)0.0006 (15)0.0003 (16)
C40.0213 (19)0.022 (2)0.0218 (19)0.0002 (15)0.0006 (15)0.0009 (16)
C50.0170 (18)0.022 (2)0.0175 (17)0.0057 (15)0.0009 (14)0.0004 (15)
C60.0153 (18)0.025 (2)0.0222 (19)0.0041 (15)0.0008 (14)0.0000 (16)
C70.0179 (18)0.020 (2)0.0205 (18)0.0003 (15)0.0018 (14)0.0024 (15)
C80.0190 (18)0.0165 (19)0.0181 (17)0.0008 (15)0.0029 (14)0.0004 (15)
C90.0186 (18)0.024 (2)0.0218 (19)0.0000 (16)0.0002 (14)0.0028 (16)
C100.0222 (19)0.025 (2)0.0241 (19)0.0023 (16)0.0017 (15)0.0039 (17)
C110.023 (2)0.025 (2)0.031 (2)0.0036 (17)0.0011 (16)0.0075 (18)
C120.026 (2)0.038 (3)0.035 (2)0.0035 (19)0.0024 (17)0.009 (2)
C130.044 (4)0.044 (4)0.044 (4)0.0003 (10)0.0021 (10)0.0003 (10)
C13A0.034 (3)0.034 (3)0.033 (3)0.0000 (10)0.0017 (10)0.0003 (10)
C140.053 (3)0.044 (3)0.039 (3)0.013 (2)0.012 (2)0.000 (2)
C150.055 (3)0.051 (3)0.037 (3)0.001 (2)0.015 (2)0.005 (2)
C160.038 (3)0.049 (3)0.085 (4)0.007 (2)0.010 (3)0.025 (3)
C170.066 (3)0.044 (3)0.038 (3)0.012 (3)0.003 (2)0.007 (2)
C180.048 (3)0.040 (3)0.048 (3)0.008 (2)0.006 (2)0.011 (2)
Geometric parameters (Å, º) top
Si1—C141.842 (5)C9—H90.95
Si1—C151.843 (5)C10—C111.418 (5)
Si1—C11.843 (4)C11—C121.199 (5)
Si1—C131.859 (12)C13—H13A0.98
Si1—C13A1.877 (10)C13—H13B0.98
Si2—C121.844 (4)C13—H13C0.98
Si2—C181.848 (5)C13A—H13D0.98
Si2—C171.848 (5)C13A—H13E0.98
Si2—C161.855 (5)C13A—H13F0.98
S1—C61.716 (4)C14—H14A0.98
S1—C31.739 (4)C14—H14B0.98
S2—C51.744 (4)C14—H14C0.98
S2—C81.745 (3)C15—H15A0.98
S3—C71.725 (3)C15—H15B0.98
S3—C101.747 (4)C15—H15C0.98
C1—C21.203 (6)C16—H16A0.98
C2—C31.408 (5)C16—H16B0.98
C3—C41.383 (5)C16—H16C0.98
C4—C51.405 (5)C17—H17A0.98
C4—H40.95C17—H17B0.98
C5—C61.382 (5)C17—H17C0.98
C6—C71.410 (5)C18—H18A0.98
C7—C81.380 (5)C18—H18B0.98
C8—C91.406 (5)C18—H18C0.98
C9—C101.356 (5)
C14—Si1—C15110.1 (2)C9—C10—S3112.5 (3)
C14—Si1—C1109.3 (2)C11—C10—S3118.4 (3)
C15—Si1—C1107.5 (2)C12—C11—C10177.8 (4)
C14—Si1—C13105.7 (5)C11—C12—Si2179.4 (4)
C15—Si1—C13117.6 (5)Si1—C13—H13A109.5
C1—Si1—C13106.5 (4)Si1—C13—H13B109.5
C14—Si1—C13A116.1 (4)Si1—C13—H13C109.5
C15—Si1—C13A105.1 (4)Si1—C13A—H13D109.5
C1—Si1—C13A108.5 (4)Si1—C13A—H13E109.5
C13—Si1—C13A13.2 (5)H13D—C13A—H13E109.5
C12—Si2—C18107.9 (2)Si1—C13A—H13F109.5
C12—Si2—C17108.1 (2)H13D—C13A—H13F109.5
C18—Si2—C17112.1 (2)H13E—C13A—H13F109.5
C12—Si2—C16107.2 (2)Si1—C14—H14A109.5
C18—Si2—C16109.7 (2)Si1—C14—H14B109.5
C17—Si2—C16111.6 (3)H14A—C14—H14B109.5
C6—S1—C391.27 (18)Si1—C14—H14C109.5
C5—S2—C890.39 (17)H14A—C14—H14C109.5
C7—S3—C1090.89 (17)H14B—C14—H14C109.5
C2—C1—Si1177.2 (4)Si1—C15—H15A109.5
C1—C2—C3175.9 (4)Si1—C15—H15B109.5
C4—C3—C2128.9 (3)H15A—C15—H15B109.5
C4—C3—S1112.4 (3)Si1—C15—H15C109.5
C2—C3—S1118.7 (3)H15A—C15—H15C109.5
C3—C4—C5110.8 (3)H15B—C15—H15C109.5
C3—C4—H4124.6Si2—C16—H16A109.5
C5—C4—H4124.6Si2—C16—H16B109.5
C6—C5—C4114.5 (3)H16A—C16—H16B109.5
C6—C5—S2112.1 (3)Si2—C16—H16C109.5
C4—C5—S2133.4 (3)H16A—C16—H16C109.5
C5—C6—C7112.7 (3)H16B—C16—H16C109.5
C5—C6—S1111.0 (3)Si2—C17—H17A109.5
C7—C6—S1136.3 (3)Si2—C17—H17B109.5
C8—C7—C6112.7 (3)H17A—C17—H17B109.5
C8—C7—S3110.7 (3)Si2—C17—H17C109.5
C6—C7—S3136.7 (3)H17A—C17—H17C109.5
C7—C8—C9114.3 (3)H17B—C17—H17C109.5
C7—C8—S2112.2 (3)Si2—C18—H18A109.5
C9—C8—S2133.5 (3)Si2—C18—H18B109.5
C10—C9—C8111.6 (3)H18A—C18—H18B109.5
C10—C9—H9124.2Si2—C18—H18C109.5
C8—C9—H9124.2H18A—C18—H18C109.5
C9—C10—C11129.1 (4)H18B—C18—H18C109.5
 

Acknowledgements

We are grateful to the Sultan Qaboos University, Oman, the Royal Society of Chemistry for a Journals Grant for International Authors (to MSK), and the DAAD (to BA) for funding.

References

First citationBeljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868–3877.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SADABS (Version 6.02a) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Younus, M., Raithby, P. R., Lewis, J., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963–4970.  Web of Science CrossRef CAS Google Scholar
First citationClegg, W. (1997). LSCELL. University of Newcastle upon Tyne, England.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrey, J., Bond, A. D. & Holmes, A. B. (2002). Chem. Commun. pp. 2424–2425.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Ahrens, B., Male, L. & Raithby, P. R. (2002). Acta Cryst. E58, o1220–o1221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. S., Ahrens, B., Male, L. & Raithby, P. R. (2004). Acta Cryst. E60, o915–o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 2441–2448.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1358–1368.  Web of Science CSD CrossRef Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male, L., Friend, R. H., Köhler, A. & Wilson, J. S. (2003). Dalton Trans. pp. 65–73.  Web of Science CSD CrossRef Google Scholar
First citationLi, X.-C., Sirringhaus, H., Garnier, F., Holmes, A. B., Moratti, S. C., Feeder, N., Clegg, W., Teat, S. J. & Friend, R. H. (1998). J. Am. Chem. Soc. 120, 2206–2207.  Web of Science CSD CrossRef CAS Google Scholar
First citationOsterod, F., Peters, L., Kraft, A., Sano, T., Morrison, J. J., Feeder, N. & Holmes, A. B. (2001). J. Mater. Chem. 11, 1625–1633.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M. & Raithby, P. R. (2001). J. Am. Chem. Soc. 1213, 9412–9417.  Web of Science CrossRef Google Scholar
First citationWilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2001). Nature (London), 413, 828–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627–7634.  Web of Science CrossRef CAS Google Scholar
First citationWittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693–2698.  CrossRef CAS Web of Science Google Scholar
First citationYounus, M., Köhler, A., Cron, A., Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). Angew. Chem. Int. Ed. 37, 3036–3039.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds