organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-2-pyridone pentahydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Natural Sciences (Chemistry), Bedson Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 22 July 2004; accepted 27 July 2004; online 31 July 2004)

Crystals of the title compound, C6H7NO·5H2O, were grown over a period of several weeks from an aqueous solution of the commercial compound. The mol­ecule crystallizes in space group P[\overline 1] and there are two independent 6-methyl-2-pyridone (Hmhp) mol­ecules in the asymmetric unit, together with ten mol­ecules of water. Packing diagrams reveal stacks of hydrogen-bonded Hmhp dimers surrounded by channels of water mol­ecules. The Hmhp mol­ecules pack with face-to-face ππ stacking, a common feature of pyridone crystal structures. Each water mol­ecule serves twice as hydrogen-bond donor and twice as acceptor, and is thus pseudo-tetrahedral. The water mol­ecules are arranged in hydrogen-bonded five- and six-membered rings and the rings are fused together, with the five-membered rings adopting an envelope conformation and the six-membered rings adopting either a chair or boat conformation. This structure is further evidence that Hmhp exists in the solid state as the pyridone tautomer and not the pyridinol tautomer.

Comment

The mol­ecule 2-hydroxy­pyridine and the family of 6-substituted derivatives have been extensively used as ligands in transition metal coordination chemistry, and a detailed review has been published (Rawson & Winpenny, 1995[Rawson, J. M. & Winpenny, R. E. P. (1995). Coord. Chem. Rev. 139, 313-374.]). There is also much interest in the chemistry of the ligands themselves, in particular, the keto–enol tautomerism which is observed in the gas phase and in solution.[link]

[Scheme 1]

This tautomerism has been known since 1907 (Baker & Baly, 1907[Baker, F. & Baly, E. C. C. (1907). J. Chem. Soc. pp. 1122-1132.]) and has been comprehensively investigated in solution by IR spectroscopy (Gibson et al., 1955[Gibson, J. A., Kynaston, W. & Lindsey, A. S. (1955). J. Chem. Soc. pp. 4340-4344.]; Katritzky et al., 1967[Katritzky, A. R., Rowe, J. D. & Roy, S. K. (1967). J. Chem. Soc. B, pp. 758-761.]; Mason, 1957[Mason, S. F. (1957). J. Chem. Soc. pp. 4874-4880.]) and nuclear magnetic resonance spectroscopy (Coburn & Dudek, 1968[Coburn, R. A. & Dudek, G. O. (1968). J. Phys. Chem. 72, 1177-1181.]), and in the gas phase by IR spectroscopy (King et al., 1972[King, S. S. T., Dilling, W. L & Tefertiller, N. B. (1972). Tetrahedron, 28, 5859-5863.]; Beak & Fry, 1973[Beak, P. & Fry, F. S. (1973). J. Am. Chem. Soc. 95, 1700-1702.]) and UV–vis spectroscopy (Beak et al., 1976[Beak, P., Fry, F. S., Lee, J. & Steele, F. (1976). J. Am. Chem. Soc. 98, 171-179.]). Various theoretical studies have also been reported (Beak & Covington, 1978[Beak, P. & Covington, J. B. (1978). J. Am. Chem. Soc. 100, 3961-3963.]; Beak et al., 1980[Beak, P., Covington, J. B. & White, J. M. (1980). J. Org. Chem. 45, 1347-1353.]; Parchment et al., 1991[Parchment, O. G., Hillier, I. H. & Green, D. S. V. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 799-802.]; Wong et al., 1992[Wong, M. W., Wiberg, K. B. & Frisch, M. J. (1992). J. Am. Chem. Soc. 114, 1645-1652.]). Principal factors influencing the position of this equilibrium include solvent effects (polarity and pH) and substituent effects (position on the ring and electron-donating/withdrawing influence). Substituents at position 6 have the greatest effect; electron-withdrawing substituents are seen to drive the equilibrium towards the pyridinol tautomer, whereas electron-donating substituents favour the pyridone tautomer. The rationale behind this has already been explained in terms of resonance stabilization and destabilization by the substituent (King et al., 1972[King, S. S. T., Dilling, W. L & Tefertiller, N. B. (1972). Tetrahedron, 28, 5859-5863.]).

Naturally, X-ray crystallography has played a key role in determining the preferred tautomers in the solid state. The structures of 6-chloro-2-hydroxy­pyridine (Kvick & Olovsson, 1969[Kvick, Å. & Olovsson, I. (1969). Ark. Kemi, 30, 71-80.]) and 6-bromo-2-hydroxy­pyridine (Kvick, 1976[Kvick, Å. (1976). Acta Cryst. B32, 220-224.]) are already known. Both have electron-withdrawing substituents and both crystallize as the pyridinol form, confirming the conclusions derived from spectroscopic evidence which predicted that they would be observed as the pyridinol tautomer. If there is no substituent, the mol­ecule crystallizes as the pyridone form (Penfold, 1953[Penfold, B. R. (1953). Acta Cryst. 6, 591-600.]).

However, crystallographic proof that electron-donating substituents generate a preference for the pyridone form has so far only been obtained via crystal structures of coordination compounds (Rawson & Winpenny, 1995[Rawson, J. M. & Winpenny, R. E. P. (1995). Coord. Chem. Rev. 139, 313-374.], and references therein) or co-crystallized with (S)-malic acid (Aakeröy et al., 2000[Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (2000), Tetrahedron, 56, 6693-6699.]). Unfortunately this is far from conclusive; a search of the Cambridge Structural Database (Version 5.25 plus two updates; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for 6-methyl-2-pyridone, allowing all bonds to be of any type, returned 105 hits. Of these no fewer than 80 reported the ligand as the pyridinol form, rather than the pyridone form, and a handful of hits even contained mixtures of the two. In most cases, this is probably because the C—O bond was too long to be considered as a genuine double bond. In addition, the ligand has been deprotonated in its complexes; there is no longer the possibility of determining the presence of an O—H or N—H bond and hence decide upon pyridone or pyridinol structure; these are now resonance forms rather than discrete tautomers.

We have determined the crystal structure of 6-methyl-2-pyridone (Hmhp) as its pentahydrate, (I[link]), crystallized from water (Fig. 1[link]). There are two independent Hmhp mol­ecules in the asymmetric unit and also ten mol­ecules of water. Face-to-face ππ stacking, a common feature of pyridone crystal structures, is observed here. One Hmhp mol­ecule lies above the other, with the methyl groups oriented in opposite directions, as shown in Fig. 2[link]. Both mol­ecules are essentially planar, except for the methyl H atoms. Their mean planes are approximately parallel and 3.30 Å apart, just less than the sum of the van der Waals radii for two C atoms, which is 3.4 Å.

Packing diagrams of the structure show that Hmhp packs as hydrogen-bonded dimers; these then form stacks, separated by channels of hydrogen-bonded water mol­ecules (Fig. 2[link]). Each water mol­ecule serves twice as hydrogen-bond donor and twice as acceptor, making four hydrogen bonds in total. This pseudo-tetrahedral arrangement means that the O atoms form five- and six-membered rings. These rings are fused together; the five-membered rings adopt an envelope conformation and the six-membered rings adopt either a chair or boat conformation. The hydrogen-bonding network involving the water mol­ecules, and also the hydrogen bonding between the Hmhp mol­ecules, is shown in Fig. 3[link].

The C—O bond lengths are 1.272 (3) and 1.268 (3) Å for the two mol­ecules and are in good agreement with those reported by Aakeröy et al. (2000[Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (2000), Tetrahedron, 56, 6693-6699.]) of 1.275 and 1.284 Å. These are a little on the long side for a C=O double bond. However, the data clearly show the presence of an H atom bonded to each N atom, and these have been refined freely. From this result, together with the lack of significant residual electron density next to the O atoms, the mol­ecule is unambiguously in the pyridone form.

[Figure 1]
Figure 1
The asymmetric unit of (I[link]), with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary size.
[Figure 2]
Figure 2
Projection along the a axis, with hydrogen bonds in light blue, showing also the ππ stacking.
[Figure 3]
Figure 3
Projection along the b axis, showing the hydrogen-bonding network involving the water mol­ecules and the 6-methyl-2-pyridone dimer.

Experimental

Commercially available 2-hydroxy-6-methyl­pyridine was obtained as a white powder. A sample was dissolved in distilled water with gentle heating and the sample vial stoppered. Storage in a cool cupboard resulted in large plate crystals growing over a period of several weeks.

Crystal data
  • C6H7NO·5H2O

  • Mr = 199.21

  • Triclinic, [P\overline 1]

  • a = 7.5134 (19) Å

  • b = 11.261 (3) Å

  • c = 13.859 (4) Å

  • α = 99.674 (4)°

  • β = 90.793 (5)°

  • γ = 105.622 (4)°

  • V = 1111.0 (5) Å3

  • Z = 4

  • Dx = 1.191 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2910 reflections

  • θ = 2.2–25.0°

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • Plate, colourless

  • 0.20 × 0.10 × 0.01 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Thin-slice ω scans

  • Absorption correction: none

  • 8151 measured reflections

  • 3872 independent reflections

  • 2768 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 25.0°

  • h = −8 → 8

  • k = −13 → 13

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.04

  • 3872 reflections

  • 303 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0577P)2 + 0.6174P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond distances (Å)

O1—C1 1.272 (3)
O2—C7 1.268 (3)
N1—H1N 0.81 (3)
N2—H2N 0.87 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O⋯O2 0.816 (9) 1.876 (10) 2.690 (2) 175 (3)
O3—H2O⋯O7 0.813 (10) 1.944 (11) 2.750 (3) 171 (3)
O4—H4O⋯O6i 0.816 (10) 1.967 (12) 2.766 (3) 166 (3)
O4—H3O⋯O6ii 0.815 (10) 1.985 (12) 2.789 (3) 169 (2)
O5—H5O⋯O1 0.824 (9) 1.887 (11) 2.701 (2) 170 (3)
O5—H6O⋯O3iii 0.822 (10) 1.939 (11) 2.751 (3) 169 (2)
O6—H7O⋯O12 0.813 (10) 1.935 (10) 2.744 (3) 173 (3)
O6—H8O⋯O8iv 0.813 (10) 1.953 (10) 2.760 (3) 172 (3)
O7—H10O⋯O12v 0.814 (10) 1.943 (11) 2.754 (2) 174 (3)
O7—H9O⋯O11vi 0.810 (10) 1.965 (10) 2.774 (3) 176 (3)
O8—H11O⋯O11 0.820 (10) 2.006 (10) 2.823 (3) 175 (3)
O8—H12O⋯O9 0.818 (10) 1.963 (10) 2.780 (3) 177 (3)
O9—H13O⋯O7 0.824 (10) 1.990 (12) 2.801 (3) 168 (3)
O9—H14O⋯O4iv 0.814 (10) 2.019 (12) 2.816 (3) 166 (3)
O10—H16O⋯O4 0.821 (9) 1.919 (10) 2.739 (3) 176 (3)
O10—H15O⋯O5 0.822 (10) 1.917 (11) 2.736 (3) 174 (2)
O11—H17O⋯O10v 0.817 (10) 1.940 (10) 2.752 (2) 173 (3)
O11—H18O⋯O5iii 0.818 (10) 1.927 (10) 2.743 (2) 175 (3)
O12—H19O⋯O3vii 0.820 (10) 1.907 (10) 2.726 (2) 177 (3)
O12—H20O⋯O10 0.818 (9) 1.926 (10) 2.743 (3) 177 (3)
N1—H1N⋯O1iii 0.81 (3) 2.00 (3) 2.798 (3) 171 (3)
N2—H2N⋯O2vii 0.87 (3) 1.92 (3) 2.783 (3) 175 (2)
Symmetry codes: (i) 1+x,y,z; (ii) 1-x,-y,-z; (iii) 2-x,1-y,1-z; (iv) 1-x,-y,1-z; (v) x,y,1+z; (vi) x-1,y,z; (vii) 1-x,1-y,1-z.

Methyl H atoms were positioned geometrically (C—H = 0.98 Å) and refined as riding, with free rotation about the C—C bond, and with Uiso(H) = 1.5Ueq(C). Aromatic H atoms were also positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were found in a difference map and their positions were refined, with Uiso(H) = 1.2Ueq(N,O). Water O—H distances were restrained to 0.82 (1) Å and H⋯H distances restrained to 1.35 (2) Å, but N—H distances were not restrained.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and MERCURY (Version 1.2; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL and Mercury (Version 1.2; Bruno et al., 2002); software used to prepare material for publication: SHELXTL and local programs.

6-methyl-2-pyridone pentahydrate top
Crystal data top
C6H7NO·5H2OZ = 4
Mr = 199.21F(000) = 432
Triclinic, P1Dx = 1.191 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5134 (19) ÅCell parameters from 2910 reflections
b = 11.261 (3) Åθ = 2.2–25.0°
c = 13.859 (4) ŵ = 0.11 mm1
α = 99.674 (4)°T = 150 K
β = 90.793 (5)°Plate, colourless
γ = 105.622 (4)°0.20 × 0.10 × 0.01 mm
V = 1111.0 (5) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
2768 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
thin–slice ω scansh = 88
8151 measured reflectionsk = 1313
3872 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.6174P]
where P = (Fo2 + 2Fc2)/3
3872 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.32 e Å3
30 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0162 (2)0.45299 (15)0.37534 (11)0.0261 (4)
O20.5241 (2)0.45850 (14)0.61329 (11)0.0242 (4)
O30.5648 (3)0.49525 (16)0.81011 (12)0.0301 (4)
H1O0.551 (4)0.488 (2)0.7507 (8)0.036*
H2O0.504 (3)0.4343 (17)0.8307 (17)0.036*
O40.8545 (3)0.07316 (17)0.09483 (13)0.0351 (4)
H4O0.9648 (16)0.080 (3)0.1036 (19)0.042*
H3O0.818 (3)0.032 (2)0.0407 (11)0.042*
O51.0637 (2)0.49021 (17)0.18880 (12)0.0303 (4)
H5O1.041 (3)0.485 (3)0.2461 (10)0.036*
H6O1.1729 (17)0.493 (3)0.1813 (18)0.036*
O60.2236 (3)0.07603 (17)0.09106 (14)0.0360 (4)
H7O0.300 (3)0.1411 (16)0.087 (2)0.043*
H8O0.248 (4)0.040 (2)0.1337 (16)0.043*
O70.3284 (2)0.29902 (17)0.87828 (12)0.0306 (4)
H10O0.376 (3)0.302 (3)0.9323 (11)0.037*
H9O0.2214 (17)0.301 (3)0.8794 (18)0.037*
O80.7141 (3)0.06853 (17)0.77671 (14)0.0352 (4)
H11O0.779 (3)0.1365 (15)0.8051 (19)0.042*
H12O0.6052 (15)0.068 (2)0.777 (2)0.042*
O90.3437 (3)0.06773 (17)0.77195 (13)0.0365 (5)
H13O0.332 (4)0.1373 (13)0.7956 (19)0.044*
H14O0.290 (4)0.0167 (18)0.8045 (18)0.044*
O100.8290 (3)0.30035 (16)0.05951 (12)0.0310 (4)
H16O0.837 (4)0.2334 (13)0.0726 (18)0.037*
H15O0.897 (3)0.3607 (15)0.0967 (16)0.037*
O110.9578 (3)0.29564 (16)0.87435 (12)0.0309 (4)
H17O0.928 (4)0.302 (2)0.9311 (9)0.037*
H18O0.956 (4)0.3591 (16)0.8534 (17)0.037*
O120.4631 (2)0.29778 (16)0.06383 (12)0.0296 (4)
H19O0.452 (3)0.3583 (17)0.1031 (16)0.036*
H20O0.5709 (18)0.295 (2)0.0616 (19)0.036*
N11.0683 (3)0.35222 (18)0.49688 (14)0.0211 (4)
H1N1.052 (3)0.408 (2)0.5381 (19)0.025*
N20.5668 (3)0.35218 (18)0.46533 (13)0.0202 (4)
H2N0.545 (3)0.414 (2)0.4413 (18)0.024*
C11.0545 (3)0.3586 (2)0.40031 (16)0.0225 (5)
C21.0839 (3)0.2550 (2)0.33380 (17)0.0271 (5)
H21.07880.25440.26520.033*
C31.1193 (3)0.1572 (2)0.36886 (19)0.0308 (6)
H31.13750.08830.32420.037*
C41.1293 (3)0.1567 (2)0.46989 (18)0.0272 (5)
H41.15490.08810.49340.033*
C51.1022 (3)0.2546 (2)0.53403 (18)0.0257 (5)
C61.1067 (3)0.2653 (2)0.64234 (18)0.0310 (6)
H6A1.13630.19200.66050.046*
H6B0.98540.26920.66540.046*
H6C1.20130.34150.67260.046*
C70.5610 (3)0.3630 (2)0.56469 (16)0.0205 (5)
C80.5975 (3)0.2633 (2)0.60486 (17)0.0242 (5)
H80.59900.26620.67380.029*
C90.6304 (3)0.1636 (2)0.54479 (18)0.0258 (5)
H90.65350.09720.57260.031*
C100.6309 (3)0.1570 (2)0.44281 (17)0.0246 (5)
H100.65330.08660.40180.030*
C110.5988 (3)0.2525 (2)0.40363 (16)0.0218 (5)
C120.5946 (3)0.2590 (2)0.29689 (16)0.0274 (5)
H12A0.62660.18620.25980.041*
H12B0.68430.33600.28620.041*
H12C0.47020.25890.27470.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0303 (9)0.0274 (9)0.0214 (9)0.0090 (7)0.0031 (7)0.0051 (7)
O20.0310 (9)0.0236 (9)0.0190 (8)0.0102 (7)0.0020 (7)0.0024 (7)
O30.0419 (11)0.0291 (10)0.0194 (9)0.0092 (8)0.0027 (8)0.0054 (7)
O40.0347 (10)0.0345 (11)0.0331 (10)0.0064 (9)0.0016 (8)0.0025 (8)
O50.0345 (10)0.0356 (10)0.0223 (9)0.0104 (9)0.0066 (8)0.0077 (8)
O60.0380 (11)0.0288 (10)0.0396 (11)0.0037 (8)0.0039 (9)0.0111 (8)
O70.0310 (10)0.0376 (10)0.0259 (9)0.0131 (9)0.0012 (8)0.0077 (8)
O80.0321 (10)0.0330 (10)0.0390 (11)0.0088 (9)0.0013 (9)0.0027 (8)
O90.0435 (12)0.0292 (10)0.0373 (11)0.0103 (9)0.0098 (9)0.0058 (8)
O100.0375 (11)0.0267 (10)0.0278 (10)0.0086 (8)0.0007 (8)0.0027 (8)
O110.0406 (11)0.0309 (10)0.0249 (9)0.0129 (8)0.0075 (8)0.0098 (8)
O120.0319 (10)0.0301 (10)0.0270 (10)0.0114 (8)0.0015 (8)0.0005 (7)
N10.0208 (10)0.0217 (10)0.0191 (10)0.0052 (8)0.0032 (8)0.0003 (8)
N20.0230 (10)0.0193 (10)0.0185 (10)0.0048 (8)0.0014 (8)0.0057 (8)
C10.0181 (12)0.0241 (13)0.0221 (12)0.0011 (10)0.0022 (9)0.0029 (10)
C20.0290 (13)0.0282 (13)0.0207 (12)0.0057 (11)0.0039 (10)0.0016 (10)
C30.0287 (14)0.0255 (13)0.0353 (15)0.0076 (11)0.0062 (11)0.0030 (11)
C40.0225 (13)0.0236 (13)0.0364 (15)0.0065 (10)0.0038 (10)0.0076 (11)
C50.0182 (12)0.0286 (13)0.0305 (13)0.0042 (10)0.0023 (10)0.0093 (10)
C60.0289 (14)0.0387 (15)0.0274 (14)0.0101 (12)0.0029 (11)0.0107 (11)
C70.0160 (11)0.0206 (12)0.0220 (12)0.0000 (9)0.0000 (9)0.0043 (9)
C80.0243 (13)0.0249 (13)0.0234 (12)0.0047 (10)0.0003 (10)0.0079 (10)
C90.0233 (12)0.0213 (12)0.0329 (14)0.0040 (10)0.0004 (10)0.0087 (10)
C100.0221 (12)0.0194 (12)0.0299 (13)0.0038 (10)0.0009 (10)0.0010 (10)
C110.0173 (11)0.0222 (12)0.0218 (12)0.0015 (9)0.0003 (9)0.0006 (9)
C120.0290 (13)0.0311 (14)0.0212 (12)0.0086 (11)0.0024 (10)0.0016 (10)
Geometric parameters (Å, º) top
O1—C11.272 (3)N2—C71.364 (3)
O2—C71.268 (3)N2—C111.370 (3)
O3—H1O0.816 (9)N2—H2N0.87 (3)
O3—H2O0.813 (10)C1—C21.429 (3)
O4—H4O0.816 (10)C2—C31.362 (3)
O4—H3O0.815 (10)C2—H20.950
O5—H5O0.824 (9)C3—C41.402 (4)
O5—H6O0.822 (10)C3—H30.950
O6—H7O0.813 (10)C4—C51.358 (3)
O6—H8O0.813 (10)C4—H40.950
O7—H10O0.814 (10)C5—C61.485 (3)
O7—H9O0.810 (10)C6—H6A0.980
O8—H11O0.820 (10)C6—H6B0.980
O8—H12O0.818 (10)C6—H6C0.980
O9—H13O0.824 (10)C7—C81.420 (3)
O9—H14O0.814 (10)C8—C91.362 (3)
O10—H16O0.821 (9)C8—H80.950
O10—H15O0.822 (10)C9—C101.403 (3)
O11—H17O0.817 (10)C9—H90.950
O11—H18O0.818 (10)C10—C111.357 (3)
O12—H19O0.820 (10)C10—H100.950
O12—H20O0.818 (9)C11—C121.494 (3)
N1—C11.356 (3)C12—H12A0.980
N1—C51.369 (3)C12—H12B0.980
N1—H1N0.81 (3)C12—H12C0.980
H1O—O3—H2O113 (2)C4—C5—C6125.2 (2)
H4O—O4—H3O109 (2)N1—C5—C6116.7 (2)
H5O—O5—H6O109 (2)C5—C6—H6A109.5
H7O—O6—H8O115 (2)C5—C6—H6B109.5
H10O—O7—H9O113 (2)H6A—C6—H6B109.5
H11O—O8—H12O110 (2)C5—C6—H6C109.5
H13O—O9—H14O109 (2)H6A—C6—H6C109.5
H16O—O10—H15O112 (2)H6B—C6—H6C109.5
H17O—O11—H18O110 (2)O2—C7—N2118.9 (2)
H19O—O12—H20O112 (2)O2—C7—C8125.5 (2)
C1—N1—C5125.5 (2)N2—C7—C8115.7 (2)
C1—N1—H1N120.5 (18)C9—C8—C7120.1 (2)
C5—N1—H1N114.0 (18)C9—C8—H8119.9
C7—N2—C11125.1 (2)C7—C8—H8119.9
C7—N2—H2N115.2 (16)C8—C9—C10121.4 (2)
C11—N2—H2N119.8 (16)C8—C9—H9119.3
O1—C1—N1119.2 (2)C10—C9—H9119.3
O1—C1—C2125.0 (2)C11—C10—C9119.0 (2)
N1—C1—C2115.7 (2)C11—C10—H10120.5
C3—C2—C1119.9 (2)C9—C10—H10120.5
C3—C2—H2120.0C10—C11—N2118.7 (2)
C1—C2—H2120.0C10—C11—C12125.3 (2)
C2—C3—C4121.0 (2)N2—C11—C12116.0 (2)
C2—C3—H3119.5C11—C12—H12A109.5
C4—C3—H3119.5C11—C12—H12B109.5
C5—C4—C3119.7 (2)H12A—C12—H12B109.5
C5—C4—H4120.1C11—C12—H12C109.5
C3—C4—H4120.1H12A—C12—H12C109.5
C4—C5—N1118.1 (2)H12B—C12—H12C109.5
C5—N1—C1—O1177.6 (2)C11—N2—C7—O2177.7 (2)
C5—N1—C1—C21.9 (3)C11—N2—C7—C82.2 (3)
O1—C1—C2—C3178.2 (2)O2—C7—C8—C9178.2 (2)
N1—C1—C2—C31.3 (3)N2—C7—C8—C91.8 (3)
C1—C2—C3—C40.6 (4)C7—C8—C9—C100.6 (3)
C2—C3—C4—C50.4 (4)C8—C9—C10—C110.4 (3)
C3—C4—C5—N10.9 (3)C9—C10—C11—N20.0 (3)
C3—C4—C5—C6179.2 (2)C9—C10—C11—C12179.9 (2)
C1—N1—C5—C41.8 (3)C7—N2—C11—C101.3 (3)
C1—N1—C5—C6178.3 (2)C7—N2—C11—C12178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O20.82 (1)1.88 (1)2.690 (2)175 (3)
O3—H2O···O70.81 (1)1.94 (1)2.750 (3)171 (3)
O4—H4O···O6i0.82 (1)1.97 (1)2.766 (3)166 (3)
O4—H3O···O6ii0.82 (1)1.99 (1)2.789 (3)169 (2)
O5—H5O···O10.82 (1)1.89 (1)2.701 (2)170 (3)
O5—H6O···O3iii0.82 (1)1.94 (1)2.751 (3)169 (2)
O6—H7O···O120.81 (1)1.94 (1)2.744 (3)173 (3)
O6—H8O···O8iv0.81 (1)1.95 (1)2.760 (3)172 (3)
O7—H10O···O12v0.81 (1)1.94 (1)2.754 (2)174 (3)
O7—H9O···O11vi0.81 (1)1.97 (1)2.774 (3)176 (3)
O8—H11O···O110.82 (1)2.01 (1)2.823 (3)175 (3)
O8—H12O···O90.82 (1)1.96 (1)2.780 (3)177 (3)
O9—H13O···O70.82 (1)1.99 (1)2.801 (3)168 (3)
O9—H14O···O4iv0.81 (1)2.02 (1)2.816 (3)166 (3)
O10—H16O···O40.82 (1)1.92 (1)2.739 (3)176 (3)
O10—H15O···O50.82 (1)1.92 (1)2.736 (3)174 (2)
O11—H17O···O10v0.82 (1)1.94 (1)2.752 (2)173 (3)
O11—H18O···O5iii0.82 (1)1.93 (1)2.743 (2)175 (3)
O12—H19O···O3vii0.82 (1)1.91 (1)2.726 (2)177 (3)
O12—H20O···O100.82 (1)1.93 (1)2.743 (3)177 (3)
N1—H1N···O1iii0.81 (3)2.00 (3)2.798 (3)171 (3)
N2—H2N···O2vii0.87 (3)1.92 (3)2.783 (3)175 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x1, y, z; (vii) x+1, y+1, z+1.
 

Acknowledgements

We thank the EPSRC for financial support.

References

First citationAakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (2000), Tetrahedron, 56, 6693–6699.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaker, F. & Baly, E. C. C. (1907). J. Chem. Soc. pp. 1122–1132.  CrossRef Google Scholar
First citationBeak, P. & Fry, F. S. (1973). J. Am. Chem. Soc. 95, 1700–1702.  CrossRef CAS Web of Science Google Scholar
First citationBeak, P., Fry, F. S., Lee, J. & Steele, F. (1976). J. Am. Chem. Soc. 98, 171–179.  CrossRef CAS Web of Science Google Scholar
First citationBeak, P. & Covington, J. B. (1978). J. Am. Chem. Soc. 100, 3961–3963.  CrossRef CAS Web of Science Google Scholar
First citationBeak, P., Covington, J. B. & White, J. M. (1980). J. Org. Chem. 45, 1347–1353.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCoburn, R. A. & Dudek, G. O. (1968). J. Phys. Chem. 72, 1177–1181.  CrossRef CAS Web of Science Google Scholar
First citationGibson, J. A., Kynaston, W. & Lindsey, A. S. (1955). J. Chem. Soc. pp. 4340–4344.  CrossRef Web of Science Google Scholar
First citationKatritzky, A. R., Rowe, J. D. & Roy, S. K. (1967). J. Chem. Soc. B, pp. 758–761.  Google Scholar
First citationKing, S. S. T., Dilling, W. L & Tefertiller, N. B. (1972). Tetrahedron, 28, 5859–5863.  CrossRef CAS Google Scholar
First citationKvick, Å. (1976). Acta Cryst. B32, 220–224.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKvick, Å. & Olovsson, I. (1969). Ark. Kemi, 30, 71–80.  Google Scholar
First citationMason, S. F. (1957). J. Chem. Soc. pp. 4874–4880.  CrossRef Web of Science Google Scholar
First citationParchment, O. G., Hillier, I. H. & Green, D. S. V. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 799–802.  CrossRef Google Scholar
First citationPenfold, B. R. (1953). Acta Cryst. 6, 591–600.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRawson, J. M. & Winpenny, R. E. P. (1995). Coord. Chem. Rev. 139, 313–374.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWong, M. W., Wiberg, K. B. & Frisch, M. J. (1992). J. Am. Chem. Soc. 114, 1645–1652.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds