organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,7-Bis­(di­methyl­amino)­pheno­thia­zin-5-ium nitrate dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 24, India, and bSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 24 June 2004; accepted 14 July 2004; online 24 July 2004)

The reaction of 3,7-bis­(di­methyl­amino)­pheno­thia­zin-5-ium chloride pentahydrate (methyl­ene blue) with silver nitrate in a 1:2 molar ratio in water yielded the title compound, C16H18N3S+·NO3·2H2O, as one of the products. The cationic dye mol­ecules are planar and stacked in an antiparallel fashion, exhibiting ππ associations at a distance of 3.7040 (18) Å. The nitrate anion and the two water mol­ecules are involved in a hydrogen-bonding network that also includes the pheno­thia­zinium N atom.

Comment

Methyl­ene blue (MB) is an important cationic dye with various colorimetric uses (Tuite & Kelly, 1993[Tuite, E. M. & Kelly, J. M. (1993). J. Photochem. Photobiol. B, 21, 103-124.]). It is marketed as its chloride salt. Other forms, such as the cyanide and nitrate [the title compound, (I[link])] salts exhibit antimethemoglobinemic, antiseptic and disinfectant properties (The Merck Index, 2001[The Merck Index (2001). 13th ed. Whitehouse Station: Merck and Co. Inc.]). The Cambridge Structural Database (Version 5.25, April 2004 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) includes four MB crystal structures containing the pheno­thia­zinium moiety, as chloride penta­hydrate (Marr et al., 1973[Marr, H. E. III, Stewart, J. M. & Chiu, M. F. (1973). Acta Cryst. B29, 847-853.]), triiodide (Endres et al., 1977[Endres, H., Jeromin, G. & Keller, H. J. (1977). Z. Naturforsch. Teil B, 32, 1375-1378.]), thio­cyanate (Kahn-Harari et al., 1973[Kahn-Harari, A., Ballard, R. E. & Norris, E. K. (1973). Acta Cryst. B29, 1124-1126.]), urate hexahydrate (Sours et al., 2002[Sours, R. E., Fink, D. A. & Swift, J. A. (2002). J. Am. Chem. Soc. 124, 8630-8636.]) and bis­(maleo­nitrile­di­thiol­ato)cuprate(II) (Snaathorst et al., 1981[Snaathorst, D., Doesburg, H. M., Perenboom, J. A. A. J. & Keijzers, C. P. (1981). Inorg. Chem. 20, 2526-2532.]) salts. In each case, the bond distances in the MB cations indicate a resonance structure in which the positive charge is delocalized over the two di­methyl­amine N atoms, with conjugation through the pheno­thia­zinium N atom, although the MB cation is sometimes represented as aromatic with a positive S atom. The addition of AgNO3 to aqueous MB chloride solution does not precipitate silver chloride, yet the IR spectrum of the product shows features very different from that of the starting materials. Further investigations are currently underway to determine the nature of the resultant soluble silver product but here we report the structure of the precipitated product.

[Scheme 1]

The asymmetric unit of (I[link]) consists of an MB cation, a nitrate anion and two water mol­ecules (Fig. 1[link]). The MB cation displays a typical MB resonance structure, as evident from the pronounced shortening of the C1—C2, C4—C12, C8—C9 and C6—C13 bonds compared with other C—C bonds (Table 1[link]). The two C—S bonds are equal in length, indicating that conjugation occurs via N10. The MB cation is thus planar and the cations are stacked in an antiparallel fashion, exhibiting ππ associations at a distance of 3.7040 (18) Å. In contrast to MB chloride, which crystallizes with five lattice water mol­ecules, the degree of hydration of the MB nitrate is lower. This difference may be due in part to the hydrogen-bonding network and the fact that more hydrogen-bond acceptor atoms are available on the nitrate ion than for a chloride anion. Hydro­gen-bonding associations are listed in Table 2[link] and indicate that all of the strong hydrogen-bond donor atoms are utilized, although this is not the case for the strong hydrogen-bond acceptor atoms. Only one hydrogen-bond acceptor atom from the pheno­thia­zinium moiety, N10, is involved in the hydrogen-bond network, along with two nitrate O atoms and one water O atom. The nitrate ion and the water mol­ecules form a one-dimensional hydrogen-bonded chain in the a cell direction (Fig. 2[link]). There are close contacts between the S atom and the nitrate N atom [3.369 (4) Å] and also between atom O3 and both N3 [2.906 (4) Å; symmetry code: (1 − x, −y, 2 − z)] and C32 [2.962 (4) Å; symmetry code: (1 − x, −y, 2 − z)], although for the latter there is no appropriate H atom to construct a C—H⋯O association. These close contacts for O3 may explain why there is no strong hydrogen-bonding interaction with this atom. Two unassigned areas of electron density, 0.64 and 0.59 e Å−3, exist approximately equidistant, 1.94 and 1.96 Å, respectively, from atom S5, which may be the cause of the higher than expected R values.

[Figure 1]
Figure 1
Molecular structure and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram for (I[link]). For clarity, the non-essential H atoms have been omitted. [Symmetry codes: (i) −1 + x, y, z; (ii) −x, −y + 1, −z + 2.]

Experimental

Methyl­ene blue (1 mmol) was dissolved with silver nitrate (2 mmol) in water (10 ml). Crystals of the title compound were obtained by the slow evaporation of this reaction mixture.

Crystal data
  • C16H18N3S+·NO3·2H2O

  • Mr = 382.44

  • Triclinic, [P\overline 1]

  • a = 7.6985 (3) Å

  • b = 10.9638 (3) Å

  • c = 11.3244 (4) Å

  • α = 87.081 (2)°

  • β = 76.032 (2)°

  • γ = 73.524 (2)°

  • V = 889.33 (5) Å3

  • Z = 2

  • Dx = 1.428 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 12 187 reflections

  • θ = 2.9–27.5°

  • μ = 0.22 mm−1

  • T = 120 (2) K

  • Prism, red

  • 0.42 × 0.36 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.836, Tmax = 0.952

  • 17 489 measured reflections

  • 4077 independent reflections

  • 3225 reflections with I > 2σ(I)

  • Rint = 0.068

  • θmax = 27.6°

  • h = −9 → 9

  • k = −14 → 14

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.206

  • S = 1.13

  • 4077 reflections

  • 255 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0821P)2 + 1.7607P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

C1—C2 1.359 (4)
C1—C11 1.430 (4)
C2—C3 1.439 (4)
C3—N3 1.335 (4)
C3—C4 1.416 (4)
C4—C12 1.373 (4)
S5—C13 1.728 (3)
S5—C12 1.728 (3)
C6—C13 1.376 (4)
C6—C7 1.415 (4)
C7—N7 1.340 (4)
C7—C8 1.436 (4)
C8—C9 1.361 (4)
C9—C14 1.424 (4)
N10—C11 1.335 (4)
N10—C14 1.344 (4)
C11—C12 1.438 (4)
C13—C14 1.432 (4)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O2i 0.88 (5) 1.91 (5) 2.789 (4) 174 (4)
O1W—H12W⋯N10ii 0.84 (5) 2.10 (5) 2.929 (4) 172 (4)
O2W—H21W⋯O1 0.81 (6) 2.14 (6) 2.886 (5) 154 (5)
O2W—H22W⋯O1W 0.75 (5) 2.05 (5) 2.792 (4) 171 (5)
Symmetry codes: (i) x-1,y,z; (ii) -x,1-y,2-z.

All H atoms, except the water H atoms, were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.95 (aromatic H atoms) and 0.98 Å (CH3 H atoms). The isotropic displacement parameters were set equal to 1.25Ueq of the carrier atom. The water H atoms were located in difference syntheses and both positional and displacement parameters were refined.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON97 (Spek, 1997[Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

3,7-Bis(dimethylamino)phenothiazin-5-ium nitrate dihydrate top
Crystal data top
C16H18N3S+·NO3·2H2OZ = 2
Mr = 382.44F(000) = 404
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6985 (3) ÅCell parameters from 12187 reflections
b = 10.9638 (3) Åθ = 2.9–27.5°
c = 11.3244 (4) ŵ = 0.22 mm1
α = 87.081 (2)°T = 120 K
β = 76.032 (2)°Prism, red
γ = 73.524 (2)°0.42 × 0.36 × 0.20 mm
V = 889.33 (5) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4077 independent reflections
Radiation source: Nonius FR591 rotating anode3225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1414
Tmin = 0.836, Tmax = 0.952l = 1414
17489 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0821P)2 + 1.7607P]
where P = (Fo2 + 2Fc2)/3
4077 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.32 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3039 (4)0.4163 (3)1.2264 (3)0.0253 (6)
H10.22910.47931.28640.032*
C20.4150 (4)0.3079 (3)1.2620 (3)0.0256 (6)
H20.41700.29671.34550.032*
C30.5295 (4)0.2101 (3)1.1740 (3)0.0244 (6)
N30.6397 (4)0.1028 (3)1.2068 (2)0.0272 (6)
C310.6448 (5)0.0733 (3)1.3341 (3)0.0345 (8)
H3110.65060.14831.37490.043*
H3120.75500.00251.33680.043*
H3130.53210.04951.37560.043*
C320.7498 (5)0.0020 (3)1.1173 (3)0.0356 (8)
H3210.66790.02131.07380.045*
H3220.81060.07261.15900.045*
H3230.84480.03221.05920.045*
C40.5233 (4)0.2303 (3)1.0504 (3)0.0245 (6)
H40.59820.16700.99080.031*
S50.40954 (11)0.35433 (7)0.86311 (7)0.0265 (2)
C60.2292 (4)0.5433 (3)0.7434 (3)0.0241 (6)
H60.29340.48950.67410.030*
C70.1059 (4)0.6632 (3)0.7289 (3)0.0239 (6)
N70.0768 (4)0.6987 (3)0.6188 (2)0.0278 (6)
C710.1732 (6)0.6157 (3)0.5125 (3)0.0372 (8)
H7110.30700.60780.49510.046*
H7120.12440.65200.44220.046*
H7130.15310.53150.52870.046*
C720.0522 (5)0.8200 (3)0.5977 (3)0.0343 (8)
H7210.16340.83900.66530.043*
H7220.08870.81430.52150.043*
H7230.00910.88790.59230.043*
C80.0147 (4)0.7430 (3)0.8354 (3)0.0258 (7)
H80.06620.82500.82820.032*
C90.0430 (5)0.7022 (3)0.9465 (3)0.0263 (7)
H90.02020.75661.01550.033*
N100.1816 (4)0.5488 (2)1.0768 (2)0.0232 (5)
C110.2953 (4)0.4392 (3)1.1023 (3)0.0226 (6)
C120.4104 (4)0.3402 (3)1.0157 (3)0.0231 (6)
C130.2576 (4)0.5031 (3)0.8561 (3)0.0216 (6)
C140.1637 (4)0.5808 (3)0.9632 (3)0.0223 (6)
N10.7431 (4)0.0916 (3)0.7386 (3)0.0341 (7)
O10.7351 (4)0.1430 (3)0.6394 (3)0.0543 (8)
O20.8749 (4)0.0886 (3)0.7856 (3)0.0531 (8)
O30.6206 (5)0.0440 (3)0.7940 (3)0.0568 (9)
O1W0.0499 (4)0.2807 (3)0.7190 (2)0.0354 (6)
H11W0.012 (6)0.223 (5)0.738 (4)0.043 (12)*
H12W0.022 (7)0.334 (5)0.772 (5)0.049 (13)*
O2W0.3966 (5)0.2779 (3)0.5684 (2)0.0390 (6)
H21W0.471 (8)0.225 (5)0.597 (5)0.058 (16)*
H22W0.306 (7)0.271 (5)0.606 (5)0.044 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0292 (16)0.0240 (15)0.0211 (14)0.0060 (13)0.0038 (12)0.0036 (11)
C20.0275 (16)0.0290 (16)0.0206 (14)0.0081 (13)0.0058 (12)0.0002 (12)
C30.0210 (15)0.0255 (15)0.0258 (15)0.0064 (12)0.0042 (12)0.0019 (12)
N30.0273 (14)0.0271 (14)0.0242 (13)0.0021 (11)0.0071 (11)0.0013 (10)
C310.0397 (19)0.0335 (18)0.0248 (16)0.0006 (15)0.0098 (14)0.0040 (13)
C320.0344 (19)0.0325 (18)0.0309 (17)0.0059 (14)0.0084 (14)0.0015 (14)
C40.0225 (15)0.0238 (15)0.0235 (15)0.0022 (12)0.0028 (12)0.0022 (11)
S50.0305 (4)0.0231 (4)0.0199 (4)0.0013 (3)0.0048 (3)0.0022 (3)
C60.0260 (15)0.0231 (15)0.0222 (14)0.0063 (12)0.0041 (12)0.0016 (11)
C70.0243 (15)0.0243 (15)0.0246 (15)0.0089 (12)0.0064 (12)0.0022 (12)
N70.0320 (15)0.0231 (13)0.0250 (13)0.0012 (11)0.0080 (11)0.0003 (10)
C710.054 (2)0.0296 (17)0.0205 (15)0.0014 (16)0.0101 (15)0.0008 (13)
C720.0382 (19)0.0294 (17)0.0303 (17)0.0006 (14)0.0100 (14)0.0032 (13)
C80.0260 (16)0.0210 (15)0.0286 (16)0.0036 (12)0.0065 (12)0.0001 (12)
C90.0283 (16)0.0228 (15)0.0255 (15)0.0047 (12)0.0040 (12)0.0049 (12)
N100.0253 (13)0.0215 (12)0.0224 (12)0.0059 (10)0.0052 (10)0.0023 (10)
C110.0229 (15)0.0217 (14)0.0234 (14)0.0072 (12)0.0040 (11)0.0015 (11)
C120.0233 (15)0.0249 (15)0.0212 (14)0.0088 (12)0.0028 (11)0.0013 (11)
C130.0221 (14)0.0200 (14)0.0223 (14)0.0054 (11)0.0049 (11)0.0010 (11)
C140.0231 (15)0.0211 (14)0.0228 (14)0.0062 (12)0.0053 (11)0.0006 (11)
N10.0309 (15)0.0285 (15)0.0371 (16)0.0040 (12)0.0014 (13)0.0032 (12)
O10.0538 (18)0.0563 (19)0.0371 (15)0.0022 (15)0.0042 (13)0.0103 (13)
O20.0501 (18)0.0491 (18)0.064 (2)0.0109 (14)0.0253 (15)0.0024 (15)
O30.0553 (19)0.0553 (19)0.0579 (19)0.0301 (16)0.0095 (15)0.0096 (15)
O1W0.0364 (14)0.0331 (14)0.0320 (13)0.0022 (12)0.0066 (11)0.0059 (11)
O2W0.0415 (17)0.0415 (16)0.0281 (13)0.0048 (13)0.0054 (13)0.0017 (11)
Geometric parameters (Å, º) top
C1—C21.359 (4)N7—C711.458 (4)
C1—C111.430 (4)N7—C721.464 (4)
C1—H10.95C71—H7110.98
C2—C31.439 (4)C71—H7120.98
C2—H20.95C71—H7130.98
C3—N31.335 (4)C72—H7210.98
C3—C41.416 (4)C72—H7220.98
N3—C321.461 (4)C72—H7230.98
N3—C311.469 (4)C8—C91.361 (4)
C31—H3110.98C8—H80.95
C31—H3120.98C9—C141.424 (4)
C31—H3130.98C9—H90.95
C32—H3210.98N10—C111.335 (4)
C32—H3220.98N10—C141.344 (4)
C32—H3230.98C11—C121.438 (4)
C4—C121.373 (4)C13—C141.432 (4)
C4—H40.95N1—O31.231 (4)
S5—C131.728 (3)N1—O11.238 (4)
S5—C121.728 (3)N1—O21.246 (4)
C6—C131.376 (4)O1W—H11W0.88 (5)
C6—C71.415 (4)O1W—H12W0.84 (5)
C6—H60.95O2W—H21W0.81 (6)
C7—N71.340 (4)O2W—H22W0.75 (5)
C7—C81.436 (4)
C2—C1—C11122.5 (3)C71—H711—109.5
C2—C1—H1118.7C71—H712—109.5
C11—C1—H1118.7C71—H712—109.5
C1—C2—C3120.3 (3)C71—H713—109.5
C1—C2—H2119.8C71—H713—109.5
C3—C2—H2119.8C71—H713—109.5
N3—C3—C4120.3 (3)C72—H721—109.5
N3—C3—C2121.4 (3)C72—H722—109.5
C4—C3—C2118.3 (3)C72—H722—109.5
C3—N3—C32120.9 (3)C72—H723—109.5
C3—N3—C31122.9 (3)C72—H723—109.5
C32—N3—C31115.9 (3)C72—H723—109.5
N3—C31—H311109.5C8—C7—120.6 (3)
N3—C31—H312109.5C8—H8—119.7
H311—C31—H312109.5C8—H8—119.7
N3—C31—H313109.5C9—C14—122.4 (3)
H311—C31—H313109.5C9—H9—118.8
H312—C31—H313109.5C9—H9—118.8
N3—C32—H321109.5N10—C14—123.0 (3)
N3—C32—H322109.5C11—C1—117.9 (3)
H321—C32—H322109.5C11—C12—125.8 (3)
N3—C32—H323109.5C11—C12—116.3 (3)
H321—C32—H323109.5C12—C11—121.7 (3)
H322—C32—H323109.5C12—S5—117.2 (2)
C12—C4—C3120.8 (3)C12—S5—121.0 (2)
C12—C4—H4119.6C13—C14—121.4 (3)
C3—C4—H4119.6C13—S5—117.1 (2)
C13—S5—C12103.28 (15)C13—S5—121.4 (2)
C13—C6—C7121.2 (3)C14—C9—118.0 (3)
C13—C6—H6119.4C14—C13—125.4 (3)
C7—C6—H6119.4C14—C13—116.6 (3)
N7—C7—C6120.0 (3)N1—O1—121.1 (4)
N7—C7—C8122.2 (3)N1—O2—118.4 (3)
C6—C7—C8117.8 (3)N1—O2—120.5 (3)
C7—N7—C71120.7 (3)O1W—H12W—95 (4)
C7—N7—C72122.9 (3)O2W—H22W—102 (5)
N7—C72—116.4 (3)
C11—C1—C2—C30.3 (5)C2—C1—C11—C120.4 (5)
C1—C2—C3—N3180.0 (3)C3—C4—C12—C110.4 (5)
C1—C2—C3—C40.2 (5)C3—C4—C12—S5178.8 (2)
C4—C3—N3—C322.6 (5)N10—C11—C12—C4180.0 (3)
C2—C3—N3—C32177.6 (3)C1—C11—C12—C40.5 (4)
C4—C3—N3—C31176.6 (3)N10—C11—C12—S50.8 (4)
C2—C3—N3—C313.5 (5)C1—C11—C12—S5178.7 (2)
N3—C3—C4—C12179.9 (3)C13—S5—C12—C4178.9 (2)
C2—C3—C4—C120.2 (5)C13—S5—C12—C111.9 (3)
C13—C6—C7—N7178.2 (3)C7—C6—C13—C140.1 (5)
C13—C6—C7—C81.4 (5)C7—C6—C13—S5179.4 (2)
C6—C7—N7—C711.0 (5)C12—S5—C13—C6179.2 (2)
C8—C7—N7—C71179.4 (3)C12—S5—C13—C141.5 (3)
C6—C7—N7—C72178.5 (3)C11—N10—C14—C9177.9 (3)
C8—C7—N7—C721.2 (5)C11—N10—C14—C131.6 (5)
N7—C7—C8—C9177.9 (3)C8—C9—C14—N10179.6 (3)
C6—C7—C8—C91.8 (5)C8—C9—C14—C130.9 (5)
C7—C8—C9—C140.6 (5)C6—C13—C14—N10179.3 (3)
C14—N10—C11—C1179.3 (3)S5—C13—C14—N100.0 (4)
C14—N10—C11—C121.2 (5)C6—C13—C14—C91.2 (4)
C2—C1—C11—N10180.0 (3)S5—C13—C14—C9179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O2i0.88 (5)1.91 (5)2.789 (4)174 (4)
O1W—H12W···N10ii0.84 (5)2.10 (5)2.929 (4)172 (4)
O2W—H21W···O10.81 (6)2.14 (6)2.886 (5)154 (5)
O2W—H22W···O1W0.75 (5)2.05 (5)2.792 (4)171 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEndres, H., Jeromin, G. & Keller, H. J. (1977). Z. Naturforsch. Teil B, 32, 1375–1378.  Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKahn-Harari, A., Ballard, R. E. & Norris, E. K. (1973). Acta Cryst. B29, 1124–1126.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMarr, H. E. III, Stewart, J. M. & Chiu, M. F. (1973). Acta Cryst. B29, 847–853.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSnaathorst, D., Doesburg, H. M., Perenboom, J. A. A. J. & Keijzers, C. P. (1981). Inorg. Chem. 20, 2526–2532.  CSD CrossRef CAS Web of Science Google Scholar
First citationSours, R. E., Fink, D. A. & Swift, J. A. (2002). J. Am. Chem. Soc. 124, 8630–8636.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.  Google Scholar
First citationThe Merck Index (2001). 13th ed. Whitehouse Station: Merck and Co. Inc.  Google Scholar
First citationTuite, E. M. & Kelly, J. M. (1993). J. Photochem. Photobiol. B, 21, 103–124.  CrossRef CAS PubMed Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds