organic compounds
3,7-Bis(dimethylamino)phenothiazin-5-ium nitrate dihydrate
aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 24, India, and bSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: apx106@coventry.ac.uk
The reaction of 3,7-bis(dimethylamino)phenothiazin-5-ium chloride pentahydrate (methylene blue) with silver nitrate in a 1:2 molar ratio in water yielded the title compound, C16H18N3S+·NO3−·2H2O, as one of the products. The cationic dye molecules are planar and stacked in an antiparallel fashion, exhibiting π–π associations at a distance of 3.7040 (18) Å. The nitrate anion and the two water molecules are involved in a hydrogen-bonding network that also includes the phenothiazinium N atom.
Comment
Methylene blue (MB) is an important cationic dye with various colorimetric uses (Tuite & Kelly, 1993). It is marketed as its chloride salt. Other forms, such as the cyanide and nitrate [the title compound, (I)] salts exhibit antimethemoglobinemic, antiseptic and disinfectant properties (The Merck Index, 2001). The Cambridge Structural Database (Version 5.25, April 2004 update; Allen, 2002) includes four MB crystal structures containing the phenothiazinium moiety, as chloride pentahydrate (Marr et al., 1973), triiodide (Endres et al., 1977), thiocyanate (Kahn-Harari et al., 1973), urate hexahydrate (Sours et al., 2002) and bis(maleonitriledithiolato)cuprate(II) (Snaathorst et al., 1981) salts. In each case, the bond distances in the MB cations indicate a resonance structure in which the positive charge is delocalized over the two dimethylamine N atoms, with conjugation through the phenothiazinium N atom, although the MB cation is sometimes represented as aromatic with a positive S atom. The addition of AgNO3 to aqueous MB chloride solution does not precipitate silver chloride, yet the IR spectrum of the product shows features very different from that of the starting materials. Further investigations are currently underway to determine the nature of the resultant soluble silver product but here we report the structure of the precipitated product.
The ) consists of an MB cation, a nitrate anion and two water molecules (Fig. 1). The MB cation displays a typical MB resonance structure, as evident from the pronounced shortening of the C1—C2, C4—C12, C8—C9 and C6—C13 bonds compared with other C—C bonds (Table 1). The two C—S bonds are equal in length, indicating that conjugation occurs via N10. The MB cation is thus planar and the cations are stacked in an antiparallel fashion, exhibiting π–π associations at a distance of 3.7040 (18) Å. In contrast to MB chloride, which crystallizes with five lattice water molecules, the degree of hydration of the MB nitrate is lower. This difference may be due in part to the hydrogen-bonding network and the fact that more hydrogen-bond acceptor atoms are available on the nitrate ion than for a chloride anion. Hydrogen-bonding associations are listed in Table 2 and indicate that all of the strong hydrogen-bond donor atoms are utilized, although this is not the case for the strong hydrogen-bond acceptor atoms. Only one hydrogen-bond acceptor atom from the phenothiazinium moiety, N10, is involved in the hydrogen-bond network, along with two nitrate O atoms and one water O atom. The nitrate ion and the water molecules form a one-dimensional hydrogen-bonded chain in the a cell direction (Fig. 2). There are close contacts between the S atom and the nitrate N atom [3.369 (4) Å] and also between atom O3 and both N3 [2.906 (4) Å; symmetry code: (1 − x, −y, 2 − z)] and C32 [2.962 (4) Å; symmetry code: (1 − x, −y, 2 − z)], although for the latter there is no appropriate H atom to construct a C—H⋯O association. These close contacts for O3 may explain why there is no strong hydrogen-bonding interaction with this atom. Two unassigned areas of electron density, 0.64 and 0.59 e Å−3, exist approximately equidistant, 1.94 and 1.96 Å, respectively, from atom S5, which may be the cause of the higher than expected R values.
of (IExperimental
Methylene blue (1 mmol) was dissolved with silver nitrate (2 mmol) in water (10 ml). Crystals of the title compound were obtained by the slow evaporation of this reaction mixture.
Crystal data
|
Refinement
|
|
All H atoms, except the water H atoms, were included in the 3 H atoms). The isotropic displacement parameters were set equal to 1.25Ueq of the The water H atoms were located in difference syntheses and both positional and displacement parameters were refined.
at calculated positions, in the riding-model approximation, with C—H distances of 0.95 (aromatic H atoms) and 0.98 Å (CHData collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536804017222/ww6237sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804017222/ww6237Isup2.hkl
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell
DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.C16H18N3S+·NO3−·2H2O | Z = 2 |
Mr = 382.44 | F(000) = 404 |
Triclinic, P1 | Dx = 1.428 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6985 (3) Å | Cell parameters from 12187 reflections |
b = 10.9638 (3) Å | θ = 2.9–27.5° |
c = 11.3244 (4) Å | µ = 0.22 mm−1 |
α = 87.081 (2)° | T = 120 K |
β = 76.032 (2)° | Prism, red |
γ = 73.524 (2)° | 0.42 × 0.36 × 0.20 mm |
V = 889.33 (5) Å3 |
Nonius KappaCCD area-detector diffractometer | 4077 independent reflections |
Radiation source: Nonius FR591 rotating anode | 3225 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.0° |
φ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −14→14 |
Tmin = 0.836, Tmax = 0.952 | l = −14→14 |
17489 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.206 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0821P)2 + 1.7607P] where P = (Fo2 + 2Fc2)/3 |
4077 reflections | (Δ/σ)max < 0.001 |
255 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3039 (4) | 0.4163 (3) | 1.2264 (3) | 0.0253 (6) | |
H1 | 0.2291 | 0.4793 | 1.2864 | 0.032* | |
C2 | 0.4150 (4) | 0.3079 (3) | 1.2620 (3) | 0.0256 (6) | |
H2 | 0.4170 | 0.2967 | 1.3455 | 0.032* | |
C3 | 0.5295 (4) | 0.2101 (3) | 1.1740 (3) | 0.0244 (6) | |
N3 | 0.6397 (4) | 0.1028 (3) | 1.2068 (2) | 0.0272 (6) | |
C31 | 0.6448 (5) | 0.0733 (3) | 1.3341 (3) | 0.0345 (8) | |
H311 | 0.6506 | 0.1483 | 1.3749 | 0.043* | |
H312 | 0.7550 | 0.0025 | 1.3368 | 0.043* | |
H313 | 0.5321 | 0.0495 | 1.3756 | 0.043* | |
C32 | 0.7498 (5) | 0.0020 (3) | 1.1173 (3) | 0.0356 (8) | |
H321 | 0.6679 | −0.0213 | 1.0738 | 0.045* | |
H322 | 0.8106 | −0.0726 | 1.1590 | 0.045* | |
H323 | 0.8448 | 0.0322 | 1.0592 | 0.045* | |
C4 | 0.5233 (4) | 0.2303 (3) | 1.0504 (3) | 0.0245 (6) | |
H4 | 0.5982 | 0.1670 | 0.9908 | 0.031* | |
S5 | 0.40954 (11) | 0.35433 (7) | 0.86311 (7) | 0.0265 (2) | |
C6 | 0.2292 (4) | 0.5433 (3) | 0.7434 (3) | 0.0241 (6) | |
H6 | 0.2934 | 0.4895 | 0.6741 | 0.030* | |
C7 | 0.1059 (4) | 0.6632 (3) | 0.7289 (3) | 0.0239 (6) | |
N7 | 0.0768 (4) | 0.6987 (3) | 0.6188 (2) | 0.0278 (6) | |
C71 | 0.1732 (6) | 0.6157 (3) | 0.5125 (3) | 0.0372 (8) | |
H711 | 0.3070 | 0.6078 | 0.4951 | 0.046* | |
H712 | 0.1244 | 0.6520 | 0.4422 | 0.046* | |
H713 | 0.1531 | 0.5315 | 0.5287 | 0.046* | |
C72 | −0.0522 (5) | 0.8200 (3) | 0.5977 (3) | 0.0343 (8) | |
H721 | −0.1634 | 0.8390 | 0.6653 | 0.043* | |
H722 | −0.0887 | 0.8143 | 0.5215 | 0.043* | |
H723 | 0.0091 | 0.8879 | 0.5923 | 0.043* | |
C8 | 0.0147 (4) | 0.7430 (3) | 0.8354 (3) | 0.0258 (7) | |
H8 | −0.0662 | 0.8250 | 0.8282 | 0.032* | |
C9 | 0.0430 (5) | 0.7022 (3) | 0.9465 (3) | 0.0263 (7) | |
H9 | −0.0202 | 0.7566 | 1.0155 | 0.033* | |
N10 | 0.1816 (4) | 0.5488 (2) | 1.0768 (2) | 0.0232 (5) | |
C11 | 0.2953 (4) | 0.4392 (3) | 1.1023 (3) | 0.0226 (6) | |
C12 | 0.4104 (4) | 0.3402 (3) | 1.0157 (3) | 0.0231 (6) | |
C13 | 0.2576 (4) | 0.5031 (3) | 0.8561 (3) | 0.0216 (6) | |
C14 | 0.1637 (4) | 0.5808 (3) | 0.9632 (3) | 0.0223 (6) | |
N1 | 0.7431 (4) | 0.0916 (3) | 0.7386 (3) | 0.0341 (7) | |
O1 | 0.7351 (4) | 0.1430 (3) | 0.6394 (3) | 0.0543 (8) | |
O2 | 0.8749 (4) | 0.0886 (3) | 0.7856 (3) | 0.0531 (8) | |
O3 | 0.6206 (5) | 0.0440 (3) | 0.7940 (3) | 0.0568 (9) | |
O1W | 0.0499 (4) | 0.2807 (3) | 0.7190 (2) | 0.0354 (6) | |
H11W | −0.012 (6) | 0.223 (5) | 0.738 (4) | 0.043 (12)* | |
H12W | −0.022 (7) | 0.334 (5) | 0.772 (5) | 0.049 (13)* | |
O2W | 0.3966 (5) | 0.2779 (3) | 0.5684 (2) | 0.0390 (6) | |
H21W | 0.471 (8) | 0.225 (5) | 0.597 (5) | 0.058 (16)* | |
H22W | 0.306 (7) | 0.271 (5) | 0.606 (5) | 0.044 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0292 (16) | 0.0240 (15) | 0.0211 (14) | −0.0060 (13) | −0.0038 (12) | −0.0036 (11) |
C2 | 0.0275 (16) | 0.0290 (16) | 0.0206 (14) | −0.0081 (13) | −0.0058 (12) | 0.0002 (12) |
C3 | 0.0210 (15) | 0.0255 (15) | 0.0258 (15) | −0.0064 (12) | −0.0042 (12) | 0.0019 (12) |
N3 | 0.0273 (14) | 0.0271 (14) | 0.0242 (13) | −0.0021 (11) | −0.0071 (11) | 0.0013 (10) |
C31 | 0.0397 (19) | 0.0335 (18) | 0.0248 (16) | −0.0006 (15) | −0.0098 (14) | 0.0040 (13) |
C32 | 0.0344 (19) | 0.0325 (18) | 0.0309 (17) | 0.0059 (14) | −0.0084 (14) | −0.0015 (14) |
C4 | 0.0225 (15) | 0.0238 (15) | 0.0235 (15) | −0.0022 (12) | −0.0028 (12) | −0.0022 (11) |
S5 | 0.0305 (4) | 0.0231 (4) | 0.0199 (4) | 0.0013 (3) | −0.0048 (3) | −0.0022 (3) |
C6 | 0.0260 (15) | 0.0231 (15) | 0.0222 (14) | −0.0063 (12) | −0.0041 (12) | −0.0016 (11) |
C7 | 0.0243 (15) | 0.0243 (15) | 0.0246 (15) | −0.0089 (12) | −0.0064 (12) | 0.0022 (12) |
N7 | 0.0320 (15) | 0.0231 (13) | 0.0250 (13) | −0.0012 (11) | −0.0080 (11) | 0.0003 (10) |
C71 | 0.054 (2) | 0.0296 (17) | 0.0205 (15) | 0.0014 (16) | −0.0101 (15) | −0.0008 (13) |
C72 | 0.0382 (19) | 0.0294 (17) | 0.0303 (17) | −0.0006 (14) | −0.0100 (14) | 0.0032 (13) |
C8 | 0.0260 (16) | 0.0210 (15) | 0.0286 (16) | −0.0036 (12) | −0.0065 (12) | 0.0001 (12) |
C9 | 0.0283 (16) | 0.0228 (15) | 0.0255 (15) | −0.0047 (12) | −0.0040 (12) | −0.0049 (12) |
N10 | 0.0253 (13) | 0.0215 (12) | 0.0224 (12) | −0.0059 (10) | −0.0052 (10) | −0.0023 (10) |
C11 | 0.0229 (15) | 0.0217 (14) | 0.0234 (14) | −0.0072 (12) | −0.0040 (11) | −0.0015 (11) |
C12 | 0.0233 (15) | 0.0249 (15) | 0.0212 (14) | −0.0088 (12) | −0.0028 (11) | −0.0013 (11) |
C13 | 0.0221 (14) | 0.0200 (14) | 0.0223 (14) | −0.0054 (11) | −0.0049 (11) | −0.0010 (11) |
C14 | 0.0231 (15) | 0.0211 (14) | 0.0228 (14) | −0.0062 (12) | −0.0053 (11) | −0.0006 (11) |
N1 | 0.0309 (15) | 0.0285 (15) | 0.0371 (16) | −0.0040 (12) | −0.0014 (13) | −0.0032 (12) |
O1 | 0.0538 (18) | 0.0563 (19) | 0.0371 (15) | 0.0022 (15) | −0.0042 (13) | 0.0103 (13) |
O2 | 0.0501 (18) | 0.0491 (18) | 0.064 (2) | −0.0109 (14) | −0.0253 (15) | 0.0024 (15) |
O3 | 0.0553 (19) | 0.0553 (19) | 0.0579 (19) | −0.0301 (16) | 0.0095 (15) | −0.0096 (15) |
O1W | 0.0364 (14) | 0.0331 (14) | 0.0320 (13) | −0.0022 (12) | −0.0066 (11) | −0.0059 (11) |
O2W | 0.0415 (17) | 0.0415 (16) | 0.0281 (13) | −0.0048 (13) | −0.0054 (13) | 0.0017 (11) |
C1—C2 | 1.359 (4) | N7—C71 | 1.458 (4) |
C1—C11 | 1.430 (4) | N7—C72 | 1.464 (4) |
C1—H1 | 0.95 | C71—H711 | 0.98 |
C2—C3 | 1.439 (4) | C71—H712 | 0.98 |
C2—H2 | 0.95 | C71—H713 | 0.98 |
C3—N3 | 1.335 (4) | C72—H721 | 0.98 |
C3—C4 | 1.416 (4) | C72—H722 | 0.98 |
N3—C32 | 1.461 (4) | C72—H723 | 0.98 |
N3—C31 | 1.469 (4) | C8—C9 | 1.361 (4) |
C31—H311 | 0.98 | C8—H8 | 0.95 |
C31—H312 | 0.98 | C9—C14 | 1.424 (4) |
C31—H313 | 0.98 | C9—H9 | 0.95 |
C32—H321 | 0.98 | N10—C11 | 1.335 (4) |
C32—H322 | 0.98 | N10—C14 | 1.344 (4) |
C32—H323 | 0.98 | C11—C12 | 1.438 (4) |
C4—C12 | 1.373 (4) | C13—C14 | 1.432 (4) |
C4—H4 | 0.95 | N1—O3 | 1.231 (4) |
S5—C13 | 1.728 (3) | N1—O1 | 1.238 (4) |
S5—C12 | 1.728 (3) | N1—O2 | 1.246 (4) |
C6—C13 | 1.376 (4) | O1W—H11W | 0.88 (5) |
C6—C7 | 1.415 (4) | O1W—H12W | 0.84 (5) |
C6—H6 | 0.95 | O2W—H21W | 0.81 (6) |
C7—N7 | 1.340 (4) | O2W—H22W | 0.75 (5) |
C7—C8 | 1.436 (4) | ||
C2—C1—C11 | 122.5 (3) | C71—H711—109.5 | |
C2—C1—H1 | 118.7 | C71—H712—109.5 | |
C11—C1—H1 | 118.7 | C71—H712—109.5 | |
C1—C2—C3 | 120.3 (3) | C71—H713—109.5 | |
C1—C2—H2 | 119.8 | C71—H713—109.5 | |
C3—C2—H2 | 119.8 | C71—H713—109.5 | |
N3—C3—C4 | 120.3 (3) | C72—H721—109.5 | |
N3—C3—C2 | 121.4 (3) | C72—H722—109.5 | |
C4—C3—C2 | 118.3 (3) | C72—H722—109.5 | |
C3—N3—C32 | 120.9 (3) | C72—H723—109.5 | |
C3—N3—C31 | 122.9 (3) | C72—H723—109.5 | |
C32—N3—C31 | 115.9 (3) | C72—H723—109.5 | |
N3—C31—H311 | 109.5 | C8—C7—120.6 (3) | |
N3—C31—H312 | 109.5 | C8—H8—119.7 | |
H311—C31—H312 | 109.5 | C8—H8—119.7 | |
N3—C31—H313 | 109.5 | C9—C14—122.4 (3) | |
H311—C31—H313 | 109.5 | C9—H9—118.8 | |
H312—C31—H313 | 109.5 | C9—H9—118.8 | |
N3—C32—H321 | 109.5 | N10—C14—123.0 (3) | |
N3—C32—H322 | 109.5 | C11—C1—117.9 (3) | |
H321—C32—H322 | 109.5 | C11—C12—125.8 (3) | |
N3—C32—H323 | 109.5 | C11—C12—116.3 (3) | |
H321—C32—H323 | 109.5 | C12—C11—121.7 (3) | |
H322—C32—H323 | 109.5 | C12—S5—117.2 (2) | |
C12—C4—C3 | 120.8 (3) | C12—S5—121.0 (2) | |
C12—C4—H4 | 119.6 | C13—C14—121.4 (3) | |
C3—C4—H4 | 119.6 | C13—S5—117.1 (2) | |
C13—S5—C12 | 103.28 (15) | C13—S5—121.4 (2) | |
C13—C6—C7 | 121.2 (3) | C14—C9—118.0 (3) | |
C13—C6—H6 | 119.4 | C14—C13—125.4 (3) | |
C7—C6—H6 | 119.4 | C14—C13—116.6 (3) | |
N7—C7—C6 | 120.0 (3) | N1—O1—121.1 (4) | |
N7—C7—C8 | 122.2 (3) | N1—O2—118.4 (3) | |
C6—C7—C8 | 117.8 (3) | N1—O2—120.5 (3) | |
C7—N7—C71 | 120.7 (3) | O1W—H12W—95 (4) | |
C7—N7—C72 | 122.9 (3) | O2W—H22W—102 (5) | |
N7—C72—116.4 (3) | |||
C11—C1—C2—C3 | −0.3 (5) | C2—C1—C11—C12 | 0.4 (5) |
C1—C2—C3—N3 | −180.0 (3) | C3—C4—C12—C11 | 0.4 (5) |
C1—C2—C3—C4 | 0.2 (5) | C3—C4—C12—S5 | −178.8 (2) |
C4—C3—N3—C32 | −2.6 (5) | N10—C11—C12—C4 | −180.0 (3) |
C2—C3—N3—C32 | 177.6 (3) | C1—C11—C12—C4 | −0.5 (4) |
C4—C3—N3—C31 | −176.6 (3) | N10—C11—C12—S5 | −0.8 (4) |
C2—C3—N3—C31 | 3.5 (5) | C1—C11—C12—S5 | 178.7 (2) |
N3—C3—C4—C12 | 179.9 (3) | C13—S5—C12—C4 | −178.9 (2) |
C2—C3—C4—C12 | −0.2 (5) | C13—S5—C12—C11 | 1.9 (3) |
C13—C6—C7—N7 | −178.2 (3) | C7—C6—C13—C14 | 0.1 (5) |
C13—C6—C7—C8 | 1.4 (5) | C7—C6—C13—S5 | 179.4 (2) |
C6—C7—N7—C71 | −1.0 (5) | C12—S5—C13—C6 | 179.2 (2) |
C8—C7—N7—C71 | 179.4 (3) | C12—S5—C13—C14 | −1.5 (3) |
C6—C7—N7—C72 | 178.5 (3) | C11—N10—C14—C9 | −177.9 (3) |
C8—C7—N7—C72 | −1.2 (5) | C11—N10—C14—C13 | 1.6 (5) |
N7—C7—C8—C9 | 177.9 (3) | C8—C9—C14—N10 | −179.6 (3) |
C6—C7—C8—C9 | −1.8 (5) | C8—C9—C14—C13 | 0.9 (5) |
C7—C8—C9—C14 | 0.6 (5) | C6—C13—C14—N10 | 179.3 (3) |
C14—N10—C11—C1 | 179.3 (3) | S5—C13—C14—N10 | 0.0 (4) |
C14—N10—C11—C12 | −1.2 (5) | C6—C13—C14—C9 | −1.2 (4) |
C2—C1—C11—N10 | 180.0 (3) | S5—C13—C14—C9 | 179.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O2i | 0.88 (5) | 1.91 (5) | 2.789 (4) | 174 (4) |
O1W—H12W···N10ii | 0.84 (5) | 2.10 (5) | 2.929 (4) | 172 (4) |
O2W—H21W···O1 | 0.81 (6) | 2.14 (6) | 2.886 (5) | 154 (5) |
O2W—H22W···O1W | 0.75 (5) | 2.05 (5) | 2.792 (4) | 171 (5) |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+2. |
Acknowledgements
The authors thank the EPSRC National Crystallography Service (Southampton, England).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Endres, H., Jeromin, G. & Keller, H. J. (1977). Z. Naturforsch. Teil B, 32, 1375–1378. Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kahn-Harari, A., Ballard, R. E. & Norris, E. K. (1973). Acta Cryst. B29, 1124–1126. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Marr, H. E. III, Stewart, J. M. & Chiu, M. F. (1973). Acta Cryst. B29, 847–853. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Snaathorst, D., Doesburg, H. M., Perenboom, J. A. A. J. & Keijzers, C. P. (1981). Inorg. Chem. 20, 2526–2532. CSD CrossRef CAS Web of Science Google Scholar
Sours, R. E., Fink, D. A. & Swift, J. A. (2002). J. Am. Chem. Soc. 124, 8630–8636. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands. Google Scholar
The Merck Index (2001). 13th ed. Whitehouse Station: Merck and Co. Inc. Google Scholar
Tuite, E. M. & Kelly, J. M. (1993). J. Photochem. Photobiol. B, 21, 103–124. CrossRef CAS PubMed Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.