metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A mixed-halogen tri­carbonyl­manganese(I) complex: fac-[MnBr0.3Cl0.7{Ph2P(CH2)3PPh2}(CO)3]

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, and bChemistry Department, University of Wales, Bangor LL57 2UW, Wales
*Correspondence e-mail: light@soton.ac.uk

(Received 30 July 2004; accepted 5 August 2004; online 13 August 2004)

Crystals of the mixed halogen complex, fac-(bromo/chloro)­tri­carbonyl­[1,3-bis­(di­phenyl­phosphino)­propane]­manganese(I), fac-[MnBr0.3Cl0.7(C30H26O3P2)(CO)3], were obtained from a prolonged recrystallization attempt of [MnBr{Ph2P(CH2)3PPh2}(CO)3] from CHCl3/hexane solution at 263 K. Common coordinates are found for all but the halogen atoms in the disordered structure, but the Mn—X vectors differ by 3.5 (5)° and the MX bond lengths differ by 0.10 (1) Å.

Comment

In a recent report, we described the synthesis and spectroscopic characterization of mer- or fac-[MnBrL2(CO)3] (L = tri­organophosphine) complexes with three compounds {L = ½dppf [dppf = 1,1′-bis­(di­phenyl­phosphino)­ferrocene], ½dppe [dppe = 1,2-bis­(di­phenyl­phosphino)­ethane] or P(C6H4Cl-4)3} characterized crystallographically (Beckett et al., 2003[Beckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. & Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174-180.]). Contemporaneously, we also prepared fac-[MnBr{Ph2P(CH2)3PPh2}(CO)3], (I[link]). The identity of (I) was confirmed by satisfactory elemental and spectroscopic analysis. An attempted (prolonged) recrystallization of (I) from CHCl3/hexane yielded a few crystals of unusual composition, viz. fac-[MnBr0.3Cl0.7{Ph2P(CH2)3PPh2}(CO)3], (II[link]), with chloride coming from the solvent. The solid-state structure of (II[link]) is described here.

[Scheme 1]

The solid-state structure of (II[link]) is consistent with a 70:30 mixture of fac-[MnCl({Ph2P(CH2)3PPh2}(CO)3] and fac-[MnBr{Ph2P(CH2)3PPh2}(CO)3] co-crystallized as a solid solution. The molecular structure of fac-[MnCl{Ph2P(CH2)3PPh2}(CO)3], (III), is shown in Fig. 1[link]. The d6 MnI centre in (III) is coordinated by six donor atoms in a (distorted) octahedral environment, with the three CO ligands mutually fac and the P atoms of the bidentate 1,3-bis­(di­phenyl­phosphino)­propane ligand cis. The sixth coordination site is occupied by a Cl atom. The angles around Mn involving mutually cis-donor atoms and mutually trans-donor atoms lie in the ranges 83.3 (3)–96.37 (6) and 174.2 (3)–175.2 (3)°, respectively. A similar arrangement is adopted for (I[link]), with atomic coordinates of all non-halogen atoms indistinguishable for both the Br and Cl derivatives. However, parameters associated with the halogen atoms are different. The Mn—X vectors differ by 3.5 (5)° and the MX bond lengths differ by 0.10 (1) Å. These changes are sufficiently small to accommodate the substitution of [MnBr{Ph2P(CH2)3PPh2}(CO)3] for [MnCl{Ph2P(CH2)3PPh2}(CO)3] within the same crystal structure. The Mn—P and Mn—C distances are similar to those reported [Mn—P = 2.281 (2)–2.4000 (11) Å and Mn—C = 1.77 (1)–1.953 (9) Å] for related fac species such as [MnCl(dppf)(CO)3] (Onaka et al., 1994[Onaka, S., Haga, M., Takagi, S., Otsuka, M. & Mizuno, K. (1994). Bull. Chem. Soc. Jpn, 67, 2440-2446.]), [MnCl{o-(Ph2P)2C6H4}(CO)3], [MnCl{o-(H2P)2C6H4}(CO)3] and [MnBr(dppe)(CO)3] (Pope & Reid, 1999[Pope, S. J. A. & Reid, G. (1999). J. Chem. Soc. Dalton Trans. pp. 1615-1621.]), [MnCl(Et2PCH2CH2PEt2)(CO)3] (Li et al., 1997[Li, G. Q., Feldman, J., Krause, J. A. & Orchin, M. (1997). Polyhedron, 16, 2041-2045.]), and [MnBr(dppf)(CO)3] and [MnBr(dppe)(CO)3] (Beckett et al., 2003[Beckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. & Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174-180.]). Likewise, the Mn—X bond lengths are not significantly different from corresponding bond lengths reported for the complexes cited above [Mn—Cl = 2.386 (2)–2.406 (2) Å and Mn—Br = 2.5068 (8)–2.5273 (7) Å], although the Mn—Br length [2.48 (13) Å] is at the short end of the range, but this may be attributed to the substitution of Cl by Br and crystal packing force constraints. The Mn1—C3 bond trans to X is significantly shorter than the Mn1—C1 and Mn1—C2 bonds trans to P, consistent with a trans influence. The bite angle of the di­phenyl­phosphino­propane ligand is 89.754 (16)° and is close to the average (91.56°) of those in previously determined structures containing this bidentate ligand (Dierke & van Leeuwen, 1999[Dierke, P. & van Leeuwen, P. W. N. M. (1999). J. Chem. Soc. Dalton Trans. pp. 1519-1529.]).

[Figure 1]
Figure 1
View of the structure of (II[link]), showing the atom-numbering scheme. Both possibilities of the disordered halogen site have been shown and H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

[MnBr{Ph2P(CH2)3PPh2}(CO)3], (I), was prepared by a standard literature procedure (Angelici et al., 1963[Angelici, R. J., Basolo, F. & Poe, A. J. (1963). J. Am. Chem. Soc. 85, 2215-2219.]) in 76% yield (m.p. 483 K). ν(CO) (cm−1): 2028 (s), 1961 (s), 1909 (s). 31P NMR: δ −18.1. Required for C30H26BrMnO3P2: C 57.1, H 4.2%; found: C 56.7, H 4.2%. A few orange crystals of the mixed-halide complex (II[link]) were obtained after several months at 263 K from a CHCl3 solution of (I[link]) layered with hexane.

Crystal data
  • [MnBr0.3Cl0.7(C30H26O3P2)(CO)3]

  • Mr = 600.18

  • Monoclinic, P21/n

  • a = 10.0022 (1) Å

  • b = 20.6821 (3) Å

  • c = 13.7320 (2) Å

  • β = 106.090 (1)°

  • V = 2729.41 (6) Å3

  • Z = 4

  • Dx = 1.461 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 26 531 reflections

  • θ = 2.9–27.5°

  • μ = 1.14 mm−1

  • T = 120 (2) K

  • Prism, orange

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.659, Tmax = 0.804

  • 9102 measured reflections

  • 4792 independent reflections

  • 4504 reflections with I > 2σ(I)

  • Rint = 0.015

  • θmax = 25.0°

  • h = −11 → 11

  • k = −24 → 24

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.01

  • 4792 reflections

  • 338 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0274P)2 + 2.0712P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected interatomic distances (Å)

Mn1—C3 1.7820 (19)
Mn1—C1 1.8226 (18)
Mn1—C2 1.8317 (19)
Mn1—P2 2.3495 (5)
Mn1—P1 2.3572 (5)
Mn1—Cl1 2.384 (13)
Mn1—Br1 2.481 (13)

The structure was found to have a mixed Cl/Br site and the occupancies were refined as free variables with displacement parameter restraints before being fixed in the final refinement. H atoms were found in a difference map, but were then positioned geometrically and included as riding, with C—H = 0.95 and 0.99 Å, and Uiso(H) = 1.2Ueq(C). The coordinates were refined as riding on the parent atom and the occupancy and Uij were fixed.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski and Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin, et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1998).

fac-(bromo/chloro)tricarbonyl[1,3-bis(diphenylphosphino)propane]manganese(I) top
Crystal data top
[MnBr0.3Cl0.7(C30H26O3P2)(CO)3]F(000) = 1230
Mr = 600.18Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 26531 reflections
a = 10.0022 (1) Åθ = 2.9–27.5°
b = 20.6821 (3) ŵ = 1.14 mm1
c = 13.7320 (2) ÅT = 120 K
β = 106.090 (1)°Prism, orange
V = 2729.41 (6) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
4792 independent reflections
Radiation source: Rotating Anode, Bruker Nonius FR5914504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
k = 2424
Tmin = 0.659, Tmax = 0.804l = 1616
9102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0274P)2 + 2.0712P]
where P = (Fo2 + 2Fc2)/3
4792 reflections(Δ/σ)max = 0.003
338 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.03367 (2)0.111790 (12)0.265369 (18)0.01346 (8)
Br10.1243 (11)0.0727 (6)0.3637 (10)0.0162 (7)0.30
Cl10.1078 (11)0.0692 (7)0.3641 (10)0.0162 (7)0.70
O10.17174 (14)0.07553 (7)0.07242 (10)0.0291 (3)
O20.11973 (16)0.23550 (7)0.25914 (11)0.0379 (4)
O30.20117 (14)0.17777 (6)0.15057 (10)0.0270 (3)
P10.13301 (4)0.00811 (2)0.26973 (3)0.01222 (10)
P20.18760 (4)0.13453 (2)0.42487 (3)0.01407 (10)
C10.09344 (18)0.08870 (8)0.14755 (13)0.0184 (4)
C20.05856 (19)0.18841 (9)0.26435 (14)0.0225 (4)
C30.13873 (18)0.15005 (8)0.19651 (13)0.0179 (4)
C40.02199 (17)0.05725 (8)0.20019 (12)0.0152 (3)
C50.11268 (18)0.06423 (9)0.20913 (14)0.0209 (4)
H50.14820.03350.24700.025*
C60.19555 (19)0.11584 (9)0.16293 (15)0.0243 (4)
H60.28680.12050.17020.029*
C70.1459 (2)0.16034 (9)0.10662 (15)0.0267 (4)
H70.20300.19520.07450.032*
C80.0129 (2)0.15383 (10)0.09721 (16)0.0310 (5)
H80.02160.18460.05880.037*
C90.0714 (2)0.10268 (9)0.14347 (15)0.0249 (4)
H90.16280.09870.13640.030*
C100.28325 (17)0.00516 (8)0.21874 (12)0.0142 (3)
C110.26862 (18)0.03101 (8)0.12253 (13)0.0174 (4)
H110.18000.04570.08340.021*
C120.38202 (19)0.03546 (9)0.08333 (13)0.0211 (4)
H120.37050.05280.01740.025*
C130.51196 (19)0.01480 (9)0.13984 (14)0.0242 (4)
H130.59020.01930.11400.029*
C140.52714 (19)0.01247 (10)0.23413 (14)0.0244 (4)
H140.61580.02750.27250.029*
C150.41331 (18)0.01803 (9)0.27334 (13)0.0195 (4)
H150.42430.03770.33760.023*
C160.19140 (17)0.03009 (8)0.39487 (12)0.0143 (3)
H16A0.10780.04190.41620.017*
H16B0.23960.07080.38750.017*
C170.28795 (17)0.00913 (8)0.48050 (12)0.0154 (3)
H17A0.32540.01970.53930.019*
H17B0.36750.02510.45760.019*
C180.21637 (18)0.06682 (8)0.51456 (12)0.0162 (4)
H18A0.27420.08180.58140.019*
H18B0.12560.05260.52290.019*
C190.36961 (17)0.15668 (8)0.43925 (13)0.0177 (4)
C200.43408 (18)0.14319 (9)0.36369 (15)0.0218 (4)
H200.38020.12760.29980.026*
C210.57690 (19)0.15236 (9)0.38088 (17)0.0284 (4)
H210.61980.14360.32860.034*
C220.6558 (2)0.17423 (9)0.47422 (17)0.0311 (5)
H220.75330.18000.48630.037*
C230.5935 (2)0.18763 (9)0.54982 (17)0.0305 (5)
H230.64840.20250.61390.037*
C240.4510 (2)0.17953 (9)0.53306 (15)0.0248 (4)
H240.40870.18950.58520.030*
C250.12680 (18)0.19939 (8)0.49242 (13)0.0187 (4)
C260.1334 (2)0.26315 (9)0.46047 (15)0.0255 (4)
H260.17340.27240.40680.031*
C270.0813 (2)0.31328 (10)0.50727 (17)0.0325 (5)
H270.08540.35660.48500.039*
C280.0240 (2)0.30034 (10)0.58568 (16)0.0341 (5)
H280.01100.33470.61740.041*
C290.0174 (2)0.23756 (11)0.61824 (16)0.0322 (5)
H290.02190.22880.67240.039*
C300.06850 (19)0.18705 (9)0.57143 (14)0.0238 (4)
H300.06340.14390.59370.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01189 (14)0.01254 (14)0.01429 (14)0.00182 (9)0.00087 (10)0.00089 (10)
Br10.0096 (18)0.0209 (10)0.02039 (18)0.0001 (11)0.0081 (11)0.0013 (5)
Cl10.0096 (18)0.0209 (10)0.02039 (18)0.0001 (11)0.0081 (11)0.0013 (5)
O10.0249 (7)0.0337 (8)0.0218 (7)0.0006 (6)0.0051 (6)0.0025 (6)
O20.0377 (8)0.0247 (8)0.0431 (9)0.0176 (7)0.0024 (7)0.0034 (7)
O30.0294 (7)0.0224 (7)0.0300 (7)0.0015 (6)0.0094 (6)0.0093 (6)
P10.0107 (2)0.0124 (2)0.0130 (2)0.00051 (16)0.00238 (16)0.00040 (16)
P20.0138 (2)0.0114 (2)0.0154 (2)0.00051 (16)0.00128 (17)0.00023 (16)
C10.0164 (9)0.0163 (9)0.0223 (10)0.0035 (7)0.0052 (8)0.0036 (7)
C20.0193 (9)0.0230 (10)0.0215 (9)0.0013 (8)0.0005 (8)0.0014 (8)
C30.0167 (9)0.0142 (8)0.0188 (9)0.0036 (7)0.0015 (7)0.0015 (7)
C40.0169 (8)0.0128 (8)0.0137 (8)0.0001 (7)0.0006 (7)0.0013 (6)
C50.0188 (9)0.0193 (9)0.0243 (9)0.0012 (7)0.0053 (7)0.0037 (7)
C60.0172 (9)0.0234 (10)0.0297 (10)0.0047 (7)0.0019 (8)0.0015 (8)
C70.0270 (10)0.0176 (9)0.0297 (10)0.0041 (8)0.0021 (8)0.0044 (8)
C80.0320 (11)0.0244 (10)0.0361 (11)0.0008 (8)0.0084 (9)0.0143 (9)
C90.0214 (10)0.0240 (10)0.0301 (10)0.0009 (8)0.0085 (8)0.0069 (8)
C100.0141 (8)0.0126 (8)0.0168 (8)0.0013 (6)0.0055 (7)0.0021 (7)
C110.0162 (9)0.0177 (9)0.0173 (9)0.0018 (7)0.0029 (7)0.0009 (7)
C120.0268 (10)0.0217 (9)0.0165 (9)0.0016 (8)0.0091 (8)0.0001 (7)
C130.0195 (10)0.0317 (10)0.0248 (10)0.0021 (8)0.0116 (8)0.0039 (8)
C140.0140 (9)0.0374 (11)0.0209 (9)0.0054 (8)0.0032 (7)0.0007 (8)
C150.0176 (9)0.0245 (9)0.0162 (9)0.0035 (7)0.0044 (7)0.0016 (7)
C160.0151 (8)0.0129 (8)0.0155 (8)0.0017 (6)0.0054 (7)0.0021 (7)
C170.0169 (9)0.0140 (8)0.0139 (8)0.0008 (7)0.0018 (7)0.0026 (7)
C180.0184 (9)0.0155 (9)0.0128 (8)0.0007 (7)0.0012 (7)0.0000 (7)
C190.0146 (9)0.0097 (8)0.0259 (9)0.0006 (6)0.0006 (7)0.0033 (7)
C200.0165 (9)0.0175 (9)0.0287 (10)0.0006 (7)0.0017 (8)0.0058 (7)
C210.0193 (10)0.0226 (10)0.0427 (12)0.0010 (8)0.0075 (9)0.0108 (9)
C220.0158 (9)0.0166 (9)0.0548 (14)0.0016 (7)0.0004 (9)0.0106 (9)
C230.0244 (10)0.0141 (9)0.0411 (12)0.0025 (8)0.0106 (9)0.0004 (8)
C240.0239 (10)0.0144 (9)0.0308 (10)0.0005 (7)0.0011 (8)0.0022 (8)
C250.0147 (8)0.0169 (9)0.0204 (9)0.0019 (7)0.0021 (7)0.0042 (7)
C260.0239 (10)0.0192 (9)0.0305 (10)0.0012 (8)0.0027 (8)0.0025 (8)
C270.0284 (11)0.0166 (10)0.0449 (13)0.0040 (8)0.0026 (10)0.0059 (9)
C280.0285 (11)0.0305 (11)0.0385 (12)0.0096 (9)0.0012 (9)0.0166 (9)
C290.0294 (11)0.0395 (12)0.0274 (11)0.0063 (9)0.0071 (9)0.0108 (9)
C300.0229 (10)0.0235 (10)0.0231 (10)0.0021 (8)0.0030 (8)0.0051 (8)
Geometric parameters (Å, º) top
Mn1—C31.7820 (19)C13—H130.9500
Mn1—C11.8226 (18)C14—C151.393 (3)
Mn1—C21.8317 (19)C14—H140.9500
Mn1—P22.3495 (5)C15—H150.9500
Mn1—P12.3572 (5)C16—C171.531 (2)
Mn1—Cl12.384 (13)C16—H16A0.9900
Mn1—Br12.481 (13)C16—H16B0.9900
O1—C11.142 (2)C17—C181.530 (2)
O2—C21.142 (2)C17—H17A0.9900
O3—C31.155 (2)C17—H17B0.9900
P1—C101.8263 (17)C18—H18A0.9900
P1—C161.8335 (16)C18—H18B0.9900
P1—C41.8397 (17)C19—C201.393 (3)
P2—C251.8281 (18)C19—C241.402 (3)
P2—C191.8340 (17)C20—C211.395 (3)
P2—C181.8343 (17)C20—H200.9500
C4—C51.393 (2)C21—C221.382 (3)
C4—C91.395 (3)C21—H210.9500
C5—C61.392 (3)C22—C231.379 (3)
C5—H50.9500C22—H220.9500
C6—C71.380 (3)C23—C241.389 (3)
C6—H60.9500C23—H230.9500
C7—C81.378 (3)C24—H240.9500
C7—H70.9500C25—C301.390 (3)
C8—C91.392 (3)C25—C261.397 (3)
C8—H80.9500C26—C271.395 (3)
C9—H90.9500C26—H260.9500
C10—C151.394 (2)C27—C281.379 (3)
C10—C111.395 (2)C27—H270.9500
C11—C121.387 (3)C28—C291.381 (3)
C11—H110.9500C28—H280.9500
C12—C131.384 (3)C29—C301.396 (3)
C12—H120.9500C29—H290.9500
C13—C141.382 (3)C30—H300.9500
C3—Mn1—C190.81 (8)C14—C13—C12119.60 (17)
C3—Mn1—C288.95 (8)C14—C13—H13120.2
C1—Mn1—C289.65 (8)C12—C13—H13120.2
C3—Mn1—P294.32 (6)C13—C14—C15120.45 (17)
C1—Mn1—P2174.68 (6)C13—C14—H14119.8
C2—Mn1—P291.86 (6)C15—C14—H14119.8
C3—Mn1—P196.37 (6)C14—C15—C10120.31 (16)
C1—Mn1—P188.26 (5)C14—C15—H15119.8
C2—Mn1—P1174.31 (6)C10—C15—H15119.8
P2—Mn1—P189.754 (16)C17—C16—P1117.45 (11)
C3—Mn1—Cl1175.2 (3)C17—C16—H16A107.9
C1—Mn1—Cl191.7 (3)P1—C16—H16A107.9
C2—Mn1—Cl187.0 (3)C17—C16—H16B107.9
P2—Mn1—Cl183.3 (3)P1—C16—H16B107.9
P1—Mn1—Cl187.8 (3)H16A—C16—H16B107.2
C3—Mn1—Br1172.6 (3)C18—C17—C16113.51 (14)
C1—Mn1—Br190.3 (3)C18—C17—H17A108.9
C2—Mn1—Br183.7 (3)C16—C17—H17A108.9
P2—Mn1—Br184.8 (3)C18—C17—H17B108.9
P1—Mn1—Br191.0 (3)C16—C17—H17B108.9
Cl1—Mn1—Br13.5 (5)H17A—C17—H17B107.7
C10—P1—C16105.23 (8)C17—C18—P2112.94 (12)
C10—P1—C4102.65 (8)C17—C18—H18A109.0
C16—P1—C499.18 (7)P2—C18—H18A109.0
C10—P1—Mn1113.99 (5)C17—C18—H18B109.0
C16—P1—Mn1115.99 (5)P2—C18—H18B109.0
C4—P1—Mn1117.75 (5)H18A—C18—H18B107.8
C25—P2—C19102.82 (8)C20—C19—C24118.76 (16)
C25—P2—C18103.41 (8)C20—C19—P2121.35 (13)
C19—P2—C1898.75 (8)C24—C19—P2119.31 (14)
C25—P2—Mn1113.31 (6)C19—C20—C21120.69 (18)
C19—P2—Mn1121.66 (6)C19—C20—H20119.7
C18—P2—Mn1114.42 (6)C21—C20—H20119.7
O1—C1—Mn1178.16 (16)C22—C21—C20119.8 (2)
O2—C2—Mn1176.75 (17)C22—C21—H21120.1
O3—C3—Mn1175.96 (15)C20—C21—H21120.1
C5—C4—C9118.68 (16)C23—C22—C21120.18 (18)
C5—C4—P1119.31 (13)C23—C22—H22119.9
C9—C4—P1121.89 (13)C21—C22—H22119.9
C6—C5—C4120.49 (17)C22—C23—C24120.54 (19)
C6—C5—H5119.8C22—C23—H23119.7
C4—C5—H5119.8C24—C23—H23119.7
C7—C6—C5120.35 (18)C23—C24—C19120.05 (19)
C7—C6—H6119.8C23—C24—H24120.0
C5—C6—H6119.8C19—C24—H24120.0
C8—C7—C6119.62 (17)C30—C25—C26119.00 (17)
C8—C7—H7120.2C30—C25—P2122.12 (14)
C6—C7—H7120.2C26—C25—P2118.81 (14)
C7—C8—C9120.65 (18)C27—C26—C25120.06 (19)
C7—C8—H8119.7C27—C26—H26120.0
C9—C8—H8119.7C25—C26—H26120.0
C8—C9—C4120.22 (17)C28—C27—C26120.31 (19)
C8—C9—H9119.9C28—C27—H27119.8
C4—C9—H9119.9C26—C27—H27119.8
C15—C10—C11118.59 (15)C27—C28—C29120.20 (18)
C15—C10—P1123.33 (13)C27—C28—H28119.9
C11—C10—P1117.96 (13)C29—C28—H28119.9
C12—C11—C10120.71 (16)C28—C29—C30119.9 (2)
C12—C11—H11119.6C28—C29—H29120.1
C10—C11—H11119.6C30—C29—H29120.1
C13—C12—C11120.26 (16)C25—C30—C29120.56 (19)
C13—C12—H12119.9C25—C30—H30119.7
C11—C12—H12119.9C29—C30—H30119.7
 

Acknowledgements

The authors thank the EPSRC for funding the crystallographic facilities.

References

First citationAngelici, R. J., Basolo, F. & Poe, A. J. (1963). J. Am. Chem. Soc. 85, 2215–2219.  CrossRef CAS Web of Science Google Scholar
First citationBeckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. & Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDierke, P. & van Leeuwen, P. W. N. M. (1999). J. Chem. Soc. Dalton Trans. pp. 1519–1529.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLi, G. Q., Feldman, J., Krause, J. A. & Orchin, M. (1997). Polyhedron, 16, 2041–2045.  CSD CrossRef CAS Google Scholar
First citationOnaka, S., Haga, M., Takagi, S., Otsuka, M. & Mizuno, K. (1994). Bull. Chem. Soc. Jpn, 67, 2440–2446.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPope, S. J. A. & Reid, G. (1999). J. Chem. Soc. Dalton Trans. pp. 1615–1621.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds