metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloro­bis­(1,3-di­methyl­thio­urea-κS)­zinc(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Bath, Claverton Down, Bath BA1 7AY, England
*Correspondence e-mail: r.w.harrington@ncl.ac.uk

(Received 15 July 2004; accepted 18 August 2004; online 28 August 2004)

Determination of the crystal structure of the title compound, [ZnCl2(C3H6N2S)2], reveals a distorted tetrahedral geometry around the zinc centre which occupies a twofold axis. Both intra- and intermolecular hydrogen bonding is observed between the 1,3-di­methyl­thio­urea NH groups and the coordinated Cl atoms.

Comment

The title compound, (I[link]), was formed as part of our investigations into the formation of bis-thio­urea zinc(II) di­carboxyl­ate polymers (Burrows et al., 2000[Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2000). J. Chem. Soc. Dalton Trans. pp. 3845-3854.], 2004[Burrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. F. (2004). Eur. J. Inorg. Chem.. Accepted.]; Burke et al., 2003[Burke, N. J., Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2003). Dalton Trans. pp. 3840-3849.]).

[Scheme 1]

The asymmetric unit of (I[link]) (Fig. 1[link]) consists of a zinc(II) centre occupying a twofold symmetry axis, to which is coordinated one 1,3-di­methyl­thio­urea ligand, via the S atom, and one Cl. The complete mol­ecule is generated by transformation through a twofold rotation axis, inherent in the space group. The geometry around the Zn centre is distorted tetrahedral, with bond angles ranging from 104.35 (3) to 113.300 (19)°. This study confirms previous conclusions on the structure of (I[link]) which emerged on the basis of IR studies (Marcotrigiano, 1975[Marcotrigiano, G. (1975). Z. Anorg. Allg. Chem. 417, 75-80.]).

The NH groups of the 1,3-di­methyl­thio­urea ligands are arranged such that they facilitate the formation of both intra- and intermolecular hydrogen bonds, involving Cl anions as acceptors in both cases; details are given in Table 1[link]. As seen in a number of zinc(II) bis­(thio­urea) di­carboxyl­ate polymers (Burrows et al., 2000[Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2000). J. Chem. Soc. Dalton Trans. pp. 3845-3854.]), the intramolecular hydrogen bonds have graph-set notation S(6). The intermolecular hydrogen bonds link the mol­ecules into infinite hydrogen-bonded chains (Fig. 2[link]). These interactions occur pairwise and lead to hydrogen-bonded rings with graph-set notation R22(12). There is no inter-chain hydrogen bonding present.

[Figure 1]
Figure 1
A view of the mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms represented by small spheres. [Symmetry code: (i) 1 − x, y, [{1 \over 2}] − z.]
[Figure 2]
Figure 2
A view of the intermolecular hydro­gen-bond interactions in (I[link]), leading to chains along the crystallographic [101] direction.

Experimental

Equimolar aqueous solutions of zinc(II) tetra(1,3-di­methyl­thio­urea) dichloride (Ashcroft, 1970[Ashcroft, S. J. (1970). J. Chem. Soc. A, pp. 1020-1024.]) and sodium salts of succinic, itaconic or mesaconic acids were allowed to evaporate slowly over a period of two weeks, in each case resulting in the formation of colourless crystals. Analysis by single-crystal X-ray diffraction revealed the identity of the products as (I[link]) and confirmed that the di­carboxyl­ate was not incorporated into the structure.

Crystal data
  • [ZnCl2(C3H6N2S)2]

  • Mr = 344.62

  • Monoclinic, C2/c

  • a = 13.0230 (4) Å

  • b = 8.9470 (3) Å

  • c = 12.4350 (3) Å

  • β = 106.967 (2)°

  • V = 1385.82 (7) Å3

  • Z = 4

  • Dx = 1.652 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1063 reflections

  • θ = 0.2–26.3°

  • μ = 2.44 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.18 × 0.15 × 0.15 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.]) Tmin = 0.655, Tmax = 0.697

  • 8273 measured reflections

  • 1580 independent reflections

  • 1439 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 27.5°

  • h = −16 → 16

  • k = −11 → 11

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.14

  • 1580 reflections

  • 85 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0178P)2 + 2.1477P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.884 (17) 2.337 (18) 3.2110 (19) 170 (3)
N1—H1⋯Cl1i 0.887 (17) 2.47 (2) 3.2737 (19) 152 (2)
Symmetry code: (i) [{\script{1\over 2}}+x,{\script{3\over 2}}-y,{\script{1\over 2}}+z].

H atoms were included at calculated positions on all carbon centres, being constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C). Each group was allowed to rotate freely about its C—N bond. The position of the amino H atoms were located from the difference map and refined isotropically subject to a distance constraint of 0.89 Å.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL and local programs.

Dichlorobis(1,3-dimethylthiourea-κS)zinc(II) top
Crystal data top
[ZnCl2(C3H6N2S)2]F(000) = 704
Mr = 344.62Dx = 1.652 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C2ycCell parameters from 25 reflections
a = 13.0230 (4) Åθ = 0.2–26.3°
b = 8.9470 (3) ŵ = 2.44 mm1
c = 12.4350 (3) ÅT = 150 K
β = 106.967 (2)°Block, colourless
V = 1385.82 (7) Å30.18 × 0.15 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1580 independent reflections
Radiation source: sealed tube1439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.5°, θmin = 4.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1616
Tmin = 0.655, Tmax = 0.697k = 1111
8273 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0178P)2 + 2.1477P]
where P = (Fo2 + 2Fc2)/3
1580 reflections(Δ/σ)max < 0.001
85 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.65085 (4)0.25000.02036 (12)
Cl10.39368 (4)0.80208 (7)0.32074 (4)0.03019 (15)
S10.60867 (4)0.49039 (6)0.38451 (4)0.02451 (15)
N10.74153 (14)0.5551 (2)0.58578 (15)0.0249 (4)
H10.760 (2)0.611 (3)0.6472 (19)0.043 (8)*
N20.59505 (15)0.7072 (2)0.52832 (15)0.0248 (4)
H20.5344 (16)0.730 (3)0.477 (2)0.034 (7)*
C10.65113 (16)0.5921 (2)0.50836 (17)0.0205 (4)
C20.8128 (2)0.4339 (3)0.5763 (2)0.0334 (5)
H2A0.82030.43260.50010.043 (8)*
H2C0.78270.33850.59140.052 (9)*
H2B0.88340.44900.63090.054 (9)*
C30.62235 (19)0.7902 (3)0.63317 (19)0.0302 (5)
H3A0.69530.83010.64880.022 (6)*
H3B0.61850.72370.69450.043 (8)*
H3C0.57160.87300.62700.042 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02062 (19)0.02289 (19)0.01535 (18)0.0000.00177 (13)0.000
Cl10.0290 (3)0.0365 (3)0.0220 (3)0.0119 (2)0.0026 (2)0.0025 (2)
S10.0288 (3)0.0223 (3)0.0178 (3)0.0039 (2)0.0006 (2)0.00186 (19)
N10.0237 (9)0.0275 (9)0.0198 (9)0.0034 (7)0.0005 (7)0.0016 (7)
N20.0226 (9)0.0285 (10)0.0196 (9)0.0047 (7)0.0002 (7)0.0026 (7)
C10.0200 (10)0.0223 (10)0.0187 (9)0.0023 (8)0.0047 (8)0.0015 (8)
C20.0321 (12)0.0357 (13)0.0277 (11)0.0124 (10)0.0016 (9)0.0000 (10)
C30.0304 (12)0.0328 (12)0.0256 (12)0.0019 (10)0.0051 (9)0.0072 (9)
Geometric parameters (Å, º) top
Zn1—Cl12.2874 (6)N2—C11.327 (3)
Zn1—Cl1i2.2874 (6)N2—C31.452 (3)
Zn1—S12.3410 (5)C2—H2A0.9800
Zn1—S1i2.3410 (5)C2—H2C0.9800
S1—C11.734 (2)C2—H2B0.9800
N1—H10.887 (17)C3—H3A0.9800
N1—C11.327 (3)C3—H3B0.9800
N1—C21.454 (3)C3—H3C0.9800
N2—H20.884 (17)
Cl1—Zn1—Cl1i107.47 (3)S1—C1—N2121.53 (15)
Cl1—Zn1—S1113.300 (19)N1—C1—N2118.55 (19)
Cl1i—Zn1—S1i113.300 (19)N1—C2—H2A109.5
Cl1—Zn1—S1i109.27 (2)N1—C2—H2C109.5
Cl1i—Zn1—S1109.27 (2)N1—C2—H2B109.5
S1—Zn1—S1i104.35 (3)H2A—C2—H2C109.5
Zn1—S1—C1106.40 (7)H2A—C2—H2B109.5
H1—N1—C1116.6 (19)H2C—C2—H2B109.5
H1—N1—C2118.0 (19)N2—C3—H3A109.5
C1—N1—C2125.39 (19)N2—C3—H3B109.5
H2—N2—C1117.8 (18)N2—C3—H3C109.5
H2—N2—C3117.8 (18)H3A—C3—H3B109.5
C1—N2—C3124.14 (18)H3A—C3—H3C109.5
S1—C1—N1119.92 (16)H3B—C3—H3C109.5
Cl1—Zn1—S1—C138.29 (8)C3—N2—C1—S1175.64 (17)
Cl1i—Zn1—S1—C181.50 (7)C3—N2—C1—N14.3 (3)
S1i—Zn1—S1—C1157.04 (8)Zn1—S1—C1—N1155.05 (15)
C2—N1—C1—S11.1 (3)Zn1—S1—C1—N225.05 (19)
C2—N1—C1—N2179.0 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.88 (2)2.34 (2)3.2110 (19)170 (3)
N1—H1···Cl1ii0.89 (2)2.47 (2)3.2737 (19)152 (2)
Symmetry code: (ii) x+1/2, y+3/2, z+1/2.
 

Footnotes

Current address: School of Natural Sciences, Bedson Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, England.

Acknowledgements

The EPSRC is thanked for funding.

References

First citationAshcroft, S. J. (1970). J. Chem. Soc. A, pp. 1020–1024.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurke, N. J., Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2003). Dalton Trans. pp. 3840–3849.  Web of Science CrossRef Google Scholar
First citationBurrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. F. (2004). Eur. J. Inorg. Chem.. Accepted.  Google Scholar
First citationBurrows, A. D., Harrington, R. W. & Mahon, M. F. (2000). J. Chem. Soc. Dalton Trans. pp. 3845–3854.  Web of Science CSD CrossRef Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMarcotrigiano, G. (1975). Z. Anorg. Allg. Chem. 417, 75–80.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds