organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­gen-bonded R22(8) dimers in (E)-{[2-(phenyl­diazenyl)­phenyl]­ethyl­­idene­amino­­oxy}acetic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 9 August 2004; accepted 10 August 2004; online 21 August 2004)

Molecules of the title compound, C16H15N3O3, are linked by paired O—H⋯O hydrogen bonds [H⋯O = 1.84 Å, O⋯O = 2.655 (3) Å and O—H⋯O = 175°] into centrosymmetric R22(8) dimers.

Comment

Per­sulfate oxidation of imino­oxy­acetic acids, R(R′)C=NOCH2COOH, provides a useful route to iminyl radicals (Forrester et al., 1979[Forrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 606-611.]). The subsequent reactions of the iminyl radicals thus generated depend greatly on the substituents, and important species including nitro­gen-containing heterocycles can result. We report here the crystal structure of the title compound, (I[link]) (Fig. 1[link]), and we compare (I[link]) with the simpler analogues (II[link]) and (III[link]), whose structures we reported recently (Glidewell et al., 2004[Glidewell, C., Low, J. N., Skakle,. J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o270-o272.]).[link]

[Scheme 1]

The C—O distances in the carboxyl group of (I[link]) (Table 1[link]) are consistent with the fully ordered location of the carboxyl H atom as deduced from a difference map. The distance O3—N4 corresponds exactly with the mean value for the —O—N= bond in oximes (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The other distances are all typical of their types. The interbond angle at O3 is less than the idealized tetrahedral value, and those at N4, N11 and N12 are all significantly less than 120°, pointing in every case to the stereochemical influence of the unshared pairs of electrons. The angles at C5 indicate planarity at this atom. While the azo­benzene fragment is effectively planar, as indicated by the key torsion angles (Table 1[link]), the conformation of the side chain between O1 and C11 (Fig. 1[link]) is not amenable to simple explanation. Compounds (I[link]) and (III[link]) have configurations at the C=N double bond [viz. (E) in (I[link]) and (Z) in (III)] such that the sterically smaller substituent at C5 is on the same side as the OCH2COOH substituent.

The mol­ecules of (I[link]) are linked by paired, and nearly linear, O—H⋯O hydrogen bonds (Table 2[link]) into a centrosymmetric R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer, selected for the sake of convenience to lie across the inversion centre at (½, ½, ½) (Fig. 2[link]). In this respect, the primary aggregation in (I[link]) is the same at that in (II[link]) and (III[link]). The structure of (I[link]) differs from that of (III[link]), however, in that there are no direction-specific interactions between the dimers in (I[link]), whereas those in (III[link]) are linked into chains by a single aromatic ππ stacking interaction.

[Figure 1]
Figure 1
View of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I[link]), showing the formation of an R22(8) dimer centred at (0.5, 0.5, 0.5). For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

Experimental

The title compound was prepared by reaction of ClCH2CO2H with the oxime derived from 2-(PhN=N)C6H4COCH3 (Forrester et al., 1979[Forrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 606-611.]), following the general procedure described recently (Glidewell et al., 2004[Glidewell, C., Low, J. N., Skakle,. J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o270-o272.]). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol (m.p. 420–421 K).

Crystal data
  • C16H15N3O3

  • Mr = 297.31

  • Monoclinic, P2/c

  • a = 16.927 (2) Å

  • b = 4.5244 (5) Å

  • c = 19.673 (2) Å

  • β = 105.828 (5)°

  • V = 1449.5 (3) Å3

  • Z = 4

  • Dx = 1.362 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3256 reflections

  • θ = 3.7–27.6°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.24 × 0.18 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.967, Tmax = 0.990

  • 13 640 measured reflections

  • 3256 independent reflections

  • 1443 reflections with I > 2σ(I)

  • Rint = 0.114

  • θmax = 27.6°

  • h = −21 → 21

  • k = −5 → 5

  • l = −25 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.187

  • S = 0.95

  • 3256 reflections

  • 201 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0887P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—O1 1.306 (4)
C1—O2 1.216 (4)
C1—C2 1.497 (5)
C2—O3 1.419 (4)
O3—N4 1.416 (3)
N4—C5 1.321 (4)
C2—O3—N4 107.6 (2)
O3—N4—C5 107.8 (2)
N12—N11—C12 114.1 (2)
N11—N12—C21 113.9 (3)
N4—C5—C6 126.8 (3)
N4—C5—C11 114.1 (3)
C6—C5—C11 119.0 (3)
O1—C1—C2—O3 157.5 (3)
C1—C2—O3—N4 83.0 (3)
C2—O3—N4—C5 174.9 (3)
O3—N4—C5—C11 176.4 (2)
N4—C5—C11—C12 114.9 (3)
C11—C12—N11—N12 −171.6 (3)
C12—N11—N12—C21 −177.0 (2)
N11—N12—C21—C22 −169.2 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.84 2.655 (3) 175
Symmetry code: (i) 1-x,1-y,1-z.

All H atoms were located in difference maps and then treated as riding atoms in idealized positions, with distances C—H = 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(Cmethyl). The low proportion (ca 44%) of the reflections labelled observed, even at 120 (2) K, together with the rather high merging index (0.11), are suggestive of poorly diffracting crystals, which may in turn be associated with the very limited intermolecular aggregation.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 3-17.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

(E)-{[2-(phenyldiazenyl)phenyl]ethylideneaminooxy}acetic acid top
Crystal data top
C16H15N3O3F(000) = 624
Mr = 297.31Dx = 1.362 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3256 reflections
a = 16.927 (2) Åθ = 3.7–27.6°
b = 4.5244 (5) ŵ = 0.10 mm1
c = 19.673 (2) ÅT = 120 K
β = 105.828 (5)°Block, colourless
V = 1449.5 (3) Å30.24 × 0.18 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3256 independent reflections
Radiation source: rotating anode1443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
φ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 3.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 2121
Tmin = 0.967, Tmax = 0.990k = 55
13640 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0887P)2]
where P = (Fo2 + 2Fc2)/3
3256 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46906 (14)0.7971 (5)0.54731 (11)0.0437 (6)
O20.55689 (14)0.4231 (6)0.58201 (11)0.0434 (6)
O30.57470 (13)0.5937 (6)0.72230 (11)0.0446 (6)
N40.66025 (15)0.5730 (7)0.73040 (13)0.0393 (7)
N110.80586 (15)0.6485 (6)0.90340 (12)0.0324 (7)
N120.85988 (16)0.7732 (6)0.95175 (13)0.0344 (7)
C10.52388 (19)0.6478 (8)0.59434 (16)0.0356 (8)
C20.5416 (2)0.7907 (8)0.66556 (16)0.0454 (9)
C50.69242 (19)0.4093 (7)0.78678 (15)0.0334 (8)
C60.6478 (2)0.2676 (8)0.83366 (17)0.0444 (9)
C110.78107 (19)0.3522 (7)0.79952 (15)0.0319 (8)
C120.83809 (18)0.4609 (7)0.85880 (14)0.0299 (7)
C130.9206 (2)0.3874 (8)0.87194 (17)0.0396 (9)
C140.9458 (2)0.2030 (8)0.82658 (17)0.0443 (9)
C150.8899 (2)0.0953 (8)0.76677 (17)0.0430 (9)
C160.8080 (2)0.1681 (8)0.75322 (16)0.0382 (8)
C210.82756 (19)0.9473 (7)0.99800 (14)0.0322 (8)
C220.8830 (2)1.1286 (7)1.04418 (15)0.0373 (8)
C230.8578 (2)1.2983 (8)1.09284 (16)0.0415 (9)
C240.7775 (2)1.2874 (8)1.09551 (16)0.0437 (9)
C250.7221 (2)1.1054 (8)1.04992 (17)0.0439 (9)
C260.7466 (2)0.9344 (7)1.00096 (16)0.0374 (8)
H10.46170.71840.50850.052*
H2A0.58010.95150.66760.054*
H2B0.49120.87480.67150.054*
H6A0.58980.29780.81450.067*
H6B0.66530.35400.87990.067*
H6C0.65930.05950.83680.067*
H130.95870.46310.91150.048*
H141.00090.15020.83620.053*
H150.90760.02620.73570.052*
H160.77050.09440.71310.046*
H220.93731.13641.04250.045*
H230.89521.42011.12380.050*
H240.76051.40271.12810.052*
H250.66791.09761.05210.053*
H260.70910.81180.97030.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0491 (14)0.0479 (16)0.0282 (12)0.0134 (12)0.0006 (11)0.0019 (11)
O20.0488 (15)0.0421 (16)0.0332 (12)0.0099 (12)0.0011 (11)0.0013 (11)
O30.0356 (14)0.0591 (17)0.0381 (13)0.0006 (12)0.0087 (10)0.0011 (11)
N40.0253 (15)0.0535 (19)0.0371 (15)0.0034 (13)0.0053 (12)0.0110 (14)
N110.0368 (16)0.0308 (16)0.0259 (13)0.0019 (13)0.0020 (12)0.0003 (12)
N120.0359 (15)0.0373 (17)0.0276 (13)0.0019 (13)0.0046 (12)0.0003 (12)
C10.0306 (19)0.041 (2)0.0333 (18)0.0016 (17)0.0063 (15)0.0072 (16)
C20.049 (2)0.052 (2)0.0281 (17)0.0165 (18)0.0006 (15)0.0035 (16)
C50.039 (2)0.0326 (19)0.0235 (15)0.0021 (15)0.0005 (14)0.0035 (14)
C60.0361 (19)0.051 (2)0.0418 (19)0.0008 (17)0.0028 (16)0.0037 (17)
C110.0352 (19)0.0347 (19)0.0239 (15)0.0021 (15)0.0048 (14)0.0045 (14)
C120.0324 (19)0.0313 (18)0.0248 (15)0.0037 (14)0.0058 (14)0.0009 (14)
C130.036 (2)0.047 (2)0.0341 (17)0.0071 (16)0.0064 (15)0.0066 (16)
C140.038 (2)0.052 (2)0.045 (2)0.0031 (17)0.0136 (17)0.0035 (18)
C150.047 (2)0.046 (2)0.0396 (19)0.0021 (18)0.0177 (17)0.0096 (16)
C160.045 (2)0.042 (2)0.0256 (16)0.0035 (17)0.0061 (15)0.0013 (15)
C210.0335 (19)0.0349 (19)0.0246 (15)0.0007 (15)0.0020 (14)0.0025 (14)
C220.040 (2)0.040 (2)0.0279 (16)0.0051 (16)0.0037 (15)0.0004 (15)
C230.049 (2)0.039 (2)0.0313 (17)0.0086 (17)0.0019 (16)0.0012 (16)
C240.063 (3)0.038 (2)0.0303 (18)0.0054 (18)0.0146 (18)0.0007 (15)
C250.041 (2)0.047 (2)0.043 (2)0.0021 (18)0.0108 (17)0.0007 (17)
C260.041 (2)0.037 (2)0.0297 (17)0.0004 (16)0.0039 (15)0.0002 (15)
Geometric parameters (Å, º) top
C1—O11.306 (4)C13—H130.93
C1—O21.216 (4)C14—C151.382 (5)
C1—C21.497 (5)C14—H140.93
O1—H10.82C15—C161.378 (5)
C2—O31.419 (4)C15—H150.93
C2—H2A0.97C16—H160.93
C2—H2B0.97N11—N121.259 (3)
O3—N41.416 (3)N12—C211.421 (4)
N4—C51.321 (4)C21—C221.383 (4)
C5—C111.475 (4)C21—C261.389 (4)
C5—C61.488 (5)C22—C231.382 (4)
C6—H6A0.96C22—H220.93
C6—H6B0.96C23—C241.376 (5)
C6—H6C0.96C23—H230.93
C11—C121.385 (4)C24—C251.380 (5)
C11—C161.400 (4)C24—H240.93
C12—C131.389 (4)C25—C261.384 (4)
C12—N111.431 (4)C25—H250.93
C13—C141.372 (5)C26—H260.93
O2—C1—O1124.6 (3)C14—C13—H13120.0
O2—C1—C2124.2 (3)C12—C13—H13120.0
O1—C1—C2111.2 (3)C13—C14—C15120.4 (3)
C1—O1—H1109.5C13—C14—H14119.8
O3—C2—C1113.6 (3)C15—C14—H14119.8
O3—C2—H2A108.8C16—C15—C14119.9 (3)
C1—C2—H2A108.8C16—C15—H15120.0
O3—C2—H2B108.8C14—C15—H15120.0
C1—C2—H2B108.8C15—C16—C11120.4 (3)
H2A—C2—H2B107.7C15—C16—H16119.8
C2—O3—N4107.6 (2)C11—C16—H16119.8
O3—N4—C5107.8 (2)C22—C21—C26119.8 (3)
N12—N11—C12114.1 (2)C22—C21—N12116.1 (3)
N11—N12—C21113.9 (3)C26—C21—N12124.1 (3)
N4—C5—C6126.8 (3)C23—C22—C21120.2 (3)
N4—C5—C11114.1 (3)C23—C22—H22119.9
C6—C5—C11119.0 (3)C21—C22—H22119.9
C5—C6—H6A109.5C24—C23—C22120.0 (3)
C5—C6—H6B109.5C24—C23—H23120.0
H6A—C6—H6B109.5C22—C23—H23120.0
C5—C6—H6C109.5C23—C24—C25120.0 (3)
H6A—C6—H6C109.5C23—C24—H24120.0
H6B—C6—H6C109.5C25—C24—H24120.0
C12—C11—C16118.9 (3)C24—C25—C26120.4 (3)
C12—C11—C5121.6 (3)C24—C25—H25119.8
C16—C11—C5119.4 (3)C26—C25—H25119.8
C11—C12—C13120.4 (3)C25—C26—C21119.5 (3)
C11—C12—N11115.6 (3)C25—C26—H26120.3
C13—C12—N11124.0 (3)C21—C26—H26120.3
C14—C13—C12120.0 (3)
O2—C1—C2—O323.1 (5)C13—C14—C15—C161.4 (5)
O1—C1—C2—O3157.5 (3)C14—C15—C16—C110.4 (5)
C1—C2—O3—N483.0 (3)C12—C11—C16—C150.4 (5)
C2—O3—N4—C5174.9 (3)C5—C11—C16—C15175.5 (3)
O3—N4—C5—C11176.4 (2)C11—C12—N11—N12171.6 (3)
O3—N4—C5—C60.6 (4)C13—C12—N11—N128.3 (4)
N4—C5—C11—C12114.9 (3)C12—N11—N12—C21177.0 (2)
C6—C5—C11—C1268.9 (4)N11—N12—C21—C22169.2 (3)
N4—C5—C11—C1669.4 (4)N11—N12—C21—C2613.7 (4)
C6—C5—C11—C16106.8 (3)C26—C21—C22—C230.5 (5)
C16—C11—C12—C130.1 (4)N12—C21—C22—C23177.7 (3)
C5—C11—C12—C13175.6 (3)C21—C22—C23—C240.0 (5)
C16—C11—C12—N11179.8 (3)C22—C23—C24—C250.4 (5)
C5—C11—C12—N114.5 (4)C23—C24—C25—C260.4 (5)
C11—C12—C13—C140.9 (5)C24—C25—C26—C210.0 (5)
N11—C12—C13—C14179.3 (3)C22—C21—C26—C250.5 (5)
C12—C13—C14—C151.6 (5)N12—C21—C26—C25177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.842.655 (3)175
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationForrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 606–611.  CrossRef Web of Science Google Scholar
First citationGlidewell, C., Low, J. N., Skakle,. J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o270–o272.  CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 3–17.  Web of Science CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds