Comment
Persulfate oxidation of iminooxyacetic acids, R(R′)C=NOCH2COOH, provides a useful route to iminyl radicals (Forrester et al., 1979
). The subsequent reactions of the iminyl radicals thus generated depend greatly on the substituents, and important species including nitrogen-containing heterocycles can result. We report here the crystal structure of the title compound, (I
) (Fig. 1
), and we compare (I
) with the simpler analogues (II
) and (III
), whose structures we reported recently (Glidewell et al., 2004
).![[link]](../../../../../../logos/arrows/e_arr.gif)
The C—O distances in the carboxyl group of (I
) (Table 1
) are consistent with the fully ordered location of the carboxyl H atom as deduced from a difference map. The distance O3—N4 corresponds exactly with the mean value for the —O—N= bond in oximes (Allen et al., 1987
). The other distances are all typical of their types. The interbond angle at O3 is less than the idealized tetrahedral value, and those at N4, N11 and N12 are all significantly less than 120°, pointing in every case to the stereochemical influence of the unshared pairs of electrons. The angles at C5 indicate planarity at this atom. While the azobenzene fragment is effectively planar, as indicated by the key torsion angles (Table 1
), the conformation of the side chain between O1 and C11 (Fig. 1
) is not amenable to simple explanation. Compounds (I
) and (III
) have configurations at the C=N double bond [viz. (E) in (I
) and (Z) in (III)] such that the sterically smaller substituent at C5 is on the same side as the OCH2COOH substituent.
The molecules of (I
) are linked by paired, and nearly linear, O—H⋯O hydrogen bonds (Table 2
) into a centrosymmetric R22(8) (Bernstein et al., 1995
) dimer, selected for the sake of convenience to lie across the inversion centre at (½, ½, ½) (Fig. 2
). In this respect, the primary aggregation in (I
) is the same at that in (II
) and (III
). The structure of (I
) differs from that of (III
), however, in that there are no direction-specific interactions between the dimers in (I
), whereas those in (III
) are linked into chains by a single aromatic π–π stacking interaction.
| Figure 1 View of (I ), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
| Figure 2 Part of the crystal structure of (I ), showing the formation of an R22(8) dimer centred at (0.5, 0.5, 0.5). For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z). |
Experimental
The title compound was prepared by reaction of ClCH2CO2H with the oxime derived from 2-(PhN=N)C6H4COCH3 (Forrester et al., 1979
), following the general procedure described recently (Glidewell et al., 2004
). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol (m.p. 420–421 K).
Data collection
Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995 , 1997 ) Tmin = 0.967, Tmax = 0.990 13 640 measured reflections 3256 independent reflections 1443 reflections with I > 2σ(I) Rint = 0.114 θmax = 27.6° h = −21 → 21 k = −5 → 5 l = −25 → 23
|
C1—O1 | 1.306 (4) | C1—O2 | 1.216 (4) | C1—C2 | 1.497 (5) | C2—O3 | 1.419 (4) | O3—N4 | 1.416 (3) | N4—C5 | 1.321 (4) | | C2—O3—N4 | 107.6 (2) | O3—N4—C5 | 107.8 (2) | N12—N11—C12 | 114.1 (2) | N11—N12—C21 | 113.9 (3) | N4—C5—C6 | 126.8 (3) | N4—C5—C11 | 114.1 (3) | C6—C5—C11 | 119.0 (3) | | O1—C1—C2—O3 | 157.5 (3) | C1—C2—O3—N4 | 83.0 (3) | C2—O3—N4—C5 | 174.9 (3) | O3—N4—C5—C11 | 176.4 (2) | N4—C5—C11—C12 | 114.9 (3) | C11—C12—N11—N12 | −171.6 (3) | C12—N11—N12—C21 | −177.0 (2) | N11—N12—C21—C22 | −169.2 (3) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O1—H1⋯O2i | 0.82 | 1.84 | 2.655 (3) | 175 | Symmetry code: (i) 1-x,1-y,1-z. | |
All H atoms were located in difference maps and then treated as riding atoms in idealized positions, with distances C—H = 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(Cmethyl). The low proportion (ca 44%) of the reflections labelled observed, even at 120 (2) K, together with the rather high merging index (0.11), are suggestive of poorly diffracting crystals, which may in turn be associated with the very limited intermolecular aggregation.
Data collection: KappaCCD Server Software (Nonius, 1997
); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997
); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003
) and SHELXS97 (Sheldrick, 1997
); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997
); molecular graphics: PLATON (Spek, 2003
); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999
).
Supporting information
Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
(
E)-{[2-(phenyldiazenyl)phenyl]ethylideneaminooxy}acetic acid
top Crystal data top C16H15N3O3 | F(000) = 624 |
Mr = 297.31 | Dx = 1.362 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 3256 reflections |
a = 16.927 (2) Å | θ = 3.7–27.6° |
b = 4.5244 (5) Å | µ = 0.10 mm−1 |
c = 19.673 (2) Å | T = 120 K |
β = 105.828 (5)° | Block, colourless |
V = 1449.5 (3) Å3 | 0.24 × 0.18 × 0.10 mm |
Z = 4 | |
Data collection top Nonius KappaCCD diffractometer | 3256 independent reflections |
Radiation source: rotating anode | 1443 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.114 |
φ scans, and ω scans with κ offsets | θmax = 27.6°, θmin = 3.7° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) | h = −21→21 |
Tmin = 0.967, Tmax = 0.990 | k = −5→5 |
13640 measured reflections | l = −25→23 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.187 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0887P)2] where P = (Fo2 + 2Fc2)/3 |
3256 reflections | (Δ/σ)max < 0.001 |
201 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.46906 (14) | 0.7971 (5) | 0.54731 (11) | 0.0437 (6) | |
O2 | 0.55689 (14) | 0.4231 (6) | 0.58201 (11) | 0.0434 (6) | |
O3 | 0.57470 (13) | 0.5937 (6) | 0.72230 (11) | 0.0446 (6) | |
N4 | 0.66025 (15) | 0.5730 (7) | 0.73040 (13) | 0.0393 (7) | |
N11 | 0.80586 (15) | 0.6485 (6) | 0.90340 (12) | 0.0324 (7) | |
N12 | 0.85988 (16) | 0.7732 (6) | 0.95175 (13) | 0.0344 (7) | |
C1 | 0.52388 (19) | 0.6478 (8) | 0.59434 (16) | 0.0356 (8) | |
C2 | 0.5416 (2) | 0.7907 (8) | 0.66556 (16) | 0.0454 (9) | |
C5 | 0.69242 (19) | 0.4093 (7) | 0.78678 (15) | 0.0334 (8) | |
C6 | 0.6478 (2) | 0.2676 (8) | 0.83366 (17) | 0.0444 (9) | |
C11 | 0.78107 (19) | 0.3522 (7) | 0.79952 (15) | 0.0319 (8) | |
C12 | 0.83809 (18) | 0.4609 (7) | 0.85880 (14) | 0.0299 (7) | |
C13 | 0.9206 (2) | 0.3874 (8) | 0.87194 (17) | 0.0396 (9) | |
C14 | 0.9458 (2) | 0.2030 (8) | 0.82658 (17) | 0.0443 (9) | |
C15 | 0.8899 (2) | 0.0953 (8) | 0.76677 (17) | 0.0430 (9) | |
C16 | 0.8080 (2) | 0.1681 (8) | 0.75322 (16) | 0.0382 (8) | |
C21 | 0.82756 (19) | 0.9473 (7) | 0.99800 (14) | 0.0322 (8) | |
C22 | 0.8830 (2) | 1.1286 (7) | 1.04418 (15) | 0.0373 (8) | |
C23 | 0.8578 (2) | 1.2983 (8) | 1.09284 (16) | 0.0415 (9) | |
C24 | 0.7775 (2) | 1.2874 (8) | 1.09551 (16) | 0.0437 (9) | |
C25 | 0.7221 (2) | 1.1054 (8) | 1.04992 (17) | 0.0439 (9) | |
C26 | 0.7466 (2) | 0.9344 (7) | 1.00096 (16) | 0.0374 (8) | |
H1 | 0.4617 | 0.7184 | 0.5085 | 0.052* | |
H2A | 0.5801 | 0.9515 | 0.6676 | 0.054* | |
H2B | 0.4912 | 0.8748 | 0.6715 | 0.054* | |
H6A | 0.5898 | 0.2978 | 0.8145 | 0.067* | |
H6B | 0.6653 | 0.3540 | 0.8799 | 0.067* | |
H6C | 0.6593 | 0.0595 | 0.8368 | 0.067* | |
H13 | 0.9587 | 0.4631 | 0.9115 | 0.048* | |
H14 | 1.0009 | 0.1502 | 0.8362 | 0.053* | |
H15 | 0.9076 | −0.0262 | 0.7357 | 0.052* | |
H16 | 0.7705 | 0.0944 | 0.7131 | 0.046* | |
H22 | 0.9373 | 1.1364 | 1.0425 | 0.045* | |
H23 | 0.8952 | 1.4201 | 1.1238 | 0.050* | |
H24 | 0.7605 | 1.4027 | 1.1281 | 0.052* | |
H25 | 0.6679 | 1.0976 | 1.0521 | 0.053* | |
H26 | 0.7091 | 0.8118 | 0.9703 | 0.045* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0491 (14) | 0.0479 (16) | 0.0282 (12) | 0.0134 (12) | 0.0006 (11) | 0.0019 (11) |
O2 | 0.0488 (15) | 0.0421 (16) | 0.0332 (12) | 0.0099 (12) | 0.0011 (11) | 0.0013 (11) |
O3 | 0.0356 (14) | 0.0591 (17) | 0.0381 (13) | 0.0006 (12) | 0.0087 (10) | 0.0011 (11) |
N4 | 0.0253 (15) | 0.0535 (19) | 0.0371 (15) | −0.0034 (13) | 0.0053 (12) | −0.0110 (14) |
N11 | 0.0368 (16) | 0.0308 (16) | 0.0259 (13) | −0.0019 (13) | 0.0020 (12) | −0.0003 (12) |
N12 | 0.0359 (15) | 0.0373 (17) | 0.0276 (13) | −0.0019 (13) | 0.0046 (12) | −0.0003 (12) |
C1 | 0.0306 (19) | 0.041 (2) | 0.0333 (18) | −0.0016 (17) | 0.0063 (15) | 0.0072 (16) |
C2 | 0.049 (2) | 0.052 (2) | 0.0281 (17) | 0.0165 (18) | −0.0006 (15) | 0.0035 (16) |
C5 | 0.039 (2) | 0.0326 (19) | 0.0235 (15) | −0.0021 (15) | 0.0005 (14) | −0.0035 (14) |
C6 | 0.0361 (19) | 0.051 (2) | 0.0418 (19) | −0.0008 (17) | 0.0028 (16) | −0.0037 (17) |
C11 | 0.0352 (19) | 0.0347 (19) | 0.0239 (15) | −0.0021 (15) | 0.0048 (14) | 0.0045 (14) |
C12 | 0.0324 (19) | 0.0313 (18) | 0.0248 (15) | −0.0037 (14) | 0.0058 (14) | 0.0009 (14) |
C13 | 0.036 (2) | 0.047 (2) | 0.0341 (17) | −0.0071 (16) | 0.0064 (15) | −0.0066 (16) |
C14 | 0.038 (2) | 0.052 (2) | 0.045 (2) | −0.0031 (17) | 0.0136 (17) | −0.0035 (18) |
C15 | 0.047 (2) | 0.046 (2) | 0.0396 (19) | −0.0021 (18) | 0.0177 (17) | −0.0096 (16) |
C16 | 0.045 (2) | 0.042 (2) | 0.0256 (16) | −0.0035 (17) | 0.0061 (15) | −0.0013 (15) |
C21 | 0.0335 (19) | 0.0349 (19) | 0.0246 (15) | 0.0007 (15) | 0.0020 (14) | 0.0025 (14) |
C22 | 0.040 (2) | 0.040 (2) | 0.0279 (16) | −0.0051 (16) | 0.0037 (15) | −0.0004 (15) |
C23 | 0.049 (2) | 0.039 (2) | 0.0313 (17) | −0.0086 (17) | 0.0019 (16) | −0.0012 (16) |
C24 | 0.063 (3) | 0.038 (2) | 0.0303 (18) | 0.0054 (18) | 0.0146 (18) | −0.0007 (15) |
C25 | 0.041 (2) | 0.047 (2) | 0.043 (2) | 0.0021 (18) | 0.0108 (17) | 0.0007 (17) |
C26 | 0.041 (2) | 0.037 (2) | 0.0297 (17) | −0.0004 (16) | 0.0039 (15) | 0.0002 (15) |
Geometric parameters (Å, º) top C1—O1 | 1.306 (4) | C13—H13 | 0.93 |
C1—O2 | 1.216 (4) | C14—C15 | 1.382 (5) |
C1—C2 | 1.497 (5) | C14—H14 | 0.93 |
O1—H1 | 0.82 | C15—C16 | 1.378 (5) |
C2—O3 | 1.419 (4) | C15—H15 | 0.93 |
C2—H2A | 0.97 | C16—H16 | 0.93 |
C2—H2B | 0.97 | N11—N12 | 1.259 (3) |
O3—N4 | 1.416 (3) | N12—C21 | 1.421 (4) |
N4—C5 | 1.321 (4) | C21—C22 | 1.383 (4) |
C5—C11 | 1.475 (4) | C21—C26 | 1.389 (4) |
C5—C6 | 1.488 (5) | C22—C23 | 1.382 (4) |
C6—H6A | 0.96 | C22—H22 | 0.93 |
C6—H6B | 0.96 | C23—C24 | 1.376 (5) |
C6—H6C | 0.96 | C23—H23 | 0.93 |
C11—C12 | 1.385 (4) | C24—C25 | 1.380 (5) |
C11—C16 | 1.400 (4) | C24—H24 | 0.93 |
C12—C13 | 1.389 (4) | C25—C26 | 1.384 (4) |
C12—N11 | 1.431 (4) | C25—H25 | 0.93 |
C13—C14 | 1.372 (5) | C26—H26 | 0.93 |
| | | |
O2—C1—O1 | 124.6 (3) | C14—C13—H13 | 120.0 |
O2—C1—C2 | 124.2 (3) | C12—C13—H13 | 120.0 |
O1—C1—C2 | 111.2 (3) | C13—C14—C15 | 120.4 (3) |
C1—O1—H1 | 109.5 | C13—C14—H14 | 119.8 |
O3—C2—C1 | 113.6 (3) | C15—C14—H14 | 119.8 |
O3—C2—H2A | 108.8 | C16—C15—C14 | 119.9 (3) |
C1—C2—H2A | 108.8 | C16—C15—H15 | 120.0 |
O3—C2—H2B | 108.8 | C14—C15—H15 | 120.0 |
C1—C2—H2B | 108.8 | C15—C16—C11 | 120.4 (3) |
H2A—C2—H2B | 107.7 | C15—C16—H16 | 119.8 |
C2—O3—N4 | 107.6 (2) | C11—C16—H16 | 119.8 |
O3—N4—C5 | 107.8 (2) | C22—C21—C26 | 119.8 (3) |
N12—N11—C12 | 114.1 (2) | C22—C21—N12 | 116.1 (3) |
N11—N12—C21 | 113.9 (3) | C26—C21—N12 | 124.1 (3) |
N4—C5—C6 | 126.8 (3) | C23—C22—C21 | 120.2 (3) |
N4—C5—C11 | 114.1 (3) | C23—C22—H22 | 119.9 |
C6—C5—C11 | 119.0 (3) | C21—C22—H22 | 119.9 |
C5—C6—H6A | 109.5 | C24—C23—C22 | 120.0 (3) |
C5—C6—H6B | 109.5 | C24—C23—H23 | 120.0 |
H6A—C6—H6B | 109.5 | C22—C23—H23 | 120.0 |
C5—C6—H6C | 109.5 | C23—C24—C25 | 120.0 (3) |
H6A—C6—H6C | 109.5 | C23—C24—H24 | 120.0 |
H6B—C6—H6C | 109.5 | C25—C24—H24 | 120.0 |
C12—C11—C16 | 118.9 (3) | C24—C25—C26 | 120.4 (3) |
C12—C11—C5 | 121.6 (3) | C24—C25—H25 | 119.8 |
C16—C11—C5 | 119.4 (3) | C26—C25—H25 | 119.8 |
C11—C12—C13 | 120.4 (3) | C25—C26—C21 | 119.5 (3) |
C11—C12—N11 | 115.6 (3) | C25—C26—H26 | 120.3 |
C13—C12—N11 | 124.0 (3) | C21—C26—H26 | 120.3 |
C14—C13—C12 | 120.0 (3) | | |
| | | |
O2—C1—C2—O3 | −23.1 (5) | C13—C14—C15—C16 | −1.4 (5) |
O1—C1—C2—O3 | 157.5 (3) | C14—C15—C16—C11 | 0.4 (5) |
C1—C2—O3—N4 | 83.0 (3) | C12—C11—C16—C15 | 0.4 (5) |
C2—O3—N4—C5 | 174.9 (3) | C5—C11—C16—C15 | −175.5 (3) |
O3—N4—C5—C11 | 176.4 (2) | C11—C12—N11—N12 | −171.6 (3) |
O3—N4—C5—C6 | 0.6 (4) | C13—C12—N11—N12 | 8.3 (4) |
N4—C5—C11—C12 | 114.9 (3) | C12—N11—N12—C21 | −177.0 (2) |
C6—C5—C11—C12 | −68.9 (4) | N11—N12—C21—C22 | −169.2 (3) |
N4—C5—C11—C16 | −69.4 (4) | N11—N12—C21—C26 | 13.7 (4) |
C6—C5—C11—C16 | 106.8 (3) | C26—C21—C22—C23 | −0.5 (5) |
C16—C11—C12—C13 | −0.1 (4) | N12—C21—C22—C23 | −177.7 (3) |
C5—C11—C12—C13 | 175.6 (3) | C21—C22—C23—C24 | 0.0 (5) |
C16—C11—C12—N11 | 179.8 (3) | C22—C23—C24—C25 | 0.4 (5) |
C5—C11—C12—N11 | −4.5 (4) | C23—C24—C25—C26 | −0.4 (5) |
C11—C12—C13—C14 | −0.9 (5) | C24—C25—C26—C21 | 0.0 (5) |
N11—C12—C13—C14 | 179.3 (3) | C22—C21—C26—C25 | 0.5 (5) |
C12—C13—C14—C15 | 1.6 (5) | N12—C21—C26—C25 | 177.5 (3) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.84 | 2.655 (3) | 175 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–37. CrossRef CAS Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Forrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 606–611. CrossRef Web of Science Google Scholar
Glidewell, C., Low, J. N., Skakle,. J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o270–o272. CrossRef IUCr Journals Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 3–17. Web of Science CrossRef IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890