organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperizinium hydrogen phosphite monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 9 August 2004; accepted 13 August 2004; online 21 August 2004)

The title compound, C6H12N22+·HPO32−·H2O, contains doubly protonated piperizinium cations, hydrogen phosphite anions and water mol­ecules. The component species have normal geometrical parameters and interact by way of N—H⋯O and O—H⋯O hydrogen bonds, resulting in [010] chains of alternating [HPO3]2− and H2O species, crosslinked by the organic moieties. A possible C—H⋯O interaction is also present.

Comment

The crystal structures of (protonated) amine hydrogen phosphites containing [HPO3]2− or [H2PO3] oxo-anions are of crystallochemical interest in terms of the interplay between the hydrogen bonds linking the cations, anions, and, if applicable, water mol­ecules together (Averbuch-Pouchot, 1993a[Averbuch-Pouchot, M. T. (1993a) Acta Cryst. C49, 813-815.],b[Averbuch-Pouchot, M. T. (1993b) Acta Cryst. C49, 815-818.]; Harrison, 2003a[Harrison, W. T. A. (2003a) Acta Cryst. E59, o769-o770.],b[Harrison, W. T. A. (2003b) Acta Cryst. E59, o1267-o1269.]).[link]

[Scheme 1]

The asymmetric unit of the title compound, (I[link]), consists of two half-mol­ecule {C2H6N} fragments of (C4H12N2)2+ piperizinium cations, an [HPO3]2− hydrogen phosphite group and a water mol­ecule. Inversion symmetry (Fig. 1[link]) generates the two complete piperizinium cations, and the water O atom is disordered over two adjacent sites (see Experimental). The ­hydrogen phosphite group shows its usual (Harrison, 2003a[Harrison, W. T. A. (2003a) Acta Cryst. E59, o769-o770.]) pseudo-pyramidal geometry [mean d(P—O) = 1.521 (2) Å; mean θ(O—P—O) = 112.48 (9)°] and the organic species adopt typical chair conformations.

As well as electrostatic forces, the component species in (I[link]) interact by means of O—H⋯O and N—H⋯O hydrogen bonds (Table 2[link]), and possibly a C—H⋯O interaction (see below). Infinite chains of alternating [HPO3]2− and H2O moieties are formed (Fig. 2[link]) along [010] as a result of the water-to-phosphite O—H⋯O hydrogen bonds, with the repeating units generated by translation symmetry. The resulting P1⋯P1ii (Fig. 2[link]; see Table 2[link] for symmetry code) separation of 6.5706 (7) Å is naturally much larger than the typical P⋯P separations (4.7–4.9 Å) seen when [H2PO3] di­hydrogen phosphite units link together by way of P—O—H⋯O—P interactions without an intervening water mol­ecule (Averbuch-Pouchot, 1993a[Averbuch-Pouchot, M. T. (1993a) Acta Cryst. C49, 813-815.], Harrison, 2003a[Harrison, W. T. A. (2003a) Acta Cryst. E59, o769-o770.]).

The piperizinium cations crosslink the [010] [HPO3]2−–H2O chains by way of the N—H⋯O hydrogen bonds (Table 2[link]), with all four bonds close to linear [mean θ(N—H⋯O) = 168°]. A short C1—H5⋯O4aiv (Table 2[link]) interaction was identified in a PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I[link]). If it is not merely a packing artefact, it may provide some additional coherence between the piperizinium cations and the water component of the [HPO3]2−–H2O [010] chains, although its role, if any, in the disordering of the water mol­ecule O4 atom is not obvious.

[Figure 1]
Figure 1
View of (I[link]) (50% displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radius). The disordered O4b species is omitted. Symmetry codes: (i) −x, 1 − y, −z; (ii) 1 − x, 1 − y, −z.
[Figure 2]
Figure 2
Detail of a [010] hydrogen phosphite–water chain with the H⋯O components of the hydrogen bonds indicated by dashed lines (atom O4b not shown). Symmetry codes: (i) x, y + 1, z; (ii) x, y − 1, z.
[Figure 3]
Figure 3
Unit-cell packing in (I[link]) projected onto (010). The H⋯O components of the hydrogen bonds are indicated by dashed lines. O4b and all C—H H atoms are omitted for clarity.

Experimental

H3PO3 (0.82 g; 1 mmol) and piperizine hexahydrate (1.92 g; 0.01 mmol) were dissolved in 10 ml deionized water, resulting in a clear solution. Block-shaped crystals of (I[link]) grew as the water evaporated over several days.

Crystal data
  • C6H12N22+·HPO32−·H2O

  • Mr = 186.15

  • Monoclinic, P21/c

  • a = 12.2476 (8) Å

  • b = 6.5706 (4) Å

  • c = 10.6592 (8) Å

  • β = 92.744 (1)°

  • V = 856.8 (1) Å3

  • Z = 4

  • Dx = 1.443 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2470 reflections

  • θ = 3.3–29.8°

  • μ = 0.30 mm−1

  • T = 293 (2) K

  • Block, colourless

  • 0.27 × 0.23 × 0.19 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.949

  • 6211 measured reflections

  • 2468 independent reflections

  • 1930 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 30.0°

  • h = −17 → 16

  • k = −8 → 9

  • l = −14 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.131

  • S = 1.02

  • 2468 reflections

  • 100 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0845P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å) for (I)[link]

P1—O3 1.5151 (13)
P1—O2 1.5230 (12)
P1—O1 1.5234 (14)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O2i 0.90 1.84 2.7147 (19) 164
N1—H3⋯O2ii 0.90 1.81 2.7043 (19) 172
N2—H8⋯O3ii 0.90 1.77 2.642 (2) 163
N2—H9⋯O1iii 0.90 1.78 2.676 (2) 171
O4a—H14⋯O1 0.95 1.90 2.840 (4) 167
O4a—H15⋯O3ii 0.93 1.90 2.811 (4) 168
O4b—H14⋯O1 0.93 1.90 2.752 (4) 151
O4b—H15⋯O3ii 0.96 1.90 2.765 (4) 149
C1—H5⋯O4aiv 0.97 2.38 3.300 (5) 159
Symmetry codes: (i) [-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (ii) x,1+y,z; (iii) [x,{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (iv) [-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z].

The water O atom was modelled as being disordered over two adjacent sites with isotropic displacement factors [d(O4a⋯O4b) = 0.638 (5) Å; fractional site occupancies = 0.563 (14) and 0.437 (14) for O4a and O4b, respectively, with their sum constrained to unity]. The present data did not reveal H-atom sites that could be unambiguously associated with either O4a or O4b; instead, two distinct features in the difference map provided H-atom sites that were reasonable for both O4a and O4b (see Table 2[link]). These O—H H atoms were refined by riding on O4a in their as-found positions. The N—H H atoms were found in difference maps and refined by riding in their idealized positions [d(N—H) = 0.90 Å]. The H atoms bonded to C and P were placed in calculated positions [d(C—H) = 0.97 Å; d(P—H) = 1.32 Å] and refined by riding. For all H atoms, the constraint Uiso(H) = 1.2Ueq(carrier atom) was applied.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
(C6H12N2)2+·[HPO3]2·H2OF(000) = 400
Mr = 186.15Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2470 reflections
a = 12.2476 (8) Åθ = 3.3–29.8°
b = 6.5706 (4) ŵ = 0.30 mm1
c = 10.6592 (8) ÅT = 293 K
β = 92.744 (1)°Block, colourless
V = 856.8 (1) Å30.27 × 0.23 × 0.19 mm
Z = 4
Data collection top
Bruker SMART1000 CCD
diffractometer
2468 independent reflections
Radiation source: normal-focus sealed tube1930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1716
Tmin = 0.925, Tmax = 0.949k = 89
6211 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difmap (O-H and N-H) and geom (C-H and P-H)
wR(F2) = 0.131H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0845P)2]
where P = (Fo2 + 2Fc2)/3
2468 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.23916 (3)0.02316 (6)0.23270 (4)0.02544 (15)
H10.26090.09440.13660.031*
O10.27883 (11)0.0919 (2)0.35030 (14)0.0398 (3)
O20.11571 (10)0.0529 (2)0.22692 (13)0.0335 (3)
O30.30154 (11)0.2194 (2)0.21505 (14)0.0420 (4)
N10.01729 (11)0.6267 (2)0.10922 (13)0.0272 (3)
H20.03640.58400.15760.033*
H30.05490.72500.15120.033*
C10.03148 (15)0.7113 (3)0.01021 (17)0.0318 (4)
H40.02580.76740.05960.038*
H50.08170.82030.00820.038*
C20.09189 (15)0.4532 (3)0.08474 (18)0.0321 (4)
H60.12050.39750.16390.039*
H70.15300.50120.03830.039*
N20.39969 (11)0.5910 (2)0.03315 (15)0.0339 (4)
H80.36130.67190.08310.041*
H90.35310.53910.02640.041*
C30.48414 (15)0.7131 (3)0.0271 (2)0.0377 (4)
H100.53170.77690.03680.045*
H110.44960.81950.07800.045*
C40.44956 (15)0.4235 (3)0.10849 (19)0.0372 (4)
H120.39260.34460.14580.045*
H130.49640.47940.17590.045*
O4A0.2172 (5)0.5036 (5)0.3865 (3)0.0557 (14)*0.563 (14)
H140.24880.37330.37210.067*
H150.25360.58280.32960.067*
O4B0.2678 (6)0.5011 (6)0.4032 (4)0.0507 (17)*0.437 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0236 (2)0.0260 (2)0.0267 (2)0.00143 (15)0.00188 (16)0.00038 (16)
O10.0408 (7)0.0355 (7)0.0416 (8)0.0016 (6)0.0139 (6)0.0054 (6)
O20.0250 (6)0.0369 (7)0.0388 (7)0.0022 (5)0.0023 (5)0.0088 (5)
O30.0453 (8)0.0385 (8)0.0431 (8)0.0168 (6)0.0109 (6)0.0020 (6)
N10.0276 (7)0.0276 (7)0.0264 (7)0.0051 (5)0.0022 (5)0.0039 (5)
C10.0364 (8)0.0248 (8)0.0339 (9)0.0031 (7)0.0010 (7)0.0004 (7)
C20.0282 (8)0.0357 (9)0.0319 (9)0.0025 (7)0.0033 (7)0.0021 (7)
N20.0235 (7)0.0417 (9)0.0365 (8)0.0052 (6)0.0004 (6)0.0117 (7)
C30.0351 (9)0.0280 (9)0.0496 (11)0.0007 (7)0.0025 (8)0.0020 (8)
C40.0293 (8)0.0467 (11)0.0357 (10)0.0037 (7)0.0035 (7)0.0015 (8)
Geometric parameters (Å, º) top
P1—O31.5151 (13)N2—C31.479 (2)
P1—O21.5230 (12)N2—H80.9000
P1—O11.5234 (14)N2—H90.9000
P1—H11.3200C3—C4ii1.512 (3)
N1—C11.488 (2)C3—H100.9700
N1—C21.492 (2)C3—H110.9700
N1—H20.9000C4—C3ii1.512 (3)
N1—H30.9000C4—H120.9700
C1—C2i1.513 (2)C4—H130.9700
C1—H40.9700O4A—O4B0.638 (5)
C1—H50.9700O4A—H140.9549
C2—C1i1.513 (2)O4A—H150.9296
C2—H60.9700O4B—H140.9285
C2—H70.9700O4B—H150.9594
N2—C41.477 (3)
O3—P1—O2113.03 (8)C4—N2—C3111.13 (14)
O3—P1—O1112.44 (8)C4—N2—H8109.4
O2—P1—O1111.96 (8)C3—N2—H8109.4
O3—P1—H1106.3C4—N2—H9109.4
O2—P1—H1106.3C3—N2—H9109.4
O1—P1—H1106.3H8—N2—H9108.0
C1—N1—C2111.10 (13)N2—C3—C4ii109.44 (15)
C1—N1—H2109.4N2—C3—H10109.8
C2—N1—H2109.4C4ii—C3—H10109.8
C1—N1—H3109.4N2—C3—H11109.8
C2—N1—H3109.4C4ii—C3—H11109.8
H2—N1—H3108.0H10—C3—H11108.2
N1—C1—C2i110.40 (14)N2—C4—C3ii110.48 (16)
N1—C1—H4109.6N2—C4—H12109.6
C2i—C1—H4109.6C3ii—C4—H12109.6
N1—C1—H5109.6N2—C4—H13109.6
C2i—C1—H5109.6C3ii—C4—H13109.6
H4—C1—H5108.1H12—C4—H13108.1
N1—C2—C1i110.45 (14)O4B—O4A—H1468.0
N1—C2—H6109.6O4B—O4A—H1572.8
C1i—C2—H6109.6H14—O4A—H15100.7
N1—C2—H7109.6O4A—O4B—H1472.5
C1i—C2—H7109.6O4A—O4B—H1567.8
H6—C2—H7108.1H14—O4B—H15100.5
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O2iii0.901.842.7147 (19)164
N1—H3···O2iv0.901.812.7043 (19)172
N2—H8···O3iv0.901.772.642 (2)163
N2—H9···O1v0.901.782.676 (2)171
O4A—H14···O10.951.902.840 (4)167
O4A—H15···O3iv0.931.902.811 (4)168
O4B—H14···O10.931.902.752 (4)151
O4B—H15···O3iv0.961.902.765 (4)149
C1—H5···O4Aiii0.972.383.300 (5)159
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+1/2, z1/2.
 

References

First citationAverbuch-Pouchot, M. T. (1993a) Acta Cryst. C49, 813–815.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAverbuch-Pouchot, M. T. (1993b) Acta Cryst. C49, 815–818.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565–565.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2003a) Acta Cryst. E59, o769–o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2003b) Acta Cryst. E59, o1267–o1269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds