organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Allyl­­oxy-2-bromo­phen­oxy)­but-2-ene­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 16 August 2004; accepted 20 August 2004; online 28 August 2004)

The title compound, C13H12BrNO2, possesses normal geometrical parameters. The molecular conformation and crystal packing appear to be influenced by intramolecular C—H⋯O and intermolecular C—H⋯N interactions, the latter resulting in centrosymmetric R22(10) loops.

Comment

The title compound, 4-(3-allyl­oxy-2-bromo­phenoxy)­but-2-ene­nitrile, (I) (Fig. 1[link]), arose during our studies to determine the philicity of aryl radicals by competetive cyclization (Kirsop et al., 2004a[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004a). Acta Cryst. E60, o222-o224.],b[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004b). Acta Cryst. C60, o353-o355.],c[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004c). Acta Cryst. E60, o1147-o1148.]).[link]

[Scheme 1]

Compound (I[link]) possesses normal geometrical parameters (Table 1[link]). The C12—C13 bond was flagged (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) as being longer than expected for a Csp2—Csp bond, but similar equivalent C—C bond lengths have been seen in other cyano­ethenyl groupings [e.g. Ishii et al. (2000[Ishii, K., Shimada, Y., Sugiyama, S. & Noji, M. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3022-3024.]); bond length = 1.424 (6) Å]. The exo C1—C2 vinyl group in (I[link]) is disordered over two positions, with refined relative occupancies of 0.710 (19):0.210 (19) for the isotropically refined major (C1a—C2a) and minor (C1b—C2b) components, respectively. The C4–C9 phenyl ring and its attached non-H atoms (O1, O2 and Br1) is statistically flat [r.m.s. deviation from the best least-squares plane = 0.011 Å, maximum deviation = 0.018 (3) Å for O2]. A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I[link]) indicated that the backbone of the nitrile side chain may be stabilized by an intramolecular C—H⋯O interaction (Fig. 1[link] and Table 2[link]), thereby helping to establish an essentially planar arrangement of atoms O2, C10, C11 and C12 (Table 1[link]). Dimers of (I[link]) associate together by way of a pair of inversion-symmetry-generated C—H⋯N interactions (Table 2[link] and Fig. 2[link]), resulting in centrosymmetric R22(10) loops (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). There are no significant ππ interactions in the unit cell of (I); the unit-cell packing is shown in Fig. 3[link].

[Figure 1]
Figure 1
View of (I[link]) (50% displacement ellipsoids for the non-H atoms). Only the major disorder component for C1 and C2 is shown and H atoms are drawn as small spheres of arbitrary radius. The possible intramolecular C—H⋯O interaction is indicated by a dashed line.
[Figure 2]
Figure 2
A dimeric association of two mol­ecules of (I[link]) via two C—H⋯N interactions (dashed lines). The symmetry code is as in Table 2[link].  All H atoms except for H11 and H12 have been omitted for clarity.
[Figure 3]
Figure 3
Unit-cell packing in (I[link]), viewed down [100] (50% displacement ellipsoids). All H atoms except for H11 have been omitted for clarity.

Experimental

Croto­nitrile (2.00 g, 0.03 mol), N-bromo­succin­amide (6.3 g, 0.04 mol) and azoisobutyro­nitrile (0.49 g, 0.003 mol) were added to dry acetone (100 ml). The mixture was stirred at reflux under a nitro­gen atmos­phere for 4 h. After cooling, the solvent was removed at reduced pressure to give a quantity of dark-brown oil. Distillation under reduced pressure yielded bromo­croto­nitrile as a pale-brown oil (b.p. 345–347 K at 7 mm Hg) (3.5 g, 80%). 1H NMR: δH (CDCl3) 4.1 (2H, d, J = 7.0 Hz), 5.5 (1H, d, J = 12.5 Hz), 6.7 (1H, m).

3-Allyl­oxy-2-bromo­phenol (2.00 g, 0.009 mol) (Kirsop et al., 2004c[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004c). Acta Cryst. E60, o1147-o1148.]), bromo­croto­nitrile (1.58 g, 0.011 mol) and potassium carbon­ate (8.00 g, 0.058 mol) were added to dry acetone (100 ml). The mixture was stirred at reflux under a nitro­gen atmosphere for 3 h. After cooling, the mixture was filtered and the solvent removed at reduced pressure to give a pale-yellow oil (1.81 g, 68%). Thin-layer chromatography (4:1 hexane–ethyl acetate) showed 4-(3-allyl­oxy-2-bromo­phenoxy)­but-2-ene­nitrile, (I[link]), as a sharp spot at RF = 0.38. The crude product was purified by flash column chromatography to give (I[link]) as a white powder (1.42 g, 54%). A sample of this powder was recrystalized from hot hexane–ethyl acetate (20:1) to give white needles (m.p. 349–351 K). 1H NMR: δH (CDCl3) 4.58 (2H, m, CH2), 4.68 (2H, m, CH2), 5.27 (1H, d, J = 10.6 Hz, CH), 5.45 (1H, d, J = 17.1 Hz, CH), 5.97 (1H, m, CH), 6.03 (1H, m, CH), 6.45 (1H, d, J = 8.5 Hz, Ar-H), 6.59 (1H, d, J = 8.5 Hz, Ar-H), 6.81 (1H, dt, J = 16.0 and 3.5 Hz, CH), 7.16 (1H, t, J = 8.5 Hz, Ar-H). 13C NMR: δC 67.1, 69.8, 101.0, 102.4, 105.9, 107.2, 116.9, 117.8, 128.3, 132.4, 147.8, 155.2, 156.5. νmax (KBr)/cm−1 2226, 1588, 1471, 1258, 1120, 1052, 759.

Crystal data
  • C13H12BrNO2

  • Mr = 294.15

  • Monoclinic, P21/c

  • a = 4.3681 (3) Å

  • b = 19.1969 (12) Å

  • c = 15.0270 (9) Å

  • β = 97.570 (4)°

  • V = 1249.09 (14) Å3

  • Z = 4

  • Dx = 1.564 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2721 reflections

  • θ = 2.9–27.5°

  • μ = 3.28 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.40 × 0.03 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.354, Tmax = 0.937

  • 17155 measured reflections

  • 2871 independent reflections

  • 1930 reflections with I > 2σ(I)

  • Rint = 0.089

  • θmax = 27.6°

  • h = −5 → 5

  • k = −24 → 24

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.133

  • S = 1.02

  • 2871 reflections

  • 153 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0553P)2 + 1.5353P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

C9—Br1 1.888 (4)
C11—C12 1.318 (6)
C12—C13 1.437 (6)
C13—N1 1.148 (5)
C1a—C2a—C3—O1 111.3 (7)
O2—C10—C11—C12 −4.0 (6)
C10—C11—C12—C13 179.0 (4)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2 0.95 2.31 2.671 (5) 102
C11—H11⋯N1i 0.95 2.51 3.410 (6) 158
Symmetry code: (i) 2-x,-y,-z.

All the H atoms were placed in idealized locations and refined by riding on their carrier atoms (C—H = 0.95–0.99 Å). For all H atoms, the constraint Uiso(H) = 1.2Ueq(parent atom) was applied.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Program for data collection. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

4-(3-Allyloxy-2-bromophenoxy)but-2-enenitrile top
Crystal data top
C13H12BrNO2F(000) = 592
Mr = 294.15Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2721 reflections
a = 4.3681 (3) Åθ = 2.9–27.5°
b = 19.1969 (12) ŵ = 3.28 mm1
c = 15.0270 (9) ÅT = 120 K
β = 97.570 (4)°Needle, colourless
V = 1249.09 (14) Å30.40 × 0.03 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2871 independent reflections
Radiation source: fine-focus sealed tube1930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
φ and ω scansθmax = 27.6°, θmin = 3.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 55
Tmin = 0.354, Tmax = 0.937k = 2424
17155 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0553P)2 + 1.5353P]
where P = (Fo2 + 2Fc2)/3
2871 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.584 (2)0.5535 (5)0.1148 (5)0.053 (3)*0.710 (19)
H1A0.45380.56830.15700.064*0.710 (19)
H2A0.64420.58550.07210.064*0.710 (19)
C2A0.685 (2)0.4863 (5)0.1156 (5)0.045 (2)*0.710 (19)
H3A0.81580.47150.07340.055*0.710 (19)
C1B0.761 (7)0.5324 (13)0.1075 (13)0.067 (7)*0.290 (19)
H1B0.96390.51570.12570.081*0.290 (19)
H2B0.72980.57380.07290.081*0.290 (19)
C2B0.548 (6)0.5020 (10)0.1278 (12)0.049 (6)*0.290 (19)
H3B0.34600.51920.10920.059*0.290 (19)
C30.5902 (12)0.4356 (2)0.1833 (3)0.0513 (13)
H40.77350.41170.21520.062*
H50.48210.46020.22800.062*
C40.3122 (10)0.3282 (2)0.1780 (3)0.0383 (10)
C50.4243 (10)0.3126 (2)0.2675 (3)0.0414 (11)
H60.56500.34310.30170.050*
C60.3282 (10)0.2524 (2)0.3053 (3)0.0423 (11)
H70.40670.24190.36580.051*
C70.1232 (11)0.2070 (2)0.2589 (3)0.0406 (10)
H80.05980.16610.28690.049*
C80.0092 (10)0.2221 (2)0.1696 (3)0.0372 (10)
C90.1043 (10)0.2819 (2)0.1303 (2)0.0375 (10)
C100.2921 (10)0.1178 (2)0.1518 (3)0.0414 (10)
H90.38640.12640.20720.050*
H100.11210.08660.16670.050*
C110.5206 (10)0.0852 (2)0.0825 (3)0.0410 (10)
H110.59650.04020.09460.049*
C120.6251 (10)0.1146 (2)0.0052 (3)0.0433 (11)
H120.55420.15980.00770.052*
C130.8433 (11)0.0801 (2)0.0602 (3)0.0434 (11)
N11.0142 (10)0.0530 (2)0.1137 (3)0.0545 (11)
O10.3859 (8)0.38583 (15)0.13333 (19)0.0496 (8)
O20.1970 (7)0.18162 (14)0.11670 (18)0.0417 (7)
Br10.04780 (12)0.30109 (2)0.00932 (3)0.0501 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.075 (3)0.040 (3)0.036 (2)0.016 (2)0.004 (2)0.0093 (19)
C40.049 (3)0.032 (2)0.033 (2)0.0029 (19)0.0029 (19)0.0066 (17)
C50.049 (3)0.043 (3)0.031 (2)0.002 (2)0.0003 (19)0.0092 (18)
C60.055 (3)0.040 (3)0.029 (2)0.010 (2)0.003 (2)0.0010 (18)
C70.054 (3)0.035 (2)0.033 (2)0.008 (2)0.003 (2)0.0021 (18)
C80.046 (3)0.033 (2)0.032 (2)0.0000 (19)0.0025 (19)0.0042 (17)
C90.054 (3)0.040 (2)0.0168 (18)0.002 (2)0.0008 (18)0.0022 (16)
C100.051 (3)0.031 (2)0.043 (3)0.003 (2)0.006 (2)0.0024 (19)
C110.046 (3)0.032 (2)0.045 (3)0.0010 (19)0.006 (2)0.0039 (19)
C120.046 (3)0.036 (2)0.046 (3)0.005 (2)0.002 (2)0.002 (2)
C130.049 (3)0.040 (3)0.041 (2)0.005 (2)0.007 (2)0.011 (2)
N10.063 (3)0.049 (2)0.048 (2)0.011 (2)0.006 (2)0.0121 (19)
O10.076 (2)0.0384 (18)0.0312 (15)0.0182 (16)0.0038 (15)0.0020 (13)
O20.0562 (19)0.0360 (17)0.0310 (15)0.0068 (14)0.0014 (14)0.0021 (12)
Br10.0721 (4)0.0451 (3)0.0293 (3)0.0144 (2)0.0078 (2)0.00387 (19)
Geometric parameters (Å, º) top
C1A—C2A1.362 (17)C5—H60.9500
C1A—H1A0.9500C6—C71.372 (6)
C1A—H2A0.9500C6—H70.9500
C2A—C31.506 (9)C7—C81.399 (6)
C2A—H3A0.9500C7—H80.9500
C1B—C2B1.17 (4)C8—O21.364 (5)
C1B—H1B0.9500C8—C91.380 (6)
C1B—H2B0.9500C9—Br11.888 (4)
C2B—C31.521 (19)C10—O21.417 (5)
C2B—H3B0.9500C10—C111.483 (6)
C3—O11.448 (5)C10—H90.9900
C3—H40.9900C10—H100.9900
C3—H50.9900C11—C121.318 (6)
C4—O11.354 (5)C11—H110.9500
C4—C91.399 (6)C12—C131.437 (6)
C4—C51.403 (6)C12—H120.9500
C5—C61.377 (6)C13—N11.148 (5)
C2A—C1A—H1A120.0C7—C6—C5122.5 (4)
C2A—C1A—H2A120.0C7—C6—H7118.8
H1A—C1A—H2A120.0C5—C6—H7118.8
C1A—C2A—C3120.0 (9)C6—C7—C8118.8 (4)
C1A—C2A—H3A120.0C6—C7—H8120.6
C3—C2A—H3A120.0C8—C7—H8120.6
C2B—C1B—H1B120.0O2—C8—C9116.0 (3)
C2B—C1B—H2B120.0O2—C8—C7124.4 (4)
H1B—C1B—H2B120.0C9—C8—C7119.6 (4)
C1B—C2B—C3121 (3)C8—C9—C4121.4 (4)
C1B—C2B—H3B119.4C8—C9—Br1119.1 (3)
C3—C2B—H3B119.4C4—C9—Br1119.5 (3)
O1—C3—C2A106.4 (4)O2—C10—C11107.9 (3)
O1—C3—C2B104.4 (8)O2—C10—H9110.1
C2A—C3—C2B27.3 (8)C11—C10—H9110.1
O1—C3—H4110.4O2—C10—H10110.1
C2A—C3—H4110.4C11—C10—H10110.1
C2B—C3—H4133.2H9—C10—H10108.4
O1—C3—H5110.4C12—C11—C10124.1 (4)
C2A—C3—H5110.4C12—C11—H11117.9
C2B—C3—H586.5C10—C11—H11117.9
H4—C3—H5108.6C11—C12—C13121.8 (4)
O1—C4—C9116.5 (4)C11—C12—H12119.1
O1—C4—C5125.1 (4)C13—C12—H12119.1
C9—C4—C5118.4 (4)N1—C13—C12178.6 (5)
C6—C5—C4119.3 (4)C4—O1—C3116.9 (3)
C6—C5—H6120.4C8—O2—C10118.7 (3)
C4—C5—H6120.4
C1A—C2A—C3—O1111.3 (7)O1—C4—C9—C8179.0 (4)
C1A—C2A—C3—C2B21.8 (16)C5—C4—C9—C80.1 (7)
C1B—C2B—C3—O1129.0 (19)O1—C4—C9—Br11.5 (6)
C1B—C2B—C3—C2A30.9 (18)C5—C4—C9—Br1179.4 (3)
O1—C4—C5—C6179.3 (4)O2—C10—C11—C124.0 (6)
C9—C4—C5—C60.3 (7)C10—C11—C12—C13179.0 (4)
C4—C5—C6—C70.6 (7)C9—C4—O1—C3177.4 (4)
C5—C6—C7—C80.5 (7)C5—C4—O1—C31.7 (7)
C6—C7—C8—O2179.4 (4)C2A—C3—O1—C4169.1 (6)
C6—C7—C8—C90.1 (7)C2B—C3—O1—C4162.7 (11)
O2—C8—C9—C4179.1 (4)C9—C8—O2—C10177.0 (4)
C7—C8—C9—C40.3 (7)C7—C8—O2—C103.6 (6)
O2—C8—C9—Br11.3 (5)C11—C10—O2—C8178.5 (4)
C7—C8—C9—Br1179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.952.312.671 (5)102
C11—H11···N1i0.952.513.410 (6)158
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIshii, K., Shimada, Y., Sugiyama, S. & Noji, M. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3022–3024.  Web of Science CSD CrossRef Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004a). Acta Cryst. E60, o222–o224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004b). Acta Cryst. C60, o353–o355.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004c). Acta Cryst. E60, o1147–o1148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Program for data collection. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds