organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-amino-5-iso­propyl-1,3-thia­zole-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bDepartment of Pharmaceutical Sciences, University of Strathclyde, Glasgow G4 0NR, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 2 August 2004; accepted 5 August 2004; online 13 August 2004)

The title compound, C8H12N2O2S, forms a supramolecular network based on N—H⋯N hydrogen-bonded centrosymmetric dimers that are linked in turn by N—H⋯O contacts.

Comment

To improve the sequence selectivity of the DNA-binding drugs distamycin and netropsin (lexitropsins), a variety of heterocyclic compounds were used in replacing N-methyl pyrroles, the main components of the natural products (Khalaf et al., 2000[Khalaf, A. I., Pitt, A. R., Scobie, M., Suckling, C. J., Urwin, J., Waigh, R. D., Fishleigh, R. V., Young, S. C. & Wylie, W. A. (2000). Tetrahedron, 46, 5225-5239.]; Khalaf et al., 2002[Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2002). British Patent Application PCT GB02 05916.]). The title compound, (I[link]), was chosen among others to improve the binding of these compounds to the wall of the minor groove by forming hydro­phobic bonds as well as selecting guanine/cytosine over adenine/thi­amine base pairs. Thia­zoles containing the iso­propyl group were recently incorporated in the synthesis of minor groove binders and this process has led to a new class of potent antibacterial and antifungal compounds (Khalaf et al., 2004[Khalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. J. (2004). J. Med. Chem. 47, 2133-2156.]; Anthony et al., 2004[Anthony, N. G., Fox, K. R., Johnston, B. F., Khalaf, A. I., Mackay, S. P., McGroarty, I. S., Parkinson, J. A., Skellern, G. G., Suckling, C. J. & Waigh, R. D. (2004). Bioorg. Med. Chem. Lett. 14, 1353-1356.]).

[Scheme 1]

The molecular structure of (I[link]) (Fig. 1[link]) is unexceptional, with all ring bond lengths and angles (Table 1[link]) close to the mean values obtained from 22 related fragments in the Cambridge Structural Database (Version 5.25 with updates to April 2004; Allen, 2002[Allen, F. A. (2002). Acta Cryst. B58, 380-388.]). Steric repulsion between the adjacent iso­propyl and ester groups causes the main deviation from ideal geometry, widening the C2—C3—C6 and C3—C2—C4 angles to 130.7 (2) and 124.07 (18)°, respectively. However, these deviations are smaller than those found in an analogue with the positions of the iso­propyl and ester groups reversed [133.90 (14) and 127.20 (14)° in ethyl 2-amino-4-iso­propyl-1,3-thia­zole-5-carboxyl­ate, (II) (Kennedy et al., 2004[Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1188-o1190.])]. This alleviation of steric strain is connected to a rotation of the ester group so that in (I[link]) the smaller C=O group contacts the iso­propyl group, rather than the OR group as in (II). Detailed comparison of (I[link]) and (II) also shows that (I[link]) has a more exaggerated diene conformation of short and long bonds. This difference is attributed to the effect of removing the ester group from resonance with the NCN fragment. Despite these differences, (I) retains a similar supramolecular network to that observed in (II) and other 5-carboxyl­ate species (Lynch & McClenaghan, 2000[Lynch, D. E. & McClenaghan, I. (2000). Acta Cryst. C56, e586.]). This is based on forming hydrogen-bonded centrosymmetric dimers via N—H⋯N contacts (Table 2[link]), the network being completed by N—H⋯O contacts. In (I[link]), these contacts are longer and thus presumably weaker than in (II[link]).

[Figure 1]
Figure 1
Molecular structure of (I[link]), with 50% probability displacement ellipsoids.

Experimental

A solution prepared from Na (3.0 g, 0.130 mol) and dry methanol (50 ml) was added over a 45 min period to a solution of methyl di­chloro­acetate (20.0 g, 0.139 mol) and isobutyr­aldehyde (14 ml, 0.194 mol) in dry ether (50 ml). The resulting mixture was stirred vigorously at 273 K. After 1 h, diethyl ether (50 ml) and brine were added, and the layers were separated. The ether solution was dried and evaporated to give 16.2 g of material, which was dissolved in dry methanol (60 ml) containing thio­urea (8.5 g, 0.112 mol). The solution was boiled under reflux for 4 h, concentrated under reduced pressure and neutralized with 18 M aqueous ammonia. Extraction with di­chloro­methane gave the title compound as pale-yellow crystals after recrystallization from ethanol–water (16.1 g, 41% yield). M.p. 424–425 K [literature m.p. 423–424 K (Barton et al., 1982[Barton, A., Breukelman, S. P., Kaye, P. T., Meakins, G. D. & Morgan, D. J. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 159-164.])]. 1H NMR (CDCl3): δ 1.27 (6H, d, J = 6.8 Hz), 3.87 (3H, s), 4.05 (1H, hept, J = 6.8 Hz), 5.15 (2H, s). IR (KBr): 3432, 3275, 3136, 2961, 1694, 1627, 1555, 1446, 1338, 1223, 1060, 987 cm−1.

Crystal data
  • C8H12N2O2S

  • Mr = 200.26

  • Monoclinic, P21/n

  • a = 8.4219 (13) Å

  • b = 9.9620 (12) Å

  • c = 12.4307 (15) Å

  • β = 90.916 (11)°

  • V = 1042.8 (2) Å3

  • Z = 4

  • Dx = 1.276 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 13.7–20.1°

  • μ = 0.28 mm−1

  • T = 295 (2) K

  • Plate, colourless

  • 0.55 × 0.55 × 0.05 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • ω/2θ scans

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.806, Tmax = 0.986

  • 2552 measured reflections

  • 2395 independent reflections

  • 1423 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 27.5°

  • h = 0 → 10

  • k = 0 → 12

  • l = −16 → 16

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.01

  • 2395 reflections

  • 129 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.053P)2 + 0.0985P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C3 1.739 (2)
S1—C1 1.748 (2)
O1—C4 1.203 (2)
O2—C4 1.322 (3)
N1—C1 1.300 (3)
N1—C2 1.389 (2)
N2—C1 1.342 (3)
C2—C3 1.358 (3)
C2—C4 1.472 (3)
C3—S1—C1 89.68 (10)
C1—N1—C2 110.21 (17)
N1—C1—N2 124.6 (2)
N1—C1—S1 114.50 (15)
N2—C1—S1 120.93 (18)
C3—C2—N1 117.19 (18)
C3—C2—C4 124.07 (18)
N1—C2—C4 118.63 (17)
C2—C3—C6 130.7 (2)
C2—C3—S1 108.41 (15)
C6—C3—S1 120.60 (18)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.82 (3) 2.21 (3) 2.975 (3) 155 (2)
N2—H2⋯N1ii 0.83 (3) 2.20 (3) 3.020 (3) 171 (3)
Symmetry codes: (i) [x-{\script{1\over 2}},{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (ii) 1-x,1-y,-z.

The amine H atoms were located in a difference map and refined freely. All other H atoms were included in the riding-model approximation, with C—H distances of 0.96 (CH3) and 0.98 Å (CH), and with Uiso(H) = 1.5Ueq(C).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988[Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Mol­ecular Structure Corporation, 1992[Molecular Structure Corporation (1992). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A.,Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Methyl 2-amino-5-isopropyl-1,3-thiazole-4-carboxylate top
Crystal data top
C8H12N2O2SF(000) = 424
Mr = 200.26Dx = 1.276 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ynCell parameters from 25 reflections
a = 8.4219 (13) Åθ = 13.7–20.1°
b = 9.9620 (12) ŵ = 0.28 mm1
c = 12.4307 (15) ÅT = 295 K
β = 90.916 (11)°Plate, colourless
V = 1042.8 (2) Å30.55 × 0.55 × 0.05 mm
Z = 4
Data collection top
Rigaku AFC-7S
diffractometer
1423 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.806, Tmax = 0.986l = 1616
2552 measured reflections3 standard reflections every 150 reflections
2395 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.053P)2 + 0.0985P]
where P = (Fo2 + 2Fc2)/3
2395 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35650 (8)0.16130 (6)0.11493 (5)0.0623 (2)
O10.6386 (3)0.36598 (18)0.39165 (14)0.0830 (6)
O20.5943 (2)0.54159 (15)0.28610 (12)0.0640 (5)
N10.4959 (2)0.39136 (17)0.12017 (13)0.0480 (4)
N20.3785 (3)0.3405 (3)0.04668 (16)0.0706 (6)
H10.328 (3)0.285 (3)0.082 (2)0.061 (7)*
H20.409 (3)0.411 (3)0.074 (2)0.083 (9)*
C10.4155 (3)0.3124 (2)0.05626 (17)0.0507 (5)
C20.5124 (2)0.3334 (2)0.22139 (15)0.0458 (5)
C30.4476 (3)0.2099 (2)0.23525 (18)0.0539 (5)
C40.5890 (2)0.4118 (2)0.30810 (16)0.0492 (5)
C50.6541 (4)0.6271 (3)0.3716 (2)0.0780 (8)
H5A0.58520.62130.43220.117*
H5B0.65780.71830.34670.117*
H5C0.75900.59860.39260.117*
C60.4336 (3)0.1245 (3)0.3346 (2)0.0743 (8)
H60.52190.14760.38350.111*
C70.2811 (4)0.1554 (3)0.3910 (2)0.0929 (10)
H7A0.27620.24980.40640.139*
H7B0.27720.10560.45700.139*
H7C0.19270.13070.34550.139*
C80.4451 (5)0.0257 (3)0.3091 (4)0.1255 (15)
H8A0.35800.05130.26270.188*
H8B0.44110.07630.37470.188*
H8C0.54340.04360.27380.188*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0743 (4)0.0500 (3)0.0620 (4)0.0169 (3)0.0118 (3)0.0068 (3)
O10.1178 (16)0.0670 (11)0.0628 (10)0.0064 (10)0.0404 (10)0.0097 (9)
O20.0920 (12)0.0486 (9)0.0509 (9)0.0089 (8)0.0167 (8)0.0020 (7)
N10.0591 (10)0.0429 (9)0.0418 (8)0.0042 (8)0.0052 (7)0.0030 (7)
N20.1028 (18)0.0646 (13)0.0438 (10)0.0314 (13)0.0160 (11)0.0056 (10)
C10.0606 (13)0.0454 (11)0.0462 (11)0.0051 (9)0.0021 (9)0.0052 (9)
C20.0490 (11)0.0449 (10)0.0434 (10)0.0021 (9)0.0030 (9)0.0058 (9)
C30.0530 (12)0.0521 (11)0.0564 (12)0.0030 (10)0.0059 (10)0.0111 (10)
C40.0504 (12)0.0520 (12)0.0451 (11)0.0042 (10)0.0037 (9)0.0047 (9)
C50.103 (2)0.0658 (16)0.0646 (16)0.0156 (14)0.0106 (15)0.0136 (13)
C60.0773 (17)0.0737 (17)0.0712 (16)0.0209 (13)0.0172 (13)0.0336 (14)
C70.126 (3)0.089 (2)0.0648 (16)0.0303 (19)0.0139 (17)0.0062 (16)
C80.149 (3)0.076 (2)0.153 (4)0.019 (2)0.035 (3)0.064 (2)
Geometric parameters (Å, º) top
S1—C31.739 (2)C5—H5A0.9600
S1—C11.748 (2)C5—H5B0.9600
O1—C41.203 (2)C5—H5C0.9600
O2—C41.322 (3)C6—C71.505 (4)
O2—C51.446 (3)C6—C81.533 (5)
N1—C11.300 (3)C6—H60.9800
N1—C21.389 (2)C7—H7A0.9600
N2—C11.342 (3)C7—H7B0.9600
N2—H10.82 (3)C7—H7C0.9600
N2—H20.83 (3)C8—H8A0.9600
C2—C31.358 (3)C8—H8B0.9600
C2—C41.472 (3)C8—H8C0.9600
C3—C61.506 (3)
C3—S1—C189.68 (10)O2—C5—H5C109.5
C4—O2—C5115.89 (18)H5A—C5—H5C109.5
C1—N1—C2110.21 (17)H5B—C5—H5C109.5
C1—N2—H1118.6 (18)C7—C6—C3110.1 (2)
C1—N2—H2120 (2)C7—C6—C8110.7 (2)
H1—N2—H2121 (3)C3—C6—C8112.0 (3)
N1—C1—N2124.6 (2)C7—C6—H6107.9
N1—C1—S1114.50 (15)C3—C6—H6107.9
N2—C1—S1120.93 (18)C8—C6—H6107.9
C3—C2—N1117.19 (18)C6—C7—H7A109.5
C3—C2—C4124.07 (18)C6—C7—H7B109.5
N1—C2—C4118.63 (17)H7A—C7—H7B109.5
C2—C3—C6130.7 (2)C6—C7—H7C109.5
C2—C3—S1108.41 (15)H7A—C7—H7C109.5
C6—C3—S1120.60 (18)H7B—C7—H7C109.5
O1—C4—O2122.5 (2)C6—C8—H8A109.5
O1—C4—C2125.0 (2)C6—C8—H8B109.5
O2—C4—C2112.52 (17)H8A—C8—H8B109.5
O2—C5—H5A109.5C6—C8—H8C109.5
O2—C5—H5B109.5H8A—C8—H8C109.5
H5A—C5—H5B109.5H8B—C8—H8C109.5
C2—N1—C1—N2179.4 (2)C1—S1—C3—C6175.3 (2)
C2—N1—C1—S10.7 (2)C5—O2—C4—O13.9 (3)
C3—S1—C1—N10.20 (18)C5—O2—C4—C2174.3 (2)
C3—S1—C1—N2179.9 (2)C3—C2—C4—O119.6 (4)
C1—N1—C2—C31.0 (3)N1—C2—C4—O1164.5 (2)
C1—N1—C2—C4175.22 (18)C3—C2—C4—O2158.6 (2)
N1—C2—C3—C6175.0 (2)N1—C2—C4—O217.4 (3)
C4—C2—C3—C61.0 (4)C2—C3—C6—C789.7 (3)
N1—C2—C3—S10.9 (3)S1—C3—C6—C783.9 (3)
C4—C2—C3—S1175.16 (16)C2—C3—C6—C8146.6 (3)
C1—S1—C3—C20.36 (18)S1—C3—C6—C839.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.82 (3)2.21 (3)2.975 (3)155 (2)
N2—H2···N1ii0.83 (3)2.20 (3)3.020 (3)171 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z.
 

References

First citationAllen, F. A. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A.,Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnthony, N. G., Fox, K. R., Johnston, B. F., Khalaf, A. I., Mackay, S. P., McGroarty, I. S., Parkinson, J. A., Skellern, G. G., Suckling, C. J. & Waigh, R. D. (2004). Bioorg. Med. Chem. Lett. 14, 1353–1356.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarton, A., Breukelman, S. P., Kaye, P. T., Meakins, G. D. & Morgan, D. J. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 159–164.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1188–o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaf, A. I., Pitt, A. R., Scobie, M., Suckling, C. J., Urwin, J., Waigh, R. D., Fishleigh, R. V., Young, S. C. & Wylie, W. A. (2000). Tetrahedron, 46, 5225–5239.  Web of Science CrossRef Google Scholar
First citationKhalaf, A. I., Suckling, C. J. & Waigh, R. D. (2002). British Patent Application PCT GB02 05916.  Google Scholar
First citationKhalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. J. (2004). J. Med. Chem. 47, 2133–2156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2000). Acta Cryst. C56, e586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationMolecular Structure Corporation (1992). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds