organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5-Di­hy­droxy­barbituric acid monohydrate (alloxan dihydrate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
*Correspondence e-mail: d.a.tocher@ucl.ac.uk

(Received 25 August 2004; accepted 1 September 2004; online 11 September 2004)

The title compound, C4H4N2O5·H2O, was crystallized from both tetra­hydro­furan and 1,4-dioxane solutions of alloxan as part of an experimental polymorph screen on alloxan.

Comment

It has previously been reported that alloxan has two hydrates, viz. 5,5-di­hydroxy­barbituric acid (Singh, 1965[Singh, C. (1965). Acta Cryst. 19, 759-767.]; Harrowfield et al., 1989[Harrowfield, J. M., Skelton, B. W., Soudi, A. A. & White, A. H. (1989). Aust. J. Chem. 42, 1795-1798.]) and 5,5-di­hydroxy­barbituric acid trihydrate (Mootz & Jeffrey, 1965[Mootz, D. & Jeffrey, G. A. (1965). Acta Cryst. 19, 717-725.]). The crystal structure of a new hydrate of alloxan, namely 5,5-di­hydroxy­barbituric acid monohydrate, (I[link]), has one organic mol­ecule and one water mol­ecule in the asymmetric unit (Fig. 1[link]). The heterocyclic ring has an envelope conformation with the flap at C5, with the angle between the mean C4/N3/C2/N1/C6 and C4/C5/C6 planes being 20.1 (2)°. The C—N bond lengths are in the range 1.360 (2)–1.378 (2) Å, with the bond lengths associated with the sp3-hybridized carbon being 1.536 (2) and 1.527 (2) Å for C4—C5 and C5—C6, respectively.[link]

[Scheme 1]

The crystal packing (Fig. 2[link]) consists of a series of ribbon motifs arranged in an overall sheet structure. Water mol­ecules lie in the sheets and between the ribbons. Each water mol­ecule acts as a hydrogen-bond donor to a carbonyl group in the same sheet and to a hydroxyl group on a mol­ecule in the adjacent sheet. Each water mol­ecule also acts as a hydrogen-bond acceptor for a hydroxyl group on a mol­ecule in the same sheet. The axial hydroxyl group on each mol­ecule acts as a hydrogen-bond donor to the unique carbonyl of a mol­ecule in an adjacent sheet. The DA distances within the sheets are in the range 2.6380 (19)–2.9516 (19) Å, whilst the distances between the sheets are 2.6958 (17) and 2.9973 (19) Å. All potential hydrogen-bond acceptors and donors participate in the hydrogen bonding.

[Figure 1]
Figure 1
The asymmetric unit of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of (I[link]), showing the N—H⋯O and O—H⋯O hydrogen-bonding interactions as dashed lines; the view is approximately on to the (01[\overline 1]) plane.

Experimental

5,5-Di­hydroxy­barbituric acid monohydrate was crystallized over a number of weeks by slow evaporation of tetra­hydro­furan and 1,4-dioxane solutions of alloxan (0.002–0.03 mol dm−3) at room temperature, forming colourless plate crystals.

Crystal data
  • C4H4N2O5·H2O

  • Mr = 178.11

  • Triclinic, [P\overline 1]

  • a = 6.6730 (11) Å

  • b = 7.5834 (13) Å

  • c = 7.6157 (13) Å

  • α = 105.401 (3)°

  • β = 93.134 (3)°

  • γ = 115.089 (2)°

  • V = 330.26 (10) Å3

  • Z = 2

  • Dx = 1.791 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 712 reflections

  • θ = 2.8–25.0°

  • μ = 0.17 mm−1

  • T = 150 (2) K

  • Plate, colourless

  • 0.23 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Narrow-frame ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.988

  • 2972 measured reflections

  • 1536 independent reflections

  • 1274 reflections with I > 2σ(I)

  • Rint = 0.021

  • θmax = 28.3°

  • h = −8 → 8

  • k = −9 → 9

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.102

  • S = 1.07

  • 1536 reflections

  • 133 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0119P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.89 (2) 1.95 (2) 2.8366 (18) 170.7 (19)
N3—H3⋯O4ii 0.81 (2) 2.11 (2) 2.8736 (18) 157 (2)
O7—H7⋯O2iii 0.87 (2) 1.83 (3) 2.6958 (17) 173 (2)
O8—H8⋯O1Wiii 0.80 (2) 1.87 (2) 2.6380 (19) 161 (2)
O1W—H1W⋯O6iv 0.92 (3) 2.04 (3) 2.9516 (19) 173 (2)
O1W—H2W⋯O7ii 0.82 (3) 2.28 (3) 2.9973 (19) 147 (3)
Symmetry codes: (i) 1-x,-y,2-z; (ii) 1-x,1-y,1-z; (iii) 1+x,y,z; (iv) 1-x,-y,1-z.

H atoms were refined freely with an isotropic model.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]; Bruno et al., 2002[Bruno, Z. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97.

5,5-dihydroxybarbituric acid monohydrate top
Crystal data top
C4H4N2O5·H2OZ = 2
Mr = 178.11F(000) = 184
Triclinic, P1Dx = 1.791 Mg m3
a = 6.6730 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5834 (13) ÅCell parameters from 712 reflections
c = 7.6157 (13) Åθ = 2.8–25.0°
α = 105.401 (3)°µ = 0.17 mm1
β = 93.134 (3)°T = 150 K
γ = 115.089 (2)°Plate, colourless
V = 330.26 (10) Å30.23 × 0.11 × 0.07 mm
Data collection top
Bruker SMART APEX
diffractometer
1536 independent reflections
Radiation source: fine-focus sealed tube1274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω rotation scans with narrow framesθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.962, Tmax = 0.988k = 99
2972 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0119P]
where P = (Fo2 + 2Fc2)/3
1536 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2526 (2)0.32902 (18)0.90727 (17)0.0200 (3)
O40.6356 (2)0.34785 (19)0.43384 (16)0.0214 (3)
O60.7119 (2)0.02976 (19)0.86645 (17)0.0207 (3)
O70.9445 (2)0.42247 (18)0.76705 (17)0.0194 (3)
O80.7906 (2)0.09757 (19)0.54162 (17)0.0204 (3)
O1W0.0411 (3)0.1981 (2)0.2940 (2)0.0339 (4)
N10.4853 (2)0.1829 (2)0.8839 (2)0.0160 (3)
N30.4626 (2)0.3615 (2)0.6818 (2)0.0171 (3)
C20.3919 (3)0.2946 (2)0.8279 (2)0.0156 (4)
C40.6073 (3)0.3162 (2)0.5801 (2)0.0160 (4)
C50.7514 (3)0.2387 (2)0.6700 (2)0.0155 (4)
C60.6456 (3)0.1366 (2)0.8121 (2)0.0154 (3)
H10.421 (4)0.128 (3)0.969 (3)0.033 (6)*
H30.398 (4)0.416 (3)0.641 (3)0.035 (6)*
H71.035 (4)0.383 (4)0.813 (3)0.046 (7)*
H80.859 (4)0.149 (3)0.472 (3)0.034 (6)*
H1W0.107 (5)0.117 (4)0.244 (4)0.059 (8)*
H2W0.030 (5)0.268 (4)0.232 (4)0.072 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0185 (6)0.0251 (7)0.0231 (7)0.0143 (5)0.0074 (5)0.0101 (5)
O40.0264 (7)0.0273 (7)0.0190 (7)0.0157 (6)0.0081 (5)0.0136 (5)
O60.0236 (7)0.0270 (7)0.0256 (7)0.0179 (6)0.0120 (5)0.0175 (5)
O70.0158 (6)0.0205 (7)0.0262 (7)0.0093 (5)0.0038 (5)0.0121 (5)
O80.0292 (7)0.0213 (7)0.0204 (7)0.0161 (6)0.0143 (5)0.0116 (5)
O1W0.0465 (9)0.0343 (8)0.0412 (9)0.0277 (8)0.0276 (8)0.0235 (7)
N10.0171 (7)0.0204 (7)0.0173 (7)0.0110 (6)0.0068 (6)0.0116 (6)
N30.0198 (7)0.0201 (7)0.0191 (7)0.0133 (6)0.0049 (6)0.0106 (6)
C20.0155 (8)0.0151 (8)0.0173 (8)0.0079 (7)0.0019 (6)0.0056 (7)
C40.0171 (8)0.0128 (8)0.0192 (8)0.0068 (7)0.0033 (6)0.0068 (6)
C50.0162 (8)0.0170 (8)0.0172 (8)0.0090 (7)0.0054 (6)0.0084 (7)
C60.0144 (8)0.0155 (8)0.0186 (9)0.0075 (7)0.0038 (6)0.0077 (7)
Geometric parameters (Å, º) top
O2—C21.2171 (19)N1—C61.360 (2)
O4—C41.209 (2)N1—C21.378 (2)
O6—C61.2188 (19)N1—H10.89 (2)
O7—C51.405 (2)N3—C41.368 (2)
O7—H70.87 (2)N3—C21.368 (2)
O8—C51.3706 (19)N3—H30.81 (2)
O8—H80.80 (2)C4—C51.536 (2)
O1W—H1W0.92 (3)C5—C61.527 (2)
O1W—H2W0.82 (3)
C5—O7—H7104.6 (16)O4—C4—N3123.23 (15)
C5—O8—H8109.7 (16)O4—C4—C5120.38 (15)
H1W—O1W—H2W115 (3)N3—C4—C5116.18 (14)
C6—N1—C2126.62 (15)O8—C5—O7115.10 (14)
C6—N1—H1119.2 (13)O8—C5—C6106.53 (13)
C2—N1—H1113.9 (13)O7—C5—C6107.51 (13)
C4—N3—C2125.45 (14)O8—C5—C4112.19 (14)
C4—N3—H3116.6 (15)O7—C5—C4102.10 (12)
C2—N3—H3117.1 (16)C6—C5—C4113.50 (13)
O2—C2—N3123.04 (15)O6—C6—N1121.83 (15)
O2—C2—N1119.95 (15)O6—C6—C5121.52 (14)
N3—C2—N1117.00 (15)N1—C6—C5116.49 (14)
C4—N3—C2—O2175.55 (16)O4—C4—C5—C6159.76 (15)
C4—N3—C2—N14.2 (2)N3—C4—C5—C625.3 (2)
C6—N1—C2—O2178.33 (16)C2—N1—C6—O6177.16 (16)
C6—N1—C2—N31.9 (2)C2—N1—C6—C57.3 (2)
C2—N3—C4—O4166.85 (16)O8—C5—C6—O640.3 (2)
C2—N3—C4—C518.4 (2)O7—C5—C6—O683.59 (19)
O4—C4—C5—O838.9 (2)C4—C5—C6—O6164.28 (15)
N3—C4—C5—O8146.15 (14)O8—C5—C6—N1144.19 (14)
O4—C4—C5—O784.86 (18)O7—C5—C6—N191.92 (17)
N3—C4—C5—O790.07 (16)C4—C5—C6—N120.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.89 (2)1.95 (2)2.8366 (18)170.7 (19)
N3—H3···O4ii0.81 (2)2.11 (2)2.8736 (18)157 (2)
O7—H7···O2iii0.87 (2)1.83 (3)2.6958 (17)173 (2)
O8—H8···O1Wiii0.80 (2)1.87 (2)2.6380 (19)161 (2)
O1W—H1W···O6iv0.92 (3)2.04 (3)2.9516 (19)173 (2)
O1W—H2W···O7ii0.82 (3)2.28 (3)2.9973 (19)147 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

This research was supported by the EPSRC in funding a studentship for TCL. The authors acknowledge the Research Councils UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State'. For more information on this work, please visit https://www.chem.ucl.ac.uk/basictechorg/.

References

First citationBruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, Z. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrowfield, J. M., Skelton, B. W., Soudi, A. A. & White, A. H. (1989). Aust. J. Chem. 42, 1795–1798.  CSD CrossRef CAS Google Scholar
First citationMootz, D. & Jeffrey, G. A. (1965). Acta Cryst. 19, 717–725.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSingh, C. (1965). Acta Cryst. 19, 759–767.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds