metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Dibenzo-18-crown-6)(2-phenyl­amido­pyridine)­rubidium(I)

CROSSMARK_Color_square_no_text.svg

aSchool of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 14 September 2004; accepted 20 September 2004; online 30 September 2004)

The title complex, [Rb(C11H9N2)(C20H24O6)], has rubidium in an irregular eightfold coordination, with a hexadentate crown ether ligand and a chelating bidentate amido­pyridine ligand, each occupying one hemisphere of the coordination. The chelate RbNCN ring is essentially planar, but the two rings of the amido­pyridine ligand are not coplanar, because of steric interaction of H atoms on the rings. The Rb—N(amido) bond is shorter than the Rb—N(pyridine) bond.

Comment

We have recently reported the synthesis and structural characterization of a range of complexes of alkali metals (Li—Cs) with the 2-phenyl­amido­pyridine ligand (L) and the crown ethers 12-crown-4, 15-crown-5 and 18-crown-6 (Liddle & Clegg, 2003[Liddle, S. T. & Clegg, W. (2003). Polyhedron, 22, 3507-3513.]; Liddle et al., 2004[Liddle, S. T., Clegg, W. & Morrison, C. A. (2004). Dalton Trans. pp. 2514-2525.]). This included the complex (18-crown-6)Rb(L). We have also prepared the related complex with dibenzo-18-crown-6, and report its structure here.[link]

[Scheme 1]

Like the analogous complex (18-crown-6)Rb(L), the title complex (dibenzo-18-crown-6)Rb(L), (I[link]), consists of discrete neutral mol­ecules with no special intermolecular interactions. The crown ligand is hexadentate and occupies one coordination hemisphere, with the bidentate amide ligand occupying the other, giving irregular eightfold coordination for the rubidium ion. The complex may be described as a contact ion-pair, in contrast to several of the crown-ligated complexes of alkali metals with the amide L, which exist in the solid state as separated ion pairs (Liddle et al., 2004[Liddle, S. T., Clegg, W. & Morrison, C. A. (2004). Dalton Trans. pp. 2514-2525.]).

The molecular structure of (I[link]) (Fig. 1[link] and Table 1[link]) is very similar to that of the (18-crown-6) complex, which has already been described and compared with related complexes (Liddle et al., 2004[Liddle, S. T., Clegg, W. & Morrison, C. A. (2004). Dalton Trans. pp. 2514-2525.]). The main differences are probably due predominantly to the greater rigidity of dibenzo-18-crown-6 compared with 18-crown-6. The range of Rb—O bond lengths is somewhat smaller, and the two Rb—N bonds are both shorter in (I[link]), by about 0.05–0.08 Å, with the shorter bond to the amide N atom in both complexes. The Rb+ ion lies 1.0945 (6) Å out of the mean plane of the six O atoms of the crown (r.m.s. deviation 0.111 Å), displaced towards the amide ligand, and the two benzene rings of the crown are folded out of the oxy­gen mean plane towards the amide ligand by 22.93 (7) and 25.94 (7)°, presumably as a result of intermolecular packing interactions in the absence of an obvious electronic factor. As expected, the crown ether ring displays a sequence of anti (or trans) conformations about C—C—O—C and gauche conformations about O—C—C—O linkages, except for the near-zero torsion angles for O—C—C—O at the constrained benzo fusions (Table 1[link]).

Chelation by the amide ligand forces a syn arrangement for the two N atoms. The two rings are not coplanar, however, because of steric interaction of the H atoms bonded to C4 and C11; the dihedral angle between the rings is 58.10 (5)°. The four-membered chelate ring (RbNCN) is essentially planar, the dihedral angle between the RbN2 and CN2 planes being only 0.3 (3)°.

[Figure 1]
Figure 1
The molecular structure of (I[link]), showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.

Experimental

n-Butyl­lithium (0.4 ml of a 2.5 M solution in hexanes, 1.0 mmol) was added dropwise to a solution of 2-phenyl­amino­pyridine (0.17 g, 1.0 mmol) and dibenzo-18-crown-6 (0.36 g, 1.0 mmol) in tetra­hydro­furan (THF, 40 ml), followed by rubidium 2-ethyl­hexoxide (0.22 g, 1.0 mmol) in THF (10 ml), to give a pale yellow precipitate. Volatile components were removed in vacuo and the remaining solid was washed with petroleum ether (3 × 5 ml). Recrystallization from hot toluene containing a little hexa­methyl­phospho­ramide (HMPA) gave yellow crystals of (I[link]) (yield 0.31 g, 51%). Chemical analysis results were satisfactory, and the 1H and 13C{1H} NMR signals could be assigned on the basis of the crystal structure (Liddle, 2000[Liddle, S. T. (2000). PhD thesis, University of Newcastle upon Tyne, England.]).

Crystal data
  • [Rb(C11H9N2)(C20H24O6)]

  • Mr = 615.06

  • Monoclinic, P21/n

  • a = 8.1464 (5) Å

  • b = 23.5768 (14) Å

  • c = 15.2385 (9) Å

  • β = 96.626 (2)°

  • V = 2907.2 (3) Å3

  • Z = 4

  • Dx = 1.405 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 14292 reflections

  • θ = 2.7–28.3°

  • μ = 1.75 mm−1

  • T = 160 (2) K

  • Plate, yellow

  • 0.88 × 0.62 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Thin-slice ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.308, Tmax = 0.845

  • 20580 measured reflections

  • 5112 independent reflections

  • 3890 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 25.0°

  • h = −9 → 9

  • k = −28 → 28

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.062

  • S = 0.92

  • 5112 reflections

  • 361 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0307P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected geometric parameters (Å, °)

Rb—N1 2.9441 (18)
Rb—N2 2.9025 (17)
Rb—O1 2.9640 (14)
Rb—O2 2.9700 (14)
Rb—O3 2.9536 (15)
Rb—O4 2.9508 (14)
Rb—O5 2.9593 (14)
Rb—O6 2.8829 (15)
N1—C1 1.331 (3)
N1—C5 1.378 (3)
N2—C5 1.332 (3)
N2—C6 1.385 (3)
N1—Rb—N2 46.13 (5)
O1—Rb—O2 57.05 (4)
O1—Rb—O6 57.59 (4)
O2—Rb—O3 51.74 (4)
O3—Rb—O4 58.15 (4)
O4—Rb—O5 56.03 (4)
O5—Rb—O6 51.94 (4)
Rb—N1—C1 143.59 (15)
Rb—N1—C5 97.67 (13)
C1—N1—C5 118.6 (2)
Rb—N2—C5 100.80 (13)
Rb—N2—C6 136.58 (14)
C5—N2—C6 121.37 (18)
N1—C5—N2 115.39 (19)
C6—N2—C5—N1 169.51 (18)
C6—N2—C5—C4 −14.6 (3)
C5—N2—C6—C7 136.0 (2)
C5—N2—C6—C11 −50.3 (3)
C31—O1—C12—C13 −174.83 (17)
C14—O2—C13—C12 −176.31 (17)
O1—C12—C13—O2 −64.4 (2)
C13—O2—C14—C19 178.36 (17)
C20—O3—C19—C14 169.43 (19)
O2—C14—C19—O3 −1.4 (3)
C19—O3—C20—C21 164.94 (19)
C22—O4—C21—C20 −166.07 (18)
O3—C20—C21—O4 68.4 (2)
C21—O4—C22—C23 −168.59 (17)
C24—O5—C23—C22 176.63 (18)
O4—C22—C23—O5 −61.3 (2)
C23—O5—C24—C29 173.54 (18)
C30—O6—C29—C24 −176.59 (19)
O5—C24—C29—O6 −0.9 (3)
C29—O6—C30—C31 167.46 (19)
C12—O1—C31—C30 −173.43 (18)
O6—C30—C31—O1 65.1 (2)

H atoms were positioned geometrically, with C—H = 0.95 (aromatic) or 0.99 Å (aliphatic), and refined with a riding model, with Uiso(H) = 1.2Ueq(C).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: local programs; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: local programs; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

(dibenzo-18-crown-6)[phenyl(2-pyridyl)amido]rubidium(I) top
Crystal data top
[Rb(C11H9N2)(C20H24O6)]F(000) = 1272
Mr = 615.06Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.1464 (5) ÅCell parameters from 14292 reflections
b = 23.5768 (14) Åθ = 2.7–28.3°
c = 15.2385 (9) ŵ = 1.75 mm1
β = 96.626 (2)°T = 160 K
V = 2907.2 (3) Å3Plate, yellow
Z = 40.88 × 0.62 × 0.10 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
5112 independent reflections
Radiation source: sealed tube3890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.2°
thin–slice ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 2828
Tmin = 0.308, Tmax = 0.845l = 1818
20580 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
5112 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.62 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.52699 (2)0.235217 (9)0.613068 (13)0.02988 (7)
N10.6494 (2)0.30274 (8)0.47167 (12)0.0372 (4)
N20.6620 (2)0.20672 (8)0.45054 (11)0.0375 (4)
C10.6824 (3)0.35533 (10)0.44727 (15)0.0411 (6)
H1A0.65200.38540.48370.049*
C20.7572 (3)0.37007 (11)0.37349 (16)0.0440 (6)
H2A0.77820.40850.35960.053*
C30.7997 (2)0.32559 (11)0.32086 (15)0.0428 (6)
H3A0.85250.33340.26980.051*
C40.7668 (2)0.27080 (10)0.34160 (14)0.0369 (5)
H4A0.79460.24080.30430.044*
C50.6901 (2)0.25826 (10)0.41967 (14)0.0331 (5)
C60.6719 (2)0.15876 (9)0.39893 (14)0.0341 (5)
C70.7533 (3)0.11077 (9)0.43663 (15)0.0368 (5)
H7A0.80550.11270.49560.044*
C80.7595 (3)0.06048 (10)0.39012 (17)0.0467 (6)
H8A0.81940.02920.41680.056*
C90.6800 (3)0.05528 (11)0.30566 (17)0.0487 (6)
H9A0.68330.02060.27420.058*
C100.5955 (3)0.10156 (11)0.26756 (16)0.0470 (6)
H10A0.53870.09840.20970.056*
C110.5926 (3)0.15212 (10)0.31246 (14)0.0412 (6)
H11A0.53540.18350.28430.049*
O10.71259 (17)0.27684 (6)0.77934 (9)0.0371 (4)
O20.69327 (16)0.15823 (6)0.74983 (9)0.0330 (3)
O30.46764 (17)0.11303 (6)0.63832 (9)0.0372 (4)
O40.19887 (16)0.18357 (6)0.56543 (10)0.0392 (4)
O50.21222 (17)0.29886 (7)0.60252 (10)0.0405 (4)
O60.46830 (17)0.34525 (6)0.68588 (10)0.0430 (4)
C120.7421 (3)0.23615 (10)0.84822 (14)0.0389 (6)
H12A0.63690.22710.87180.047*
H12B0.81910.25220.89690.047*
C130.8142 (2)0.18332 (9)0.81480 (13)0.0352 (5)
H13A0.91600.19240.78790.042*
H13B0.84310.15650.86410.042*
C140.7337 (2)0.10703 (9)0.71488 (13)0.0301 (5)
C150.8822 (3)0.07934 (9)0.73676 (15)0.0375 (5)
H15A0.96360.09520.77940.045*
C160.9120 (3)0.02810 (10)0.69613 (16)0.0440 (6)
H16A1.01460.00930.71050.053*
C170.7946 (3)0.00479 (10)0.63580 (16)0.0462 (6)
H17A0.81620.03010.60820.055*
C180.6441 (3)0.03162 (9)0.61451 (15)0.0413 (6)
H18A0.56240.01480.57300.050*
C190.6123 (3)0.08280 (9)0.65361 (13)0.0313 (5)
C200.3492 (3)0.09615 (10)0.56578 (16)0.0445 (6)
H20A0.33600.05440.56520.053*
H20B0.38700.10800.50910.053*
C210.1891 (3)0.12404 (11)0.57746 (18)0.0499 (7)
H21A0.10090.10830.53420.060*
H21B0.15990.11600.63750.060*
C220.0628 (3)0.21261 (11)0.59646 (15)0.0433 (6)
H22A0.07320.21140.66180.052*
H22B0.04210.19380.57350.052*
C230.0613 (3)0.27241 (10)0.56595 (15)0.0434 (6)
H23A0.05170.27380.50060.052*
H23B0.03440.29270.58560.052*
C240.2397 (3)0.35388 (10)0.57851 (15)0.0413 (6)
C250.1401 (3)0.38451 (12)0.51689 (16)0.0546 (7)
H25A0.04360.36770.48680.066*
C260.1803 (4)0.43995 (13)0.4987 (2)0.0704 (9)
H26A0.11140.46100.45590.085*
C270.3186 (4)0.46476 (12)0.5417 (2)0.0709 (9)
H27A0.34500.50290.52870.085*
C280.4210 (3)0.43433 (11)0.60471 (18)0.0565 (7)
H28A0.51750.45150.63420.068*
C290.3816 (3)0.37929 (10)0.62396 (16)0.0420 (6)
C300.6087 (3)0.36889 (10)0.73831 (18)0.0548 (7)
H30A0.58040.40640.76160.066*
H30B0.70100.37390.70210.066*
C310.6576 (3)0.32908 (10)0.81257 (17)0.0495 (7)
H31A0.74730.34620.85350.059*
H31B0.56210.32210.84580.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.03005 (11)0.03301 (12)0.02705 (11)0.00264 (9)0.00528 (8)0.00251 (10)
N10.0386 (10)0.0382 (12)0.0357 (10)0.0045 (9)0.0077 (8)0.0035 (9)
N20.0458 (11)0.0376 (12)0.0307 (10)0.0096 (9)0.0117 (8)0.0058 (9)
C10.0376 (13)0.0418 (15)0.0437 (14)0.0031 (11)0.0034 (11)0.0014 (12)
C20.0351 (13)0.0475 (16)0.0488 (15)0.0038 (11)0.0017 (11)0.0110 (12)
C30.0281 (12)0.0649 (18)0.0364 (13)0.0013 (11)0.0078 (10)0.0097 (13)
C40.0272 (11)0.0512 (16)0.0334 (12)0.0087 (11)0.0081 (9)0.0051 (11)
C50.0235 (10)0.0456 (14)0.0296 (11)0.0099 (10)0.0006 (9)0.0034 (11)
C60.0284 (11)0.0413 (14)0.0350 (13)0.0037 (10)0.0140 (10)0.0044 (11)
C70.0313 (12)0.0405 (14)0.0385 (13)0.0008 (10)0.0036 (10)0.0045 (11)
C80.0403 (14)0.0379 (15)0.0625 (17)0.0011 (11)0.0085 (12)0.0017 (13)
C90.0471 (15)0.0431 (16)0.0584 (17)0.0071 (12)0.0171 (13)0.0125 (13)
C100.0405 (14)0.0644 (18)0.0379 (14)0.0029 (13)0.0121 (11)0.0050 (13)
C110.0391 (13)0.0502 (16)0.0353 (13)0.0093 (11)0.0086 (10)0.0035 (12)
O10.0356 (8)0.0378 (9)0.0371 (9)0.0011 (7)0.0009 (7)0.0139 (7)
O20.0270 (7)0.0362 (9)0.0347 (8)0.0011 (6)0.0017 (6)0.0076 (7)
O30.0323 (8)0.0400 (9)0.0373 (9)0.0002 (7)0.0045 (7)0.0074 (7)
O40.0294 (8)0.0442 (10)0.0438 (9)0.0014 (7)0.0037 (7)0.0069 (7)
O50.0331 (8)0.0454 (10)0.0412 (9)0.0030 (7)0.0030 (7)0.0030 (8)
O60.0366 (9)0.0385 (10)0.0528 (10)0.0010 (7)0.0004 (8)0.0095 (8)
C120.0325 (12)0.0541 (15)0.0294 (12)0.0017 (11)0.0001 (10)0.0127 (12)
C130.0276 (11)0.0474 (15)0.0295 (12)0.0051 (10)0.0013 (9)0.0032 (10)
C140.0314 (12)0.0286 (12)0.0311 (12)0.0038 (9)0.0070 (9)0.0030 (10)
C150.0337 (12)0.0369 (14)0.0413 (13)0.0021 (10)0.0019 (10)0.0020 (11)
C160.0419 (14)0.0358 (14)0.0547 (16)0.0075 (11)0.0076 (12)0.0073 (12)
C170.0610 (16)0.0292 (13)0.0484 (15)0.0066 (12)0.0069 (13)0.0012 (11)
C180.0511 (15)0.0333 (14)0.0382 (13)0.0053 (11)0.0012 (11)0.0022 (11)
C190.0326 (12)0.0315 (13)0.0303 (12)0.0021 (10)0.0054 (10)0.0039 (10)
C200.0421 (14)0.0375 (14)0.0501 (15)0.0057 (11)0.0100 (12)0.0098 (12)
C210.0337 (13)0.0485 (17)0.0647 (18)0.0145 (11)0.0069 (12)0.0076 (13)
C220.0279 (12)0.0597 (17)0.0416 (14)0.0052 (11)0.0007 (10)0.0077 (12)
C230.0285 (12)0.0656 (19)0.0347 (13)0.0058 (11)0.0015 (10)0.0107 (12)
C240.0415 (13)0.0430 (15)0.0413 (14)0.0141 (12)0.0128 (11)0.0039 (12)
C250.0584 (17)0.0576 (18)0.0479 (16)0.0201 (14)0.0063 (13)0.0017 (14)
C260.080 (2)0.067 (2)0.065 (2)0.0294 (18)0.0117 (17)0.0155 (17)
C270.088 (2)0.0448 (18)0.086 (2)0.0196 (17)0.0361 (19)0.0135 (16)
C280.0555 (17)0.0435 (16)0.074 (2)0.0072 (13)0.0237 (15)0.0057 (15)
C290.0444 (14)0.0369 (14)0.0469 (15)0.0107 (11)0.0146 (12)0.0065 (12)
C300.0447 (15)0.0355 (15)0.082 (2)0.0017 (12)0.0028 (14)0.0230 (14)
C310.0413 (14)0.0450 (15)0.0593 (17)0.0045 (12)0.0067 (12)0.0288 (13)
Geometric parameters (Å, º) top
Rb—N12.9441 (18)O6—C301.430 (3)
Rb—N22.9025 (17)C12—H12A0.990
Rb—O12.9640 (14)C12—H12B0.990
Rb—O22.9700 (14)C12—C131.492 (3)
Rb—O32.9536 (15)C13—H13A0.990
Rb—O42.9508 (14)C13—H13B0.990
Rb—O52.9593 (14)C14—C151.381 (3)
Rb—O62.8829 (15)C14—C191.401 (3)
N1—C11.331 (3)C15—H15A0.950
N1—C51.378 (3)C15—C161.392 (3)
N2—C51.332 (3)C16—H16A0.950
N2—C61.385 (3)C16—C171.363 (3)
C1—H1A0.950C17—H17A0.950
C1—C21.383 (3)C17—C181.385 (3)
C2—H2A0.950C18—H18A0.950
C2—C31.388 (3)C18—C191.383 (3)
C3—H3A0.950C20—H20A0.990
C3—C41.364 (3)C20—H20B0.990
C4—H4A0.950C20—C211.489 (3)
C4—C51.437 (3)C21—H21A0.990
C6—C71.401 (3)C21—H21B0.990
C6—C111.408 (3)C22—H22A0.990
C7—H7A0.950C22—H22B0.990
C7—C81.385 (3)C22—C231.484 (3)
C8—H8A0.950C23—H23A0.990
C8—C91.378 (3)C23—H23B0.990
C9—H9A0.950C24—C251.373 (3)
C9—C101.382 (3)C24—C291.411 (3)
C10—H10A0.950C25—H25A0.950
C10—C111.376 (3)C25—C261.384 (4)
C11—H11A0.950C26—H26A0.950
O1—C121.422 (3)C26—C271.368 (4)
O1—C311.424 (2)C27—H27A0.950
O2—C131.441 (2)C27—C281.395 (4)
O2—C141.375 (2)C28—H28A0.950
O3—C191.374 (2)C28—C291.376 (3)
O3—C201.437 (2)C30—H30A0.990
O4—C211.419 (3)C30—H30B0.990
O4—C221.429 (3)C30—C311.489 (4)
O5—C231.433 (2)C31—H31A0.990
O5—C241.373 (3)C31—H31B0.990
O6—C291.371 (3)
N1—Rb—N246.13 (5)O1—C12—H12A109.5
N1—Rb—O1105.32 (5)O1—C12—H12B109.5
N1—Rb—O2132.72 (4)O1—C12—C13110.55 (17)
N1—Rb—O3134.20 (5)H12A—C12—H12B108.1
N1—Rb—O4114.63 (5)H12A—C12—C13109.5
N1—Rb—O592.90 (5)H12B—C12—C13109.5
N1—Rb—O683.13 (5)O2—C13—C12108.20 (16)
N2—Rb—O1126.87 (5)O2—C13—H13A110.1
N2—Rb—O2105.67 (4)O2—C13—H13B110.1
N2—Rb—O388.23 (5)C12—C13—H13A110.1
N2—Rb—O496.68 (5)C12—C13—H13B110.1
N2—Rb—O5118.84 (4)H13A—C13—H13B108.4
N2—Rb—O6129.25 (5)O2—C14—C15124.32 (18)
O1—Rb—O257.05 (4)O2—C14—C19115.71 (17)
O1—Rb—O3106.65 (4)C15—C14—C19120.0 (2)
O1—Rb—O4134.85 (4)C14—C15—H15A120.1
O1—Rb—O5103.41 (4)C14—C15—C16119.7 (2)
O1—Rb—O657.59 (4)H15A—C15—C16120.1
O2—Rb—O351.74 (4)C15—C16—H16A119.8
O2—Rb—O4104.32 (4)C15—C16—C17120.3 (2)
O2—Rb—O5132.08 (4)H16A—C16—C17119.8
O2—Rb—O6111.24 (4)C16—C17—H17A119.8
O3—Rb—O458.15 (4)C16—C17—C18120.5 (2)
O3—Rb—O5110.35 (4)H17A—C17—C18119.8
O3—Rb—O6142.24 (4)C17—C18—H18A119.9
O4—Rb—O556.03 (4)C17—C18—C19120.1 (2)
O4—Rb—O6106.28 (4)H18A—C18—C19119.9
O5—Rb—O651.94 (4)O3—C19—C14115.30 (18)
Rb—N1—C1143.59 (15)O3—C19—C18125.37 (19)
Rb—N1—C597.67 (13)C14—C19—C18119.33 (19)
C1—N1—C5118.6 (2)O3—C20—H20A110.2
Rb—N2—C5100.80 (13)O3—C20—H20B110.2
Rb—N2—C6136.58 (14)O3—C20—C21107.77 (19)
C5—N2—C6121.37 (18)H20A—C20—H20B108.5
N1—C1—H1A117.2H20A—C20—C21110.2
N1—C1—C2125.7 (2)H20B—C20—C21110.2
H1A—C1—C2117.2O4—C21—C20111.02 (18)
C1—C2—H2A121.9O4—C21—H21A109.4
C1—C2—C3116.3 (2)O4—C21—H21B109.4
H2A—C2—C3121.9C20—C21—H21A109.4
C2—C3—H3A119.6C20—C21—H21B109.4
C2—C3—C4120.8 (2)H21A—C21—H21B108.0
H3A—C3—C4119.6O4—C22—H22A109.8
C3—C4—H4A119.9O4—C22—H22B109.8
C3—C4—C5120.2 (2)O4—C22—C23109.26 (18)
H4A—C4—C5119.9H22A—C22—H22B108.3
N1—C5—N2115.39 (19)H22A—C22—C23109.8
N1—C5—C4118.4 (2)H22B—C22—C23109.8
N2—C5—C4126.1 (2)O5—C23—C22108.42 (17)
N2—C6—C7118.8 (2)O5—C23—H23A110.0
N2—C6—C11124.9 (2)O5—C23—H23B110.0
C7—C6—C11116.0 (2)C22—C23—H23A110.0
C6—C7—H7A119.2C22—C23—H23B110.0
C6—C7—C8121.7 (2)H23A—C23—H23B108.4
H7A—C7—C8119.2O5—C24—C25125.3 (2)
C7—C8—H8A119.6O5—C24—C29114.8 (2)
C7—C8—C9120.9 (2)C25—C24—C29119.9 (2)
H8A—C8—C9119.6C24—C25—H25A120.0
C8—C9—H9A120.7C24—C25—C26119.9 (3)
C8—C9—C10118.7 (2)H25A—C25—C26120.0
H9A—C9—C10120.7C25—C26—H26A119.7
C9—C10—H10A119.6C25—C26—C27120.6 (3)
C9—C10—C11120.8 (2)H26A—C26—C27119.7
H10A—C10—C11119.6C26—C27—H27A119.9
C6—C11—C10122.0 (2)C26—C27—C28120.3 (3)
C6—C11—H11A119.0H27A—C27—C28119.9
C10—C11—H11A119.0C27—C28—H28A120.1
Rb—O1—C12115.71 (11)C27—C28—C29119.7 (3)
Rb—O1—C31116.12 (12)H28A—C28—C29120.1
C12—O1—C31110.76 (17)O6—C29—C24114.7 (2)
Rb—O2—C13116.85 (12)O6—C29—C28125.8 (2)
Rb—O2—C14112.03 (11)C24—C29—C28119.6 (2)
C13—O2—C14116.82 (15)O6—C30—H30A110.1
Rb—O3—C19112.20 (11)O6—C30—H30B110.1
Rb—O3—C20105.98 (12)O6—C30—C31107.8 (2)
C19—O3—C20118.26 (16)H30A—C30—H30B108.5
Rb—O4—C21116.04 (11)H30A—C30—C31110.1
Rb—O4—C22115.86 (12)H30B—C30—C31110.1
C21—O4—C22111.97 (17)O1—C31—C30110.0 (2)
Rb—O5—C23119.98 (13)O1—C31—H31A109.7
Rb—O5—C24109.06 (12)O1—C31—H31B109.7
C23—O5—C24117.81 (17)C30—C31—H31A109.7
Rb—O6—C29110.92 (12)C30—C31—H31B109.7
Rb—O6—C30114.10 (12)H31A—C31—H31B108.2
C29—O6—C30118.13 (18)
N2—Rb—N1—C1175.0 (3)N2—Rb—O4—C2181.14 (15)
N2—Rb—N1—C50.18 (10)N2—Rb—O4—C22144.48 (14)
O1—Rb—N1—C148.2 (2)O1—Rb—O4—C2184.42 (15)
O1—Rb—N1—C5127.02 (11)O1—Rb—O4—C2249.96 (16)
O2—Rb—N1—C1107.2 (2)O2—Rb—O4—C2126.96 (15)
O2—Rb—N1—C567.99 (13)O2—Rb—O4—C22107.43 (14)
O3—Rb—N1—C1178.9 (2)O3—Rb—O4—C212.59 (14)
O3—Rb—N1—C55.89 (14)O3—Rb—O4—C22131.80 (15)
O4—Rb—N1—C1110.3 (2)O5—Rb—O4—C21158.41 (16)
O4—Rb—N1—C574.55 (12)O5—Rb—O4—C2224.03 (13)
O5—Rb—N1—C156.6 (2)O6—Rb—O4—C21144.61 (14)
O5—Rb—N1—C5128.23 (11)O6—Rb—O4—C2210.22 (14)
O6—Rb—N1—C15.5 (2)N1—Rb—O5—C23108.41 (15)
O6—Rb—N1—C5179.34 (12)N1—Rb—O5—C2431.86 (13)
N1—Rb—N2—C50.19 (11)N2—Rb—O5—C2368.26 (15)
N1—Rb—N2—C6166.7 (2)N2—Rb—O5—C2472.01 (14)
O1—Rb—N2—C574.95 (13)O1—Rb—O5—C23145.09 (14)
O1—Rb—N2—C6118.52 (19)O1—Rb—O5—C2474.64 (13)
O2—Rb—N2—C5135.24 (11)O2—Rb—O5—C2387.64 (15)
O2—Rb—N2—C658.2 (2)O2—Rb—O5—C24132.09 (12)
O3—Rb—N2—C5175.46 (12)O3—Rb—O5—C2331.34 (15)
O3—Rb—N2—C68.93 (19)O3—Rb—O5—C24171.61 (12)
O4—Rb—N2—C5117.82 (12)O4—Rb—O5—C239.56 (14)
O4—Rb—N2—C648.71 (19)O4—Rb—O5—C24149.83 (14)
O5—Rb—N2—C563.11 (13)O6—Rb—O5—C23172.65 (16)
O5—Rb—N2—C6103.42 (19)O6—Rb—O5—C2447.08 (12)
O6—Rb—N2—C50.43 (14)N1—Rb—O6—C2950.78 (14)
O6—Rb—N2—C6166.10 (17)N1—Rb—O6—C3085.60 (16)
Rb—N1—C1—C2173.77 (16)N2—Rb—O6—C2950.33 (15)
C5—N1—C1—C20.8 (3)N2—Rb—O6—C3086.05 (16)
N1—C1—C2—C30.4 (3)O1—Rb—O6—C29163.84 (15)
C1—C2—C3—C40.7 (3)O1—Rb—O6—C3027.46 (15)
C2—C3—C4—C51.3 (3)O2—Rb—O6—C29175.88 (13)
Rb—N2—C5—N10.33 (18)O2—Rb—O6—C3047.74 (16)
Rb—N2—C5—C4176.26 (17)O3—Rb—O6—C29121.55 (14)
C6—N2—C5—N1169.51 (18)O3—Rb—O6—C30102.07 (16)
C6—N2—C5—C414.6 (3)O4—Rb—O6—C2962.94 (14)
Rb—N1—C5—N20.32 (18)O4—Rb—O6—C30160.68 (15)
Rb—N1—C5—C4176.58 (15)O5—Rb—O6—C2948.38 (13)
C1—N1—C5—N2176.43 (18)O5—Rb—O6—C30175.24 (17)
C1—N1—C5—C40.2 (3)Rb—O1—C12—C1350.34 (19)
C3—C4—C5—N10.8 (3)C31—O1—C12—C13174.83 (17)
C3—C4—C5—N2174.99 (19)Rb—O2—C13—C1247.05 (19)
Rb—N2—C6—C759.5 (3)C14—O2—C13—C12176.31 (17)
Rb—N2—C6—C11114.2 (2)O1—C12—C13—O264.4 (2)
C5—N2—C6—C7136.0 (2)Rb—O2—C14—C15137.31 (18)
C5—N2—C6—C1150.3 (3)Rb—O2—C14—C1943.0 (2)
N2—C6—C7—C8176.3 (2)C13—O2—C14—C151.3 (3)
C11—C6—C7—C82.1 (3)C13—O2—C14—C19178.36 (17)
C6—C7—C8—C92.5 (3)O2—C14—C15—C16178.7 (2)
C7—C8—C9—C100.9 (4)C19—C14—C15—C161.6 (3)
C8—C9—C10—C110.9 (4)C14—C15—C16—C170.9 (4)
C9—C10—C11—C61.2 (3)C15—C16—C17—C180.3 (4)
N2—C6—C11—C10174.1 (2)C16—C17—C18—C190.8 (4)
C7—C6—C11—C100.3 (3)Rb—O3—C19—C1445.6 (2)
N1—Rb—O1—C12149.39 (12)Rb—O3—C19—C18135.05 (19)
N1—Rb—O1—C3178.22 (15)C20—O3—C19—C14169.43 (19)
N2—Rb—O1—C12103.24 (13)C20—O3—C19—C1811.2 (3)
N2—Rb—O1—C31124.37 (15)C17—C18—C19—O3179.4 (2)
O2—Rb—O1—C1218.03 (12)C17—C18—C19—C140.1 (3)
O2—Rb—O1—C31150.42 (16)O2—C14—C19—O31.4 (3)
O3—Rb—O1—C122.63 (13)O2—C14—C19—C18179.19 (19)
O3—Rb—O1—C31135.02 (15)C15—C14—C19—O3178.31 (18)
O4—Rb—O1—C1258.73 (14)C15—C14—C19—C181.1 (3)
O4—Rb—O1—C3173.66 (16)Rb—O3—C20—C2168.17 (19)
O5—Rb—O1—C12113.76 (12)C19—O3—C20—C21164.94 (19)
O5—Rb—O1—C3118.63 (16)Rb—O4—C21—C2030.0 (2)
O6—Rb—O1—C12139.33 (14)C22—O4—C21—C20166.07 (18)
O6—Rb—O1—C316.94 (14)O3—C20—C21—O468.4 (2)
N1—Rb—O2—C1363.93 (14)Rb—O4—C22—C2355.22 (19)
N1—Rb—O2—C1474.70 (13)C21—O4—C22—C23168.59 (17)
N2—Rb—O2—C13107.82 (13)Rb—O5—C23—C2239.7 (2)
N2—Rb—O2—C1430.81 (12)C24—O5—C23—C22176.63 (18)
O1—Rb—O2—C1316.28 (11)O4—C22—C23—O561.3 (2)
O1—Rb—O2—C14154.91 (13)Rb—O5—C24—C25136.0 (2)
O3—Rb—O2—C13177.37 (14)Rb—O5—C24—C2945.2 (2)
O3—Rb—O2—C1444.00 (11)C23—O5—C24—C255.2 (3)
O4—Rb—O2—C13150.86 (12)C23—O5—C24—C29173.54 (18)
O4—Rb—O2—C1470.51 (12)O5—C24—C25—C26179.6 (2)
O5—Rb—O2—C1393.99 (13)C29—C24—C25—C260.9 (4)
O5—Rb—O2—C14127.38 (12)C24—C25—C26—C270.2 (4)
O6—Rb—O2—C1336.68 (13)C25—C26—C27—C280.0 (4)
O6—Rb—O2—C14175.32 (11)C26—C27—C28—C290.5 (4)
N1—Rb—O3—C1971.09 (13)Rb—O6—C29—C2449.0 (2)
N1—Rb—O3—C2059.37 (14)Rb—O6—C29—C28131.7 (2)
N2—Rb—O3—C1966.71 (12)C30—O6—C29—C24176.59 (19)
N2—Rb—O3—C2063.74 (13)C30—O6—C29—C282.7 (3)
O1—Rb—O3—C1961.40 (13)C27—C28—C29—O6178.0 (2)
O1—Rb—O3—C20168.14 (13)C27—C28—C29—C241.2 (4)
O2—Rb—O3—C1944.91 (12)O5—C24—C29—O60.9 (3)
O2—Rb—O3—C20175.37 (14)O5—C24—C29—C28179.8 (2)
O4—Rb—O3—C19165.69 (14)C25—C24—C29—O6177.9 (2)
O4—Rb—O3—C2035.24 (12)C25—C24—C29—C281.4 (3)
O5—Rb—O3—C19173.07 (12)Rb—O6—C30—C3159.5 (2)
O5—Rb—O3—C2056.48 (13)C29—O6—C30—C31167.46 (19)
O6—Rb—O3—C19119.57 (12)Rb—O1—C31—C3038.8 (2)
O6—Rb—O3—C20109.98 (13)C12—O1—C31—C30173.43 (18)
N1—Rb—O4—C21125.58 (15)O6—C30—C31—O165.1 (2)
N1—Rb—O4—C22100.03 (14)
 

Footnotes

Current address: School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, England

Acknowledgements

We thank the EPSRC for financial support.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiddle, S. T. (2000). PhD thesis, University of Newcastle upon Tyne, England.  Google Scholar
First citationLiddle, S. T. & Clegg, W. (2003). Polyhedron, 22, 3507–3513.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiddle, S. T., Clegg, W. & Morrison, C. A. (2004). Dalton Trans. pp. 2514–2525.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds