metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Methyl-2-phenyl­propyl)­tri­phenyl­stannane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 13 September 2004; accepted 20 September 2004; online 30 September 2004)

Bond lengths and angles in the title compound, [Sn(C6H5)3(C10H13)], are as expected for a mol­ecule of this kind. The packing of the mol­ecules in well defined layers results in a number of C—H⋯π intermolecular contacts.

Comment

One component of the title compound, (I[link]), is the 2-methyl-2-phenyl­propyl or neophyl group (neo). The compound may therefore be formulated as (neo)Ph3Sn. Fig. 1[link] is a drawing of the mol­ecule, and distances and angles involving Sn are given in Table 1[link]. These, along with benzene ring C—C distances and internal C—C—C angles, and distances and angles involving alkyl C atoms of the neophyl group [1.363 (6)–1.400 (5) Å and 117.2 (3)–121.2 (3)°, and 1.524 (4)–1.536 (5) Å and 106.3 (3)–112.0 (3)°, respectively], are unremarkable for a compound of this kind. However, two notable features are present in the structure. The first of these concerns the disposition within the mol­ecule of the phenyl groups bonded directly to the Sn atom. For convenience in what follows, the four phenyl groups present in the mol­ecule are designated as Ph1 with ring centroid Cg1, comprising atoms C5–C10, Ph2 with centroid Cg2, comprising C11–C16, Ph3 with centroid Cg3, comprising C17–C22, and Ph4 with centroid Cg4, comprising C23–C28. As is clearly shown in Fig. 1[link], Ph1 is part of the neophyl group and Ph2–Ph4 are the phenyl groups directly bonded to Sn. Ph2–Ph4 adopt the propeller-shaped configuration relative to Sn that is characteristic of the Ph3Sn moiety, but the dihedral angles between their least-squares planes cover the unusually wide range of 49.55 (11)–87.13 (12)°. The values for the displacements of selected atoms from the plane defined by C11, C17 and C23 (see deposited CIF for details) confirm the propeller-shaped configuration but show that Ph2 has the greatest tilt relative to the reference plane and Ph3 the least. This configuration is attributed to the need to accommodate the steric requirements of the neophyl substituent.

[Scheme 1]

The second notable feature of this structure is the manner in which the mol­ecules are packed in layers (Fig. 2[link]) parallel to (010), b/2 thick and centred on y = 0 and [1\over2]. This arrangement, with phenyl groups directly attached to Sn on the surfaces of the layers, favours a number of C—H⋯π intermolecular contacts, as given in Table 2[link] and shown, in part, in Fig. 2[link]. The contacts shown in Fig. 2[link] are those that occur within the layers of mol­ecules. The contact present in Table 2[link] that is not shown in Fig. 2[link] is the interlayer contact C14—H14⋯Cg4vii. The H⋯Cg distances are all greater than 2.98 Å and the significance of these interactions in terms of the formation of even very weak bonds, as distinct from simple packing requirements, remains doubtful, although they can be regarded as electrostatic interactions.

[Figure 1]
Figure 1
The mol­ecule of (I[link]). Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Molecules of (I[link]) in a layer parallel to (010) and centred on x = 1. Dashed lines indicate C—H⋯π contacts. Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms as small spheres of arbitrary radii. Selected atoms are labelled. [Symmetry codes: (i) 1 −x, 2 − y, z; (ii) [3\over 2] − x, y, z − [1\over 2]; (iii) x − [1\over2], 2 − y, z − [1\over2]; (iv) x, y, z − 1; (v) 1 − x, 2 − y, z − 1.]

Experimental

Compound (I[link]) was obtained from the Grignard reaction of neophyl magnesium bromide, neoMgBr, prepared from neoBr (10.7 g, 0.05 mol) and Mg (0.18 g, 0.075 mol) in tetra­hydro­furan (50 ml) with Ph3SnCl (14.5 g, 0.038 mol). Crystals suitable for analysis (m.p. 367–368 K) were obtained by recrystallization from ethanol. 1H NMR (400 MHz, CDCl3): δ 1.48 (s, 6H, Me), 2.18 [s, 2H, J(119,117Sn–1H) = 56.1 Hz, CH2Sn], 7.1–7.2 (m, 5H, Phneo), 7.3–7.5 (m, 15H, PhSn). 13C NMR (100 MHz, CDCl3): δ 31.9 [J(119,117Sn–13C) = 392, 376 Hz, CH2], 33.1 [J(119,117Sn–13C) = 64.8 Hz, CMe2], 38.1 [J(119,117Sn–13C) = 18.2 Hz, Me], 125.3 (Cm, Phneo), 125.7 (Cp, Phneo), 128.2 (Co, Phneo), 128.3 [J(119,117Sn–13C) = 48.6 Hz, Cm, PhSn], 128.5 [J(119,117Sn–13C) = 10.6 Hz, Cp, PhSn], 136.9 [J(119,117Sn–13C) = 35 Hz, Co, PhSn], 139.8 [J(119,117Sn–13C) = 483 and 461 Hz, Cipso, PhSn], 150.1 (Cipso, Phneo). 119Sn NMR (93 MHz, CDCl3): δ −115.6.

Crystal data
  • [Sn(C6H5)3(C10H13)]

  • Mr = 483.19

  • Orthorhombic, Aba2

  • a = 22.8724 (5) Å

  • b = 17.0573 (4) Å

  • c = 11.6326 (3) Å

  • V = 4538.36 (19) Å3

  • Z = 8

  • Dx = 1.414 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4339 reflections

  • θ = 2.9–27.5°

  • μ = 1.14 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.60 × 0.35 × 0.30 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.556, Tmax = 0.711

  • 7972 measured reflections

  • 3545 independent reflections

  • 3358 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 27.5°

  • h = −26 → 29

  • k = −18 → 22

  • l = −10 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.08

  • 3545 reflections

  • 265 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0313P)2 + 2.271P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.005

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.79 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00349 (14)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 887 Friedel pairs

  • Flack parameter = 0.04 (3)

Table 1
Selected geometric parameters (Å, °)

Sn1—C11 2.139 (4)
Sn1—C23 2.142 (3)
Sn1—C17 2.145 (4)
Sn1—C1 2.163 (3)
C11—Sn1—C23 109.53 (15)
C11—Sn1—C17 106.97 (11)
C23—Sn1—C17 107.73 (15)
C11—Sn1—C1 103.98 (15)
C23—Sn1—C1 118.93 (11)
C17—Sn1—C1 109.10 (13)
C2—C1—Sn1 121.1 (2)

Table 2
Distances and angles (Å, °) associated with intermolecular C—H⋯π contacts in (I)

C—H⋯Cg a H⋯Cg Hperpb γc C—H⋯Cg C⋯Cg
C6—H6⋯Cg2ii 3.10 3.03 12 143 3.90
C12—H12⋯Cg4vi 3.21 3.02 20 127 3.86
C14—H14⋯Cg4vii 3.19 3.08 15 144 4.00
C16—H16⋯Cg3viii 3.18 3.05 16 140 3.95
C18—H18⋯Cg1ii 3.24 3.13 14 133 3.94
C25—H25⋯Cg3vi 2.98 2.95 8 137 3.74
Notes: (a) Cg1–Cg4 are, respectively, the centroids of the rings defined byC5–C10, C11–C16, C17–C22 and C23–C28; (b) Hperp is the perpendicular distance of H from the π-acceptor ring; (c) γ is the angle at H between H⋯Cg and Hperp. Symmetry codes: (ii) [{{3}\over{2}} -x, y, z-{{1}\over{2}}]; (vi) 2-x, 2-y, z; (vii) [x, y-{{1}\over{2}}, {{1} \over {2}} + z]; (viii) [{{3} \over {2}}-x, y, {{1} \over {2}} + z].

In the final stages of refinement, H atoms were placed in calculated positions with C—H = 0.99, 0.98 and 0.95 Å for methyl­ene, methyl and aryl H, respectively, and refined with a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) otherwise.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

(2-Methyl-2-phenylpropyl)triphenylstannane top
Crystal data top
[Sn(C6H5)3(C10H13)]Dx = 1.414 Mg m3
Mr = 483.19Melting point = 367–368 K
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
a = 22.8724 (5) ÅCell parameters from 4339 reflections
b = 17.0573 (4) Åθ = 2.9–27.5°
c = 11.6326 (3) ŵ = 1.14 mm1
V = 4538.36 (19) Å3T = 120 K
Z = 8Block, colourless
F(000) = 19680.60 × 0.35 × 0.30 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3545 independent reflections
Radiation source: Nonius FR591 rotating anode3358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 2629
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 1822
Tmin = 0.556, Tmax = 0.711l = 1014
7972 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0313P)2 + 2.271P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.005
S = 1.08Δρmax = 0.75 e Å3
3545 reflectionsΔρmin = 0.79 e Å3
265 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00349 (14)
Primary atom site location: heavy-atom methodAbsolute structure: Flack (1983), 887 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.6828(0.0367) x + 13.0476(0.0202) y + 7.3675(0.0164) z = 18.1598(0.0359)

* -0.0057 (0.0029) C11 * 0.0031 (0.0027) C12 * 0.0041 (0.0027) C13 * -0.0088 (0.0030) C14 * 0.0061 (0.0028) C15 * 0.0012 (0.0028) C16 - 0.1163 (0.0065) Sn1 0.7869 (0.0083) C1 1.3970 (0.0107) C2 2.6003 (0.0112) C3 0.3629 (0.0125) C4 1.7851 (0.0118) C5 0.8100 (0.0129) C6 3.0837 (0.0117) C10

Rms deviation of fitted atoms = 0.0054

22.8025(0.0024) x + 0.4535(0.0221) y + 0.8545(0.0157) z = 20.5373(0.0207)

Angle to previous plane (with approximate e.s.d.) = 87.13 (0.12)

* 0.0007 (0.0022) C17 * 0.0013 (0.0022) C18 * -0.0004 (0.0024) C19 * -0.0024 (0.0025) C20 * 0.0043 (0.0023) C21 * -0.0035 (0.0021) C22 0.0422 (0.0046) Sn1 - 1.9600 (0.0062) C1 - 2.4819 (0.0070) C2 - 1.6823 (0.0084) C3 - 2.3051 (0.0066) C4 - 3.9562 (0.0072) C5 - 4.9060 (0.0062) C6 - 4.4044 (0.0089) C10

Rms deviation of fitted atoms = 0.0025

14.5251(0.0256) x - 10.8057(0.0183) y + 5.1420(0.0153) z = 6.6719(0.0425)

Angle to previous plane (with approximate e.s.d.) = 49.55 (0.11)

* -0.0091 (0.0022) C23 * 0.0061 (0.0024) C24 * -0.0007 (0.0025) C25 * -0.0017 (0.0025) C26 * -0.0014 (0.0025) C27 * 0.0067 (0.0024) C28 0.0144 (0.0051) Sn1 - 1.5915 (0.0075) C1 - 3.0254 (0.0068) C2 - 3.0824 (0.0060) C3 - 3.4702 (0.0064) C4 - 3.8980 (0.0085) C5 - 4.2631 (0.0096) C6 - 4.2916 (0.0092) C10

Rms deviation of fitted atoms = 0.0053

- 2.6828(0.0367) x + 13.0476(0.0202) y + 7.3675(0.0164) z = 18.1598(0.0359)

Angle to previous plane (with approximate e.s.d.) = 73.79 (0.11)

* -0.0057 (0.0029) C11 * 0.0031 (0.0027) C12 * 0.0041 (0.0027) C13 * -0.0088 (0.0030) C14 * 0.0061 (0.0028) C15 * 0.0012 (0.0028) C16

Rms deviation of fitted atoms = 0.0054

20.5468(0.0114) x - 7.4322(0.0177) y - 0.6542(0.0220) z = 10.0988(0.0337)

Angle to previous plane (with approximate e.s.d.) = 61.69 (0.13)

* 0.0000 (0.0000) C11 * 0.0000 (0.0000) C17 * 0.0000 (0.0000) C23 - 0.7616 (0.0017) Sn1 1.2164 (0.0060) C12 - 0.6920 (0.0067) C16 - 0.0626 (0.0064) C18 0.6062 (0.0048) C22 0.7904 (0.0047) C24 - 0.2462 (0.0051) C28

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.845344 (7)0.992790 (9)0.99869 (6)0.01462 (8)
C10.75596 (12)1.03149 (18)1.0202 (3)0.0181 (8)
H1A0.73050.98810.99410.022*
H1B0.74921.03771.10380.022*
C20.73376 (14)1.10661 (18)0.9619 (3)0.0183 (7)
C30.76558 (12)1.17785 (16)1.0106 (4)0.0236 (7)
H3A0.74831.22580.97900.035*
H3B0.80701.17530.98970.035*
H3C0.76181.17821.09460.035*
C40.74644 (16)1.1031 (2)0.8323 (3)0.0272 (8)
H4A0.72991.05490.80020.041*
H4B0.78881.10370.81970.041*
H4C0.72871.14860.79440.041*
C50.66819 (13)1.11003 (17)0.9846 (4)0.0185 (8)
C60.62981 (15)1.0626 (2)0.9223 (4)0.0283 (8)
H60.64461.03080.86190.034*
C70.57044 (15)1.0612 (2)0.9473 (4)0.0377 (10)
H70.54511.02860.90360.045*
C80.54811 (15)1.1062 (2)1.0342 (4)0.0379 (12)
H80.50761.10461.05160.046*
C90.58504 (16)1.1536 (2)1.0957 (4)0.0295 (9)
H90.56981.18531.15570.035*
C100.64437 (15)1.1557 (2)1.0713 (3)0.0217 (8)
H100.66921.18911.11490.026*
C110.86120 (18)0.9211 (3)1.1464 (4)0.0191 (9)
C120.91749 (16)0.9093 (2)1.1890 (3)0.0258 (8)
H120.94960.93571.15470.031*
C130.92684 (17)0.8593 (2)1.2811 (3)0.0329 (9)
H130.96530.85181.30980.039*
C140.8805 (2)0.8205 (3)1.3313 (4)0.0360 (11)
H140.88730.78541.39330.043*
C150.82512 (19)0.8324 (3)1.2919 (4)0.0380 (10)
H150.79320.80661.32800.046*
C160.81499 (15)0.8818 (2)1.2002 (3)0.0271 (8)
H160.77620.88911.17320.032*
C170.85054 (13)0.9177 (3)0.8511 (4)0.0152 (9)
C180.85421 (13)0.9461 (2)0.7388 (3)0.0195 (7)
H180.85371.00110.72580.023*
C190.85860 (15)0.8958 (2)0.6464 (3)0.0218 (8)
H190.86100.91610.57050.026*
C200.85941 (16)0.8161 (3)0.6648 (4)0.0254 (9)
H200.86220.78140.60110.030*
C210.85618 (15)0.7860 (2)0.7749 (3)0.0244 (8)
H210.85720.73100.78710.029*
C220.85135 (12)0.8369 (2)0.8677 (3)0.0192 (7)
H220.84860.81630.94330.023*
C230.91309 (12)1.07891 (15)0.9837 (3)0.0160 (7)
C240.94898 (13)1.08020 (19)0.8880 (3)0.0223 (7)
H240.94321.04280.82870.027*
C250.99346 (13)1.1356 (2)0.8774 (4)0.0263 (9)
H251.01741.13630.81060.032*
C261.00264 (13)1.1892 (2)0.9640 (4)0.0267 (11)
H261.03301.22690.95720.032*
C270.96772 (16)1.1881 (2)1.0605 (3)0.0268 (8)
H270.97401.22541.12000.032*
C280.92344 (15)1.13297 (19)1.0712 (3)0.0234 (8)
H280.90001.13211.13860.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01299 (11)0.01505 (11)0.01581 (13)0.00074 (6)0.00005 (16)0.0003 (2)
C10.0115 (12)0.0237 (14)0.019 (2)0.0051 (11)0.0021 (13)0.0003 (15)
C20.0195 (15)0.0180 (14)0.0174 (18)0.0008 (12)0.0000 (13)0.0017 (12)
C30.0196 (14)0.0187 (12)0.033 (2)0.0002 (10)0.0042 (19)0.001 (2)
C40.0250 (17)0.041 (2)0.0159 (19)0.0098 (16)0.0050 (15)0.0088 (17)
C50.0160 (13)0.0162 (12)0.023 (2)0.0019 (10)0.0006 (16)0.0035 (17)
C60.0227 (16)0.0250 (17)0.037 (2)0.0012 (15)0.0026 (18)0.0072 (17)
C70.0192 (16)0.0314 (19)0.063 (3)0.0014 (16)0.0090 (18)0.006 (2)
C80.0164 (16)0.0363 (19)0.061 (3)0.0037 (14)0.0084 (18)0.011 (2)
C90.0265 (18)0.0283 (18)0.034 (2)0.0122 (15)0.0087 (17)0.0077 (17)
C100.0241 (16)0.0235 (17)0.017 (2)0.0067 (14)0.0008 (15)0.0035 (15)
C110.0216 (17)0.017 (2)0.019 (2)0.0023 (18)0.0031 (17)0.0006 (18)
C120.0206 (16)0.0315 (18)0.025 (2)0.0049 (14)0.0000 (15)0.0019 (16)
C130.031 (2)0.039 (2)0.029 (2)0.0125 (17)0.0136 (18)0.0015 (18)
C140.050 (3)0.039 (3)0.019 (2)0.018 (2)0.005 (2)0.0079 (19)
C150.036 (2)0.041 (2)0.037 (3)0.0092 (19)0.012 (2)0.017 (2)
C160.0196 (16)0.0318 (18)0.030 (2)0.0045 (15)0.0013 (17)0.0047 (17)
C170.0129 (14)0.018 (2)0.015 (2)0.0020 (13)0.0005 (13)0.0036 (18)
C180.0177 (15)0.0161 (15)0.0246 (19)0.0002 (13)0.0018 (14)0.0019 (15)
C190.0222 (17)0.0281 (18)0.0150 (18)0.0007 (14)0.0001 (15)0.0004 (16)
C200.0226 (18)0.022 (2)0.031 (3)0.0005 (17)0.0023 (17)0.0120 (18)
C210.0266 (17)0.0149 (16)0.032 (2)0.0033 (14)0.0009 (16)0.0065 (16)
C220.0174 (14)0.0182 (16)0.022 (2)0.0042 (12)0.0037 (14)0.0001 (15)
C230.0134 (12)0.0136 (11)0.021 (2)0.0005 (9)0.0024 (14)0.0004 (15)
C240.0184 (15)0.0217 (16)0.027 (2)0.0042 (13)0.0014 (15)0.0041 (15)
C250.0179 (16)0.032 (2)0.029 (2)0.0046 (13)0.0009 (16)0.0026 (19)
C260.0173 (17)0.0207 (16)0.042 (3)0.0012 (12)0.0056 (14)0.0027 (16)
C270.0223 (18)0.0259 (18)0.032 (2)0.0004 (15)0.0065 (18)0.0122 (17)
C280.0196 (16)0.0227 (16)0.028 (2)0.0022 (13)0.0021 (15)0.0063 (16)
Geometric parameters (Å, º) top
Sn1—C112.139 (4)C12—H120.950
Sn1—C232.142 (3)C13—C141.379 (6)
Sn1—C172.145 (4)C13—H130.950
Sn1—C12.163 (3)C14—C151.363 (6)
C1—C21.536 (4)C14—H140.950
C1—H1A0.990C15—C161.378 (5)
C1—H1B0.990C15—H150.950
C2—C51.524 (4)C16—H160.950
C2—C31.526 (4)C17—C221.392 (6)
C2—C41.536 (5)C17—C181.397 (6)
C3—H3A0.980C18—C191.379 (5)
C3—H3B0.980C18—H180.950
C3—H3C0.980C19—C201.377 (6)
C4—H4A0.980C19—H190.950
C4—H4B0.980C20—C211.382 (6)
C4—H4C0.980C20—H200.950
C5—C101.386 (5)C21—C221.389 (5)
C5—C61.397 (5)C21—H210.950
C6—C71.389 (5)C22—H220.950
C6—H60.950C23—C241.383 (5)
C7—C81.368 (5)C23—C281.393 (5)
C7—H70.950C24—C251.394 (4)
C8—C91.371 (5)C24—H240.950
C8—H80.950C25—C261.377 (6)
C9—C101.387 (5)C25—H250.950
C9—H90.950C26—C271.378 (6)
C10—H100.950C26—H260.950
C11—C121.394 (5)C27—C281.388 (5)
C11—C161.400 (5)C27—H270.950
C12—C131.386 (5)C28—H280.950
C11—Sn1—C23109.53 (15)C13—C12—C11120.4 (4)
C11—Sn1—C17106.97 (11)C13—C12—H12119.8
C23—Sn1—C17107.73 (15)C11—C12—H12119.8
C11—Sn1—C1103.98 (15)C14—C13—C12120.3 (4)
C23—Sn1—C1118.93 (11)C14—C13—H13119.8
C17—Sn1—C1109.10 (13)C12—C13—H13119.8
C2—C1—Sn1121.1 (2)C15—C14—C13120.0 (4)
C2—C1—H1A107.1C15—C14—H14120.0
Sn1—C1—H1A107.1C13—C14—H14120.0
C2—C1—H1B107.1C14—C15—C16120.5 (4)
Sn1—C1—H1B107.1C14—C15—H15119.7
H1A—C1—H1B106.8C16—C15—H15119.7
C5—C2—C3112.0 (3)C15—C16—C11120.8 (4)
C5—C2—C1106.3 (3)C15—C16—H16119.6
C3—C2—C1110.0 (3)C11—C16—H16119.6
C5—C2—C4110.9 (3)C22—C17—C18118.2 (4)
C3—C2—C4107.8 (3)C22—C17—Sn1118.8 (3)
C1—C2—C4109.8 (3)C18—C17—Sn1123.0 (3)
C2—C3—H3A109.5C19—C18—C17121.2 (3)
C2—C3—H3B109.5C19—C18—H18119.4
H3A—C3—H3B109.5C17—C18—H18119.4
C2—C3—H3C109.5C20—C19—C18119.6 (4)
H3A—C3—H3C109.5C20—C19—H19120.2
H3B—C3—H3C109.5C18—C19—H19120.2
C2—C4—H4A109.5C19—C20—C21120.7 (4)
C2—C4—H4B109.5C19—C20—H20119.7
H4A—C4—H4B109.5C21—C20—H20119.7
C2—C4—H4C109.5C20—C21—C22119.5 (3)
H4A—C4—H4C109.5C20—C21—H21120.2
H4B—C4—H4C109.5C22—C21—H21120.2
C10—C5—C6117.2 (3)C21—C22—C17120.8 (4)
C10—C5—C2122.3 (3)C21—C22—H22119.6
C6—C5—C2120.4 (3)C17—C22—H22119.6
C7—C6—C5121.1 (4)C24—C23—C28118.4 (3)
C7—C6—H6119.5C24—C23—Sn1120.4 (2)
C5—C6—H6119.5C28—C23—Sn1121.2 (2)
C8—C7—C6120.6 (4)C23—C24—C25121.1 (3)
C8—C7—H7119.7C23—C24—H24119.5
C6—C7—H7119.7C25—C24—H24119.5
C7—C8—C9119.1 (3)C26—C25—C24119.8 (4)
C7—C8—H8120.4C26—C25—H25120.1
C9—C8—H8120.4C24—C25—H25120.1
C8—C9—C10120.8 (4)C25—C26—C27119.9 (3)
C8—C9—H9119.6C25—C26—H26120.0
C10—C9—H9119.6C27—C26—H26120.0
C5—C10—C9121.2 (3)C26—C27—C28120.3 (3)
C5—C10—H10119.4C26—C27—H27119.8
C9—C10—H10119.4C28—C27—H27119.8
C12—C11—C16117.9 (4)C27—C28—C23120.5 (3)
C12—C11—Sn1121.6 (3)C27—C28—H28119.8
C16—C11—Sn1120.4 (3)C23—C28—H28119.8
C12—C11—Sn1—C1155.0 (3)Sn1—C1—C2—C364.9 (4)
C16—C11—Sn1—C127.8 (4)Sn1—C1—C2—C453.6 (3)
C18—C17—Sn1—C181.4 (3)Sn1—C1—C2—C5173.7 (2)
C22—C17—Sn1—C199.8 (3)C1—C2—C5—C676.8 (4)
C24—C23—Sn1—C1122.4 (3)C1—C2—C5—C1099.0 (4)
C28—C23—Sn1—C159.8 (3)C3—C2—C5—C6163.0 (3)
C11—Sn1—C1—C2156.5 (3)C3—C2—C5—C1021.2 (5)
C17—Sn1—C1—C289.6 (3)C4—C2—C5—C642.5 (5)
C23—Sn1—C1—C234.4 (3)C4—C2—C5—C10141.6 (3)
Distances and angles (Å, °) associated with intermolecular C—H..π contacts in (I) top
C—H···CgaH···CgHperpbγcC—H···CgC···Cg
C6—H6···Cg2ii3.103.03121433.90
C12—H12···Cg4i3.213.02201273.86
C14—H14···Cg4iii3.193.08151444.00
C16—H16···Cg3iv3.183.05161403.95
C18—H18···Cg1ii3.243.13141333.94
C25—H25···Cg3i2.982.9581373.74
Notes: (a) Cg1–Cg4 are, respectively, the centroids of the rings defined by C5–C10, C11–C16, C17–C22 and C23–C28; (b) Hperp is the perpendicular distance of H from the π-acceptor ring; (c) γ is the angle at H between H···Cg and Hperp. Symmetry codes: (i) 2-x, 2-y, z; (ii) 3/2-x, y, z-1/2; (iii) x, y-1/2, 1/2+z; (iv) 3/2-x, y, 1/2+z.
 

Acknowledgements

The authors thank CNPq, Brazil, for financial support.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds