metal-organic compounds
(2-Methyl-2-phenylpropyl)triphenylstannane
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: r.a.howie@abdn.ac.uk
Bond lengths and angles in the title compound, [Sn(C6H5)3(C10H13)], are as expected for a molecule of this kind. The packing of the molecules in well defined layers results in a number of C—H⋯π intermolecular contacts.
Comment
One component of the title compound, (I), is the 2-methyl-2-phenylpropyl or neophyl group (neo). The compound may therefore be formulated as (neo)Ph3Sn. Fig. 1 is a drawing of the molecule, and distances and angles involving Sn are given in Table 1. These, along with benzene ring C—C distances and internal C—C—C angles, and distances and angles involving alkyl C atoms of the neophyl group [1.363 (6)–1.400 (5) Å and 117.2 (3)–121.2 (3)°, and 1.524 (4)–1.536 (5) Å and 106.3 (3)–112.0 (3)°, respectively], are unremarkable for a compound of this kind. However, two notable features are present in the structure. The first of these concerns the disposition within the molecule of the phenyl groups bonded directly to the Sn atom. For convenience in what follows, the four phenyl groups present in the molecule are designated as Ph1 with ring centroid Cg1, comprising atoms C5–C10, Ph2 with centroid Cg2, comprising C11–C16, Ph3 with centroid Cg3, comprising C17–C22, and Ph4 with centroid Cg4, comprising C23–C28. As is clearly shown in Fig. 1, Ph1 is part of the neophyl group and Ph2–Ph4 are the phenyl groups directly bonded to Sn. Ph2–Ph4 adopt the propeller-shaped configuration relative to Sn that is characteristic of the Ph3Sn moiety, but the dihedral angles between their least-squares planes cover the unusually wide range of 49.55 (11)–87.13 (12)°. The values for the displacements of selected atoms from the plane defined by C11, C17 and C23 (see deposited for details) confirm the propeller-shaped configuration but show that Ph2 has the greatest tilt relative to the reference plane and Ph3 the least. This configuration is attributed to the need to accommodate the steric requirements of the neophyl substituent.
The second notable feature of this structure is the manner in which the molecules are packed in layers (Fig. 2) parallel to (010), b/2 thick and centred on y = 0 and . This arrangement, with phenyl groups directly attached to Sn on the surfaces of the layers, favours a number of C—H⋯π intermolecular contacts, as given in Table 2 and shown, in part, in Fig. 2. The contacts shown in Fig. 2 are those that occur within the layers of molecules. The contact present in Table 2 that is not shown in Fig. 2 is the interlayer contact C14—H14⋯Cg4vii. The H⋯Cg distances are all greater than 2.98 Å and the significance of these interactions in terms of the formation of even very weak bonds, as distinct from simple packing requirements, remains doubtful, although they can be regarded as electrostatic interactions.
Experimental
Compound (I) was obtained from the Grignard reaction of neophyl magnesium bromide, neoMgBr, prepared from neoBr (10.7 g, 0.05 mol) and Mg (0.18 g, 0.075 mol) in tetrahydrofuran (50 ml) with Ph3SnCl (14.5 g, 0.038 mol). Crystals suitable for analysis (m.p. 367–368 K) were obtained by recrystallization from ethanol. 1H NMR (400 MHz, CDCl3): δ 1.48 (s, 6H, Me), 2.18 [s, 2H, J(119,117Sn–1H) = 56.1 Hz, CH2Sn], 7.1–7.2 (m, 5H, Phneo), 7.3–7.5 (m, 15H, PhSn). 13C NMR (100 MHz, CDCl3): δ 31.9 [J(119,117Sn–13C) = 392, 376 Hz, CH2], 33.1 [J(119,117Sn–13C) = 64.8 Hz, CMe2], 38.1 [J(119,117Sn–13C) = 18.2 Hz, Me], 125.3 (Cm, Phneo), 125.7 (Cp, Phneo), 128.2 (Co, Phneo), 128.3 [J(119,117Sn–13C) = 48.6 Hz, Cm, PhSn], 128.5 [J(119,117Sn–13C) = 10.6 Hz, Cp, PhSn], 136.9 [J(119,117Sn–13C) = 35 Hz, Co, PhSn], 139.8 [J(119,117Sn–13C) = 483 and 461 Hz, Cipso, PhSn], 150.1 (Cipso, Phneo). 119Sn NMR (93 MHz, CDCl3): δ −115.6.
Crystal data
|
Data collection
Refinement
|
|
In the final stages of Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) otherwise.
H atoms were placed in calculated positions with C—H = 0.99, 0.98 and 0.95 Å for methylene, methyl and aryl H, respectively, and refined with a riding model, withData collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
https://doi.org/10.1107/S160053680402330X/cf6377sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680402330X/cf6377Isup2.hkl
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell
DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).[Sn(C6H5)3(C10H13)] | Dx = 1.414 Mg m−3 |
Mr = 483.19 | Melting point = 367–368 K |
Orthorhombic, Aba2 | Mo Kα radiation, λ = 0.71073 Å |
a = 22.8724 (5) Å | Cell parameters from 4339 reflections |
b = 17.0573 (4) Å | θ = 2.9–27.5° |
c = 11.6326 (3) Å | µ = 1.14 mm−1 |
V = 4538.36 (19) Å3 | T = 120 K |
Z = 8 | Block, colourless |
F(000) = 1968 | 0.60 × 0.35 × 0.30 mm |
Nonius KappaCCD area-detector diffractometer | 3545 independent reflections |
Radiation source: Nonius FR591 rotating anode | 3358 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
φ and ω scans | h = −26→29 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) | k = −18→22 |
Tmin = 0.556, Tmax = 0.711 | l = −10→14 |
7972 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0313P)2 + 2.271P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.067 | (Δ/σ)max = 0.005 |
S = 1.08 | Δρmax = 0.75 e Å−3 |
3545 reflections | Δρmin = −0.79 e Å−3 |
265 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.00349 (14) |
Primary atom site location: heavy-atom method | Absolute structure: Flack (1983), 887 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.04 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 2.6828(0.0367) x + 13.0476(0.0202) y + 7.3675(0.0164) z = 18.1598(0.0359) * -0.0057 (0.0029) C11 * 0.0031 (0.0027) C12 * 0.0041 (0.0027) C13 * -0.0088 (0.0030) C14 * 0.0061 (0.0028) C15 * 0.0012 (0.0028) C16 - 0.1163 (0.0065) Sn1 0.7869 (0.0083) C1 1.3970 (0.0107) C2 2.6003 (0.0112) C3 0.3629 (0.0125) C4 1.7851 (0.0118) C5 0.8100 (0.0129) C6 3.0837 (0.0117) C10 Rms deviation of fitted atoms = 0.0054 22.8025(0.0024) x + 0.4535(0.0221) y + 0.8545(0.0157) z = 20.5373(0.0207) Angle to previous plane (with approximate e.s.d.) = 87.13 (0.12) * 0.0007 (0.0022) C17 * 0.0013 (0.0022) C18 * -0.0004 (0.0024) C19 * -0.0024 (0.0025) C20 * 0.0043 (0.0023) C21 * -0.0035 (0.0021) C22 0.0422 (0.0046) Sn1 - 1.9600 (0.0062) C1 - 2.4819 (0.0070) C2 - 1.6823 (0.0084) C3 - 2.3051 (0.0066) C4 - 3.9562 (0.0072) C5 - 4.9060 (0.0062) C6 - 4.4044 (0.0089) C10 Rms deviation of fitted atoms = 0.0025 14.5251(0.0256) x - 10.8057(0.0183) y + 5.1420(0.0153) z = 6.6719(0.0425) Angle to previous plane (with approximate e.s.d.) = 49.55 (0.11) * -0.0091 (0.0022) C23 * 0.0061 (0.0024) C24 * -0.0007 (0.0025) C25 * -0.0017 (0.0025) C26 * -0.0014 (0.0025) C27 * 0.0067 (0.0024) C28 0.0144 (0.0051) Sn1 - 1.5915 (0.0075) C1 - 3.0254 (0.0068) C2 - 3.0824 (0.0060) C3 - 3.4702 (0.0064) C4 - 3.8980 (0.0085) C5 - 4.2631 (0.0096) C6 - 4.2916 (0.0092) C10 Rms deviation of fitted atoms = 0.0053 - 2.6828(0.0367) x + 13.0476(0.0202) y + 7.3675(0.0164) z = 18.1598(0.0359) Angle to previous plane (with approximate e.s.d.) = 73.79 (0.11) * -0.0057 (0.0029) C11 * 0.0031 (0.0027) C12 * 0.0041 (0.0027) C13 * -0.0088 (0.0030) C14 * 0.0061 (0.0028) C15 * 0.0012 (0.0028) C16 Rms deviation of fitted atoms = 0.0054 20.5468(0.0114) x - 7.4322(0.0177) y - 0.6542(0.0220) z = 10.0988(0.0337) Angle to previous plane (with approximate e.s.d.) = 61.69 (0.13) * 0.0000 (0.0000) C11 * 0.0000 (0.0000) C17 * 0.0000 (0.0000) C23 - 0.7616 (0.0017) Sn1 1.2164 (0.0060) C12 - 0.6920 (0.0067) C16 - 0.0626 (0.0064) C18 0.6062 (0.0048) C22 0.7904 (0.0047) C24 - 0.2462 (0.0051) C28 Rms deviation of fitted atoms = 0.0000 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.845344 (7) | 0.992790 (9) | 0.99869 (6) | 0.01462 (8) | |
C1 | 0.75596 (12) | 1.03149 (18) | 1.0202 (3) | 0.0181 (8) | |
H1A | 0.7305 | 0.9881 | 0.9941 | 0.022* | |
H1B | 0.7492 | 1.0377 | 1.1038 | 0.022* | |
C2 | 0.73376 (14) | 1.10661 (18) | 0.9619 (3) | 0.0183 (7) | |
C3 | 0.76558 (12) | 1.17785 (16) | 1.0106 (4) | 0.0236 (7) | |
H3A | 0.7483 | 1.2258 | 0.9790 | 0.035* | |
H3B | 0.8070 | 1.1753 | 0.9897 | 0.035* | |
H3C | 0.7618 | 1.1782 | 1.0946 | 0.035* | |
C4 | 0.74644 (16) | 1.1031 (2) | 0.8323 (3) | 0.0272 (8) | |
H4A | 0.7299 | 1.0549 | 0.8002 | 0.041* | |
H4B | 0.7888 | 1.1037 | 0.8197 | 0.041* | |
H4C | 0.7287 | 1.1486 | 0.7944 | 0.041* | |
C5 | 0.66819 (13) | 1.11003 (17) | 0.9846 (4) | 0.0185 (8) | |
C6 | 0.62981 (15) | 1.0626 (2) | 0.9223 (4) | 0.0283 (8) | |
H6 | 0.6446 | 1.0308 | 0.8619 | 0.034* | |
C7 | 0.57044 (15) | 1.0612 (2) | 0.9473 (4) | 0.0377 (10) | |
H7 | 0.5451 | 1.0286 | 0.9036 | 0.045* | |
C8 | 0.54811 (15) | 1.1062 (2) | 1.0342 (4) | 0.0379 (12) | |
H8 | 0.5076 | 1.1046 | 1.0516 | 0.046* | |
C9 | 0.58504 (16) | 1.1536 (2) | 1.0957 (4) | 0.0295 (9) | |
H9 | 0.5698 | 1.1853 | 1.1557 | 0.035* | |
C10 | 0.64437 (15) | 1.1557 (2) | 1.0713 (3) | 0.0217 (8) | |
H10 | 0.6692 | 1.1891 | 1.1149 | 0.026* | |
C11 | 0.86120 (18) | 0.9211 (3) | 1.1464 (4) | 0.0191 (9) | |
C12 | 0.91749 (16) | 0.9093 (2) | 1.1890 (3) | 0.0258 (8) | |
H12 | 0.9496 | 0.9357 | 1.1547 | 0.031* | |
C13 | 0.92684 (17) | 0.8593 (2) | 1.2811 (3) | 0.0329 (9) | |
H13 | 0.9653 | 0.8518 | 1.3098 | 0.039* | |
C14 | 0.8805 (2) | 0.8205 (3) | 1.3313 (4) | 0.0360 (11) | |
H14 | 0.8873 | 0.7854 | 1.3933 | 0.043* | |
C15 | 0.82512 (19) | 0.8324 (3) | 1.2919 (4) | 0.0380 (10) | |
H15 | 0.7932 | 0.8066 | 1.3280 | 0.046* | |
C16 | 0.81499 (15) | 0.8818 (2) | 1.2002 (3) | 0.0271 (8) | |
H16 | 0.7762 | 0.8891 | 1.1732 | 0.032* | |
C17 | 0.85054 (13) | 0.9177 (3) | 0.8511 (4) | 0.0152 (9) | |
C18 | 0.85421 (13) | 0.9461 (2) | 0.7388 (3) | 0.0195 (7) | |
H18 | 0.8537 | 1.0011 | 0.7258 | 0.023* | |
C19 | 0.85860 (15) | 0.8958 (2) | 0.6464 (3) | 0.0218 (8) | |
H19 | 0.8610 | 0.9161 | 0.5705 | 0.026* | |
C20 | 0.85941 (16) | 0.8161 (3) | 0.6648 (4) | 0.0254 (9) | |
H20 | 0.8622 | 0.7814 | 0.6011 | 0.030* | |
C21 | 0.85618 (15) | 0.7860 (2) | 0.7749 (3) | 0.0244 (8) | |
H21 | 0.8572 | 0.7310 | 0.7871 | 0.029* | |
C22 | 0.85135 (12) | 0.8369 (2) | 0.8677 (3) | 0.0192 (7) | |
H22 | 0.8486 | 0.8163 | 0.9433 | 0.023* | |
C23 | 0.91309 (12) | 1.07891 (15) | 0.9837 (3) | 0.0160 (7) | |
C24 | 0.94898 (13) | 1.08020 (19) | 0.8880 (3) | 0.0223 (7) | |
H24 | 0.9432 | 1.0428 | 0.8287 | 0.027* | |
C25 | 0.99346 (13) | 1.1356 (2) | 0.8774 (4) | 0.0263 (9) | |
H25 | 1.0174 | 1.1363 | 0.8106 | 0.032* | |
C26 | 1.00264 (13) | 1.1892 (2) | 0.9640 (4) | 0.0267 (11) | |
H26 | 1.0330 | 1.2269 | 0.9572 | 0.032* | |
C27 | 0.96772 (16) | 1.1881 (2) | 1.0605 (3) | 0.0268 (8) | |
H27 | 0.9740 | 1.2254 | 1.1200 | 0.032* | |
C28 | 0.92344 (15) | 1.13297 (19) | 1.0712 (3) | 0.0234 (8) | |
H28 | 0.9000 | 1.1321 | 1.1386 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01299 (11) | 0.01505 (11) | 0.01581 (13) | 0.00074 (6) | 0.00005 (16) | −0.0003 (2) |
C1 | 0.0115 (12) | 0.0237 (14) | 0.019 (2) | 0.0051 (11) | 0.0021 (13) | 0.0003 (15) |
C2 | 0.0195 (15) | 0.0180 (14) | 0.0174 (18) | 0.0008 (12) | 0.0000 (13) | 0.0017 (12) |
C3 | 0.0196 (14) | 0.0187 (12) | 0.033 (2) | −0.0002 (10) | 0.0042 (19) | 0.001 (2) |
C4 | 0.0250 (17) | 0.041 (2) | 0.0159 (19) | 0.0098 (16) | 0.0050 (15) | 0.0088 (17) |
C5 | 0.0160 (13) | 0.0162 (12) | 0.023 (2) | 0.0019 (10) | 0.0006 (16) | 0.0035 (17) |
C6 | 0.0227 (16) | 0.0250 (17) | 0.037 (2) | 0.0012 (15) | −0.0026 (18) | −0.0072 (17) |
C7 | 0.0192 (16) | 0.0314 (19) | 0.063 (3) | −0.0014 (16) | −0.0090 (18) | −0.006 (2) |
C8 | 0.0164 (16) | 0.0363 (19) | 0.061 (3) | 0.0037 (14) | 0.0084 (18) | 0.011 (2) |
C9 | 0.0265 (18) | 0.0283 (18) | 0.034 (2) | 0.0122 (15) | 0.0087 (17) | 0.0077 (17) |
C10 | 0.0241 (16) | 0.0235 (17) | 0.017 (2) | 0.0067 (14) | 0.0008 (15) | 0.0035 (15) |
C11 | 0.0216 (17) | 0.017 (2) | 0.019 (2) | 0.0023 (18) | −0.0031 (17) | −0.0006 (18) |
C12 | 0.0206 (16) | 0.0315 (18) | 0.025 (2) | 0.0049 (14) | 0.0000 (15) | −0.0019 (16) |
C13 | 0.031 (2) | 0.039 (2) | 0.029 (2) | 0.0125 (17) | −0.0136 (18) | −0.0015 (18) |
C14 | 0.050 (3) | 0.039 (3) | 0.019 (2) | 0.018 (2) | 0.005 (2) | 0.0079 (19) |
C15 | 0.036 (2) | 0.041 (2) | 0.037 (3) | 0.0092 (19) | 0.012 (2) | 0.017 (2) |
C16 | 0.0196 (16) | 0.0318 (18) | 0.030 (2) | 0.0045 (15) | 0.0013 (17) | 0.0047 (17) |
C17 | 0.0129 (14) | 0.018 (2) | 0.015 (2) | 0.0020 (13) | −0.0005 (13) | −0.0036 (18) |
C18 | 0.0177 (15) | 0.0161 (15) | 0.0246 (19) | 0.0002 (13) | −0.0018 (14) | 0.0019 (15) |
C19 | 0.0222 (17) | 0.0281 (18) | 0.0150 (18) | 0.0007 (14) | −0.0001 (15) | −0.0004 (16) |
C20 | 0.0226 (18) | 0.022 (2) | 0.031 (3) | −0.0005 (17) | −0.0023 (17) | −0.0120 (18) |
C21 | 0.0266 (17) | 0.0149 (16) | 0.032 (2) | −0.0033 (14) | 0.0009 (16) | −0.0065 (16) |
C22 | 0.0174 (14) | 0.0182 (16) | 0.022 (2) | −0.0042 (12) | 0.0037 (14) | −0.0001 (15) |
C23 | 0.0134 (12) | 0.0136 (11) | 0.021 (2) | −0.0005 (9) | −0.0024 (14) | −0.0004 (15) |
C24 | 0.0184 (15) | 0.0217 (16) | 0.027 (2) | −0.0042 (13) | 0.0014 (15) | −0.0041 (15) |
C25 | 0.0179 (16) | 0.032 (2) | 0.029 (2) | −0.0046 (13) | 0.0009 (16) | 0.0026 (19) |
C26 | 0.0173 (17) | 0.0207 (16) | 0.042 (3) | −0.0012 (12) | −0.0056 (14) | −0.0027 (16) |
C27 | 0.0223 (18) | 0.0259 (18) | 0.032 (2) | 0.0004 (15) | −0.0065 (18) | −0.0122 (17) |
C28 | 0.0196 (16) | 0.0227 (16) | 0.028 (2) | 0.0022 (13) | −0.0021 (15) | −0.0063 (16) |
Sn1—C11 | 2.139 (4) | C12—H12 | 0.950 |
Sn1—C23 | 2.142 (3) | C13—C14 | 1.379 (6) |
Sn1—C17 | 2.145 (4) | C13—H13 | 0.950 |
Sn1—C1 | 2.163 (3) | C14—C15 | 1.363 (6) |
C1—C2 | 1.536 (4) | C14—H14 | 0.950 |
C1—H1A | 0.990 | C15—C16 | 1.378 (5) |
C1—H1B | 0.990 | C15—H15 | 0.950 |
C2—C5 | 1.524 (4) | C16—H16 | 0.950 |
C2—C3 | 1.526 (4) | C17—C22 | 1.392 (6) |
C2—C4 | 1.536 (5) | C17—C18 | 1.397 (6) |
C3—H3A | 0.980 | C18—C19 | 1.379 (5) |
C3—H3B | 0.980 | C18—H18 | 0.950 |
C3—H3C | 0.980 | C19—C20 | 1.377 (6) |
C4—H4A | 0.980 | C19—H19 | 0.950 |
C4—H4B | 0.980 | C20—C21 | 1.382 (6) |
C4—H4C | 0.980 | C20—H20 | 0.950 |
C5—C10 | 1.386 (5) | C21—C22 | 1.389 (5) |
C5—C6 | 1.397 (5) | C21—H21 | 0.950 |
C6—C7 | 1.389 (5) | C22—H22 | 0.950 |
C6—H6 | 0.950 | C23—C24 | 1.383 (5) |
C7—C8 | 1.368 (5) | C23—C28 | 1.393 (5) |
C7—H7 | 0.950 | C24—C25 | 1.394 (4) |
C8—C9 | 1.371 (5) | C24—H24 | 0.950 |
C8—H8 | 0.950 | C25—C26 | 1.377 (6) |
C9—C10 | 1.387 (5) | C25—H25 | 0.950 |
C9—H9 | 0.950 | C26—C27 | 1.378 (6) |
C10—H10 | 0.950 | C26—H26 | 0.950 |
C11—C12 | 1.394 (5) | C27—C28 | 1.388 (5) |
C11—C16 | 1.400 (5) | C27—H27 | 0.950 |
C12—C13 | 1.386 (5) | C28—H28 | 0.950 |
C11—Sn1—C23 | 109.53 (15) | C13—C12—C11 | 120.4 (4) |
C11—Sn1—C17 | 106.97 (11) | C13—C12—H12 | 119.8 |
C23—Sn1—C17 | 107.73 (15) | C11—C12—H12 | 119.8 |
C11—Sn1—C1 | 103.98 (15) | C14—C13—C12 | 120.3 (4) |
C23—Sn1—C1 | 118.93 (11) | C14—C13—H13 | 119.8 |
C17—Sn1—C1 | 109.10 (13) | C12—C13—H13 | 119.8 |
C2—C1—Sn1 | 121.1 (2) | C15—C14—C13 | 120.0 (4) |
C2—C1—H1A | 107.1 | C15—C14—H14 | 120.0 |
Sn1—C1—H1A | 107.1 | C13—C14—H14 | 120.0 |
C2—C1—H1B | 107.1 | C14—C15—C16 | 120.5 (4) |
Sn1—C1—H1B | 107.1 | C14—C15—H15 | 119.7 |
H1A—C1—H1B | 106.8 | C16—C15—H15 | 119.7 |
C5—C2—C3 | 112.0 (3) | C15—C16—C11 | 120.8 (4) |
C5—C2—C1 | 106.3 (3) | C15—C16—H16 | 119.6 |
C3—C2—C1 | 110.0 (3) | C11—C16—H16 | 119.6 |
C5—C2—C4 | 110.9 (3) | C22—C17—C18 | 118.2 (4) |
C3—C2—C4 | 107.8 (3) | C22—C17—Sn1 | 118.8 (3) |
C1—C2—C4 | 109.8 (3) | C18—C17—Sn1 | 123.0 (3) |
C2—C3—H3A | 109.5 | C19—C18—C17 | 121.2 (3) |
C2—C3—H3B | 109.5 | C19—C18—H18 | 119.4 |
H3A—C3—H3B | 109.5 | C17—C18—H18 | 119.4 |
C2—C3—H3C | 109.5 | C20—C19—C18 | 119.6 (4) |
H3A—C3—H3C | 109.5 | C20—C19—H19 | 120.2 |
H3B—C3—H3C | 109.5 | C18—C19—H19 | 120.2 |
C2—C4—H4A | 109.5 | C19—C20—C21 | 120.7 (4) |
C2—C4—H4B | 109.5 | C19—C20—H20 | 119.7 |
H4A—C4—H4B | 109.5 | C21—C20—H20 | 119.7 |
C2—C4—H4C | 109.5 | C20—C21—C22 | 119.5 (3) |
H4A—C4—H4C | 109.5 | C20—C21—H21 | 120.2 |
H4B—C4—H4C | 109.5 | C22—C21—H21 | 120.2 |
C10—C5—C6 | 117.2 (3) | C21—C22—C17 | 120.8 (4) |
C10—C5—C2 | 122.3 (3) | C21—C22—H22 | 119.6 |
C6—C5—C2 | 120.4 (3) | C17—C22—H22 | 119.6 |
C7—C6—C5 | 121.1 (4) | C24—C23—C28 | 118.4 (3) |
C7—C6—H6 | 119.5 | C24—C23—Sn1 | 120.4 (2) |
C5—C6—H6 | 119.5 | C28—C23—Sn1 | 121.2 (2) |
C8—C7—C6 | 120.6 (4) | C23—C24—C25 | 121.1 (3) |
C8—C7—H7 | 119.7 | C23—C24—H24 | 119.5 |
C6—C7—H7 | 119.7 | C25—C24—H24 | 119.5 |
C7—C8—C9 | 119.1 (3) | C26—C25—C24 | 119.8 (4) |
C7—C8—H8 | 120.4 | C26—C25—H25 | 120.1 |
C9—C8—H8 | 120.4 | C24—C25—H25 | 120.1 |
C8—C9—C10 | 120.8 (4) | C25—C26—C27 | 119.9 (3) |
C8—C9—H9 | 119.6 | C25—C26—H26 | 120.0 |
C10—C9—H9 | 119.6 | C27—C26—H26 | 120.0 |
C5—C10—C9 | 121.2 (3) | C26—C27—C28 | 120.3 (3) |
C5—C10—H10 | 119.4 | C26—C27—H27 | 119.8 |
C9—C10—H10 | 119.4 | C28—C27—H27 | 119.8 |
C12—C11—C16 | 117.9 (4) | C27—C28—C23 | 120.5 (3) |
C12—C11—Sn1 | 121.6 (3) | C27—C28—H28 | 119.8 |
C16—C11—Sn1 | 120.4 (3) | C23—C28—H28 | 119.8 |
C12—C11—Sn1—C1 | −155.0 (3) | Sn1—C1—C2—C3 | −64.9 (4) |
C16—C11—Sn1—C1 | 27.8 (4) | Sn1—C1—C2—C4 | 53.6 (3) |
C18—C17—Sn1—C1 | 81.4 (3) | Sn1—C1—C2—C5 | 173.7 (2) |
C22—C17—Sn1—C1 | −99.8 (3) | C1—C2—C5—C6 | −76.8 (4) |
C24—C23—Sn1—C1 | −122.4 (3) | C1—C2—C5—C10 | 99.0 (4) |
C28—C23—Sn1—C1 | 59.8 (3) | C3—C2—C5—C6 | 163.0 (3) |
C11—Sn1—C1—C2 | 156.5 (3) | C3—C2—C5—C10 | −21.2 (5) |
C17—Sn1—C1—C2 | −89.6 (3) | C4—C2—C5—C6 | 42.5 (5) |
C23—Sn1—C1—C2 | 34.4 (3) | C4—C2—C5—C10 | −141.6 (3) |
C—H···Cga | H···Cg | Hperpb | γc | C—H···Cg | C···Cg |
C6—H6···Cg2ii | 3.10 | 3.03 | 12 | 143 | 3.90 |
C12—H12···Cg4i | 3.21 | 3.02 | 20 | 127 | 3.86 |
C14—H14···Cg4iii | 3.19 | 3.08 | 15 | 144 | 4.00 |
C16—H16···Cg3iv | 3.18 | 3.05 | 16 | 140 | 3.95 |
C18—H18···Cg1ii | 3.24 | 3.13 | 14 | 133 | 3.94 |
C25—H25···Cg3i | 2.98 | 2.95 | 8 | 137 | 3.74 |
Notes: (a) Cg1–Cg4 are, respectively, the centroids of the rings defined by C5–C10, C11–C16, C17–C22 and C23–C28; (b) Hperp is the perpendicular distance of H from the π-acceptor ring; (c) γ is the angle at H between H···Cg and Hperp. Symmetry codes: (i) 2-x, 2-y, z; (ii) 3/2-x, y, z-1/2; (iii) x, y-1/2, 1/2+z; (iv) 3/2-x, y, 1/2+z. |
Acknowledgements
The authors thank CNPq, Brazil, for financial support.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–37. CrossRef CAS Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.