organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro­uracil–di­methyl­form­amide (2/1)

CROSSMARK_Color_square_no_text.svg

aChristopher Ingold Laboratory, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England
*Correspondence e-mail: a.hulme@ucl.ac.uk

(Received 1 September 2004; accepted 8 September 2004; online 18 September 2004)

A solvate of 5-fluoro­uracil with di­methylform­amide (DMF), 2C4H3FN2O2·C3H7NO, is reported. It crystallizes in the monoclinic space group P21/n, with two mol­ecules of 5-fluoro­uracil and one mol­ecule of DMF in the asymmetric unit. This solvate exhibits a sheet structure, with the DMF mol­ecules present on both surfaces of the sheet and 5-fluoro­uracil mol­ecules within the sheath of DMF mol­ecules.

Comment

In the course of a polymorph screen performed on 5-fluoro­uracil, three solvates were discovered. One of the solvate structures, (I[link]), containing two independent mol­ecules of 5-fluoro­uracil and one mol­ecule of di­methyl form­amide (DMF) in the asymmetric unit (Fig. 1[link]), and crystallizing in the space group P21/n, is reported here.[link]

[Scheme 1]

The two 5-fluoro­uracil mol­ecules in the asymmetric unit are linked to one another via N11—H11⋯O7 [N⋯O = 2.7962 (18) Å] hydrogen bonds. The DMF mol­ecule forms a hydrogen bond to one of the 5-fluoro­uracil mol­ecules in the asymmetric unit [N3—H3⋯O20, 2.7518 (19) Å]. A further two N—H⋯O hydrogen bonds link 5-fluoro­uracil mol­ecules in the crystal structure; these bonds are N1—H1⋯O17i [N⋯O = 2.8205 (19) Å], and N13—H13...O18ii [N⋯O = 2.8203 (18) Å]. The N13—H13⋯O18ii hydrogen bonds link the 5-fluoro­uracil mol­ecules into a centrosymmetric hydrogen-bonded dimer.

This solvate exhibits a sheet structure, in which the sheet has a discrete thickness of approximately 13.9 Å in the direction perpendicular to the plane of the sheet, and stacks parallel to the (10[\overline 1]) planes. The DMF mol­ecules are present on both surfaces of the sheet with 5-fluoro­uracil mol­ecules within this sheath of DMF mol­ecules. The parallel sheets approach each other closely, though there are no short intermolecular contacts between DMF mol­ecules in adjacent sheets. Within the sheets the 5-fluoro­uracil mol­ecules do not lie parallel to each other, but form a series of smaller blocks of parallel ribbons, as shown in Fig. 2[link]. These ribbons are finite in length and are terminated by surface DMF mol­ecules. Each of these ribbons is ca 26.8 Å long (Fig. 3[link]).

[Figure 1]
Figure 1
View (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) of the asymmetric unit of the title compound, with atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View parallel to the plane of two sheets of the structure. 5-Fluoro­uracil mol­ecules are coloured blue, while the DMF mol­ecules are red. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
Three adjacent ribbons of a larger sheet, showing an alternating crossed orientation. Other ribbons stack parallel to each of the ribbons in the diagram. Dashed lines indicate hydrogen bonds.

Experimental

5-Fluoro­uracil was obtained from the Aldrich Chemical Company Inc. The crystals were grown by vapour diffusion of diethyl ether into a saturated solution of 5-fluoro­uracil in di­methylform­amide.

Crystal data
  • 2C4H3FN2O2·C3H7NO

  • Mr = 333.26

  • Monoclinic, P21/n

  • a = 14.7361 (18) Å

  • b = 5.8693 (7) Å

  • c = 16.397 (2) Å

  • β = 100.524 (2)°

  • V = 1394.3 (3) Å3

  • Z = 4

  • Dx = 1.588 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2752 reflections

  • θ = 2.5–27.7°

  • μ = 0.14 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.42 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Narrow-frame ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.984

  • 11 701 measured reflections

  • 3331 independent reflections

  • 2768 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 28.3°

  • h = −19 → 19

  • k = −7 → 7

  • l = −21 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.108

  • S = 1.10

  • 3331 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.043P)2 + 0.5804P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O17i 0.83 (2) 2.01 (2) 2.8205 (19) 167 (2)
N3—H3⋯O20 0.85 (2) 1.90 (2) 2.7518 (19) 176 (2)
N11—H11⋯O7 0.86 (2) 1.97 (2) 2.7962 (18) 160 (2)
N13—H13⋯O18ii 0.86 (2) 1.96 (2) 2.8203 (18) 175 (2)
Symmetry codes: (i) [{\script{1\over 2}}-x,y-{\script{1\over 2}},{\script{1\over 2}}-z]; (ii) -x,-y,-z.

The methyl H atoms were placed in geometrically idealized positions (C—H = 0.98 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C). All other H atoms were located in a difference map and were refined isotropically; N—H and C—H distances were in the range 0.83 (2)–0.86 (2) and 0.94 (2)–0.97 (2) Å, respectively.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97.

5-Fluorouracil Dimethylformamide (2/1) top
Crystal data top
2C4H3FN2O2·C3H7NOF(000) = 688
Mr = 333.26Dx = 1.588 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2752 reflections
a = 14.7361 (18) Åθ = 2.5–27.7°
b = 5.8693 (7) ŵ = 0.14 mm1
c = 16.397 (2) ÅT = 150 K
β = 100.524 (2)°Block, colourless
V = 1394.3 (3) Å30.42 × 0.21 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3331 independent reflections
Radiation source: fine-focus sealed tube2768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω rotation with narrow frames scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.942, Tmax = 0.984k = 77
11701 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: found from delta F, methyl hydrogens placed using rigid rotor model
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.043P)2 + 0.5804P]
where P = (Fo2 + 2Fc2)/3
3331 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F90.74489 (8)0.3172 (2)0.40798 (8)0.0457 (3)
O70.39619 (8)0.3532 (2)0.24355 (8)0.0250 (3)
O80.68162 (9)0.6691 (2)0.29920 (10)0.0418 (4)
N10.50826 (10)0.1673 (3)0.33347 (9)0.0226 (3)
H10.4706 (15)0.067 (4)0.3390 (13)0.035 (6)*
N30.53929 (10)0.5079 (2)0.27412 (9)0.0217 (3)
H30.5228 (14)0.610 (4)0.2378 (13)0.032 (6)*
C20.47601 (11)0.3415 (3)0.28135 (10)0.0193 (3)
C40.63096 (12)0.5142 (3)0.31233 (11)0.0259 (4)
C50.65670 (12)0.3215 (3)0.36632 (11)0.0280 (4)
C60.59742 (13)0.1573 (3)0.37572 (11)0.0257 (4)
H60.6136 (13)0.031 (4)0.4103 (12)0.031 (5)*
F190.24134 (7)0.42399 (17)0.04386 (6)0.0274 (3)
O170.13892 (8)0.3590 (2)0.16837 (7)0.0242 (3)
O180.07207 (8)0.2263 (2)0.01531 (7)0.0260 (3)
N110.24840 (9)0.0874 (2)0.16475 (9)0.0209 (3)
H110.2885 (13)0.162 (3)0.1997 (12)0.024 (5)*
N130.10821 (9)0.0668 (2)0.07569 (9)0.0198 (3)
H130.0542 (15)0.124 (3)0.0582 (13)0.032 (6)*
C120.16439 (11)0.1830 (3)0.13902 (10)0.0193 (3)
C140.12779 (11)0.1352 (3)0.04047 (10)0.0196 (3)
C150.21743 (11)0.2249 (3)0.07521 (10)0.0196 (3)
C160.27456 (11)0.1152 (3)0.13482 (10)0.0222 (4)
H160.3353 (13)0.167 (3)0.1594 (12)0.026 (5)*
O200.49362 (8)0.8486 (2)0.15864 (8)0.0279 (3)
N200.54350 (10)1.1737 (2)0.10675 (9)0.0232 (3)
C200.61968 (13)1.3266 (3)0.10100 (13)0.0342 (4)
H20A0.67581.27130.13700.051*
H20B0.60511.47970.11860.051*
H20C0.62951.33180.04350.051*
C210.45396 (12)1.2308 (3)0.05755 (11)0.0304 (4)
H21A0.41201.10100.05690.046*
H21B0.46111.26660.00070.046*
H21C0.42851.36330.08190.046*
C220.55522 (12)0.9873 (3)0.15346 (10)0.0224 (4)
H220.6169 (13)0.966 (3)0.1847 (12)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F90.0267 (6)0.0442 (7)0.0568 (8)0.0046 (5)0.0171 (5)0.0188 (6)
O70.0196 (6)0.0247 (6)0.0289 (6)0.0033 (5)0.0005 (5)0.0026 (5)
O80.0291 (7)0.0347 (8)0.0558 (9)0.0127 (6)0.0073 (6)0.0173 (7)
N10.0245 (7)0.0172 (7)0.0256 (8)0.0045 (6)0.0033 (6)0.0015 (6)
N30.0222 (7)0.0170 (7)0.0240 (7)0.0026 (6)0.0010 (6)0.0058 (6)
C20.0220 (8)0.0180 (8)0.0182 (8)0.0018 (6)0.0045 (6)0.0038 (6)
C40.0227 (9)0.0225 (9)0.0302 (9)0.0047 (7)0.0011 (7)0.0025 (7)
C50.0225 (9)0.0279 (9)0.0298 (9)0.0010 (7)0.0050 (7)0.0054 (8)
C60.0305 (9)0.0201 (9)0.0246 (9)0.0019 (7)0.0003 (7)0.0047 (7)
F190.0264 (5)0.0233 (5)0.0315 (6)0.0062 (4)0.0028 (4)0.0078 (4)
O170.0244 (6)0.0196 (6)0.0265 (6)0.0022 (5)0.0005 (5)0.0063 (5)
O180.0218 (6)0.0260 (7)0.0266 (6)0.0025 (5)0.0048 (5)0.0097 (5)
N110.0173 (7)0.0211 (7)0.0223 (7)0.0017 (6)0.0015 (6)0.0051 (6)
N130.0164 (7)0.0201 (7)0.0210 (7)0.0032 (5)0.0015 (5)0.0022 (6)
C120.0198 (8)0.0183 (8)0.0187 (8)0.0017 (6)0.0008 (6)0.0005 (6)
C140.0200 (8)0.0204 (8)0.0183 (8)0.0010 (6)0.0031 (6)0.0023 (6)
C150.0216 (8)0.0165 (8)0.0212 (8)0.0015 (6)0.0052 (6)0.0020 (6)
C160.0178 (8)0.0244 (9)0.0239 (8)0.0027 (6)0.0025 (7)0.0012 (7)
O200.0271 (6)0.0235 (6)0.0321 (7)0.0006 (5)0.0025 (5)0.0098 (5)
N200.0231 (7)0.0218 (7)0.0247 (7)0.0044 (6)0.0046 (6)0.0064 (6)
C200.0280 (10)0.0291 (10)0.0459 (12)0.0015 (8)0.0080 (8)0.0141 (9)
C210.0285 (9)0.0316 (10)0.0291 (10)0.0062 (8)0.0002 (8)0.0117 (8)
C220.0236 (9)0.0214 (9)0.0224 (8)0.0057 (7)0.0048 (7)0.0029 (7)
Geometric parameters (Å, º) top
F9—C51.353 (2)N13—C141.372 (2)
O7—C21.227 (2)N13—C121.384 (2)
O8—C41.220 (2)N13—H130.86 (2)
N1—C21.361 (2)C14—C151.439 (2)
N1—C61.370 (2)C15—C161.333 (2)
N1—H10.83 (2)C16—H160.963 (19)
N3—C21.370 (2)O20—C221.234 (2)
N3—C41.382 (2)N20—C221.328 (2)
N3—H30.85 (2)N20—C201.454 (2)
C4—C51.444 (2)N20—C211.454 (2)
C5—C61.329 (3)C20—H20A0.98
C6—H60.94 (2)C20—H20B0.98
F19—C151.3491 (19)C20—H20C0.98
O17—C121.227 (2)C21—H21A0.98
O18—C141.2340 (19)C21—H21B0.98
N11—C121.354 (2)C21—H21C0.98
N11—C161.369 (2)C22—H220.967 (19)
N11—H110.86 (2)
C2—N1—C6122.85 (15)O18—C14—N13121.60 (15)
C2—N1—H1116.2 (15)O18—C14—C15124.96 (15)
C6—N1—H1120.9 (15)N13—C14—C15113.45 (14)
C2—N3—C4127.17 (15)C16—C15—F19121.59 (15)
C2—N3—H3116.8 (14)C16—C15—C14121.62 (15)
C4—N3—H3115.5 (14)F19—C15—C14116.79 (14)
O7—C2—N1123.49 (15)C15—C16—N11120.07 (15)
O7—C2—N3121.39 (15)C15—C16—H16124.6 (11)
N1—C2—N3115.12 (14)N11—C16—H16115.3 (11)
O8—C4—N3121.27 (16)C22—N20—C20121.68 (15)
O8—C4—C5126.24 (16)C22—N20—C21121.25 (15)
N3—C4—C5112.49 (15)C20—N20—C21117.06 (14)
C6—C5—F9121.25 (16)N20—C20—H20A109.5
C6—C5—C4122.34 (16)N20—C20—H20B109.5
F9—C5—C4116.41 (15)H20A—C20—H20B109.5
C5—C6—N1120.00 (16)N20—C20—H20C109.5
C5—C6—H6123.0 (12)H20A—C20—H20C109.5
N1—C6—H6117.0 (12)H20B—C20—H20C109.5
C12—N11—C16123.32 (14)N20—C21—H21A109.5
C12—N11—H11118.2 (13)N20—C21—H21B109.5
C16—N11—H11118.4 (13)H21A—C21—H21B109.5
C14—N13—C12126.76 (14)N20—C21—H21C109.5
C14—N13—H13116.6 (14)H21A—C21—H21C109.5
C12—N13—H13116.6 (14)H21B—C21—H21C109.5
O17—C12—N11123.64 (15)O20—C22—N20124.28 (16)
O17—C12—N13121.68 (15)O20—C22—H22120.6 (12)
N11—C12—N13114.68 (14)N20—C22—H22115.1 (12)
C6—N1—C2—O7179.53 (16)C16—N11—C12—N133.9 (2)
C6—N1—C2—N30.2 (2)C14—N13—C12—O17177.25 (16)
C4—N3—C2—O7179.27 (16)C14—N13—C12—N113.1 (2)
C4—N3—C2—N11.3 (3)C12—N13—C14—O18179.08 (16)
C2—N3—C4—O8177.84 (18)C12—N13—C14—C150.7 (2)
C2—N3—C4—C51.7 (3)O18—C14—C15—C16179.13 (17)
O8—C4—C5—C6178.5 (2)N13—C14—C15—C161.1 (2)
N3—C4—C5—C61.1 (3)O18—C14—C15—F190.1 (3)
O8—C4—C5—F92.1 (3)N13—C14—C15—F19179.71 (13)
N3—C4—C5—F9178.35 (16)F19—C15—C16—N11179.46 (14)
F9—C5—C6—N1179.27 (17)C14—C15—C16—N110.3 (3)
C4—C5—C6—N10.1 (3)C12—N11—C16—C152.4 (3)
C2—N1—C6—C50.4 (3)C20—N20—C22—O20177.80 (17)
C16—N11—C12—O17176.43 (16)C21—N20—C22—O200.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O17i0.83 (2)2.01 (2)2.8205 (19)167 (2)
N3—H3···O200.85 (2)1.90 (2)2.7518 (19)176 (2)
N11—H11···O70.86 (2)1.97 (2)2.7962 (18)160 (2)
N13—H13···O18ii0.86 (2)1.96 (2)2.8203 (18)175 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z.
 

Acknowledgements

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State'.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds