organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Powder study of N-[2-(4-hy­droxy-2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-7-yl)­ethyl]-3-[2-(2-naphthalen-1-yl­eth­oxy)­ethyl­sulfonyl]­propyl­aminium benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, bISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and cAstraZeneca R&D Charnwood, Loughborough, Leics LE11 5RH, England
*Correspondence e-mail: k.shankland@rl.ac.uk

(Received 30 July 2004; accepted 26 August 2004; online 18 September 2004)

The crystal structure of the title compound, C26H31N2O5S2+·C7O2H5, also known as AR-C69457CC, was solved by simulated annealing from laboratory X-ray powder diffraction data collected at room temperature to 2.1 Å resolution. Subsequent Rietveld refinement yielded an Rwp of 0.038 and site-occupancy factors for the disordered anion components of 0.5.

Comment

The title compound, (I[link]), was synthesized by AstraZeneca during the development of a potential treatment for chronic obstructive pulmonary disease. The crystal structure of (I[link]) was solved as part of a wider investigation into the application of simulated annealing to the problem of solving pharmaceutical crystal structures from laboratory X-ray powder diffraction data (Docherty, 2004[Docherty, A. (2004). PhD Thesis, University of Strathclyde, Glasgow, Scotland.]). The hydrogen bonding and ring interactions in (I[link]) are summarized in Fig. 3[link]. Hydro­gen bond `a' [O1⋯N2 = 2.82 (6) Å] links two cations to form a centrosymmetric dimer, within which the heterocyclic rings make face-to-face contact (R1⋯R1′ in Fig. 3[link]) and the carbonyl O atom makes a close approach to the centroid of benzene ring R2′ [O1⋯centroid = 3.54 (3) Å and C1—O1⋯centroid = 95 (3)°]. The heterocyclic ring also engages in face-to-face contact with the C2–C7 benzene ring (Fig. 3[link], top right, R1⋯R2a and R2⋯R1a). The donor–acceptor distances for the three cation–anion hydrogen bonds `b' to `d' fall in the range 2.38 (12)–2.51 (13) Å and the hydrogen-bonding scheme is preserved on switching between the two half-occupancy anion sites. The naphthalene rings engage with each other in offset face-to-face interactions (Fig. 3[link], bottom right) and pack, along with the benzoate phenyl ring, to form a hydro­phobic layer in the ab plane.[link]

[Scheme 1]
[Figure 1]
Figure 1
The atomic arrangement in (I[link]), showing the anion disordered over two half-occupancy sites. Isotropic displacement spheres are shown at the 50% probability level.
[Figure 2]
Figure 2
Final observed (points), calculated (line) and difference [(yobs - ycalc)/s.u.] profiles for the Rietveld refinement of (I[link]). The reflection positions are shown by vertical bars.
[Figure 3]
Figure 3
The hydrogen-bonding and ring interactions in (I[link]), calculated and illustrated using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; program version 280604).

Experimental

A polycrystalline sample of the title compound was recrystallized from aceto­nitrile solution by slow evaporation at room temperature. Data were collected from a sample in a rotating 0.7 mm borosilicate glass capillary using a variable count time scheme (Hill & Madsen, 2002[Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 114-116. Oxford University Press.]).

Crystal data
  • C26H31N2O5S2+·C7H5O2

  • Mr = 636.77

  • Triclinic, [P\overline 1]

  • a = 7.63122 (17) Å

  • b = 13.66728 (32) Å

  • c = 15.8058 (5) Å

  • α = 84.3849 (21)°

  • β = 87.4653 (19)°

  • γ = 75.7135 (13)°

  • V = 1589.52 (7) Å3

  • Z = 2

  • Dx = 1.328 Mg m−3

  • Cu Kα1 radiation

  • Cell parameters from 1347 reflections

  • θ = 2.5–34.5°

  • μ = 1.94 mm−1

  • T = 295 K

  • White

  • Specimen shape: cyl­inder

  • 12 × 0.7 × 0.7 mm

  • Specimen prepared at 295 K

  • Particle morphology: needle

Data collection
  • Bruker AXS D8 Advance diffractometer

  • Specimen mounting: 0.7 mm borosilicate capillary

  • Specimen mounted in transmission mode

  • 1347 measured reflections

  • h = 0 → 5

  • k = −9 → 10

  • l = −11 → 11

  • 2θmin = 5, 2θmax = 69.°

  • Increment in 2θ = 0.014°

Refinement
  • Rp = 0.037

  • Rwp = 0.038

  • Rexp = 0.015

  • S = 1.60

  • 213 parameters

  • Only coordinates of H atoms refined

  • (Δ/σ)max = 0.049

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

The diffraction pattern indexed to a triclinic cell [F(20) = 124.5, M(20) = 33.5; DICVOL91 (Boultif & Louer, 1991[Boultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987-993.])] and space group P[\overline 1] was assigned from volume considerations and a lack of systematic absences. The data set was background subtracted and truncated to 42° 2θ for Pawley fitting (Pawley, 1981[Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.]; χ2Pawley = 2.7) and the structure solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]), that is now implemented in the DASH computer program (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 2.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.]). The SA structure solution involved the optimization of two fragments (the cation with 13 torsion angles plus the anion) totaling 26 degrees of freedom. The best SA solution had a favourable χ2SA/χ2Pawley ratio of 5.7 and a chemically sensible packing arrangement, but suffered from a significant misfit to the data, even at modest 2θ angles. Rerunning the SA with the cation fixed in its previously determined position and optimizing the positions and orientations of two 50% occupancy anions halved the χ2SA/χ2Pawley ratio to 2.9 and significantly improved the fit at lower 2θ angles. The solved structure was then refined against the full data set (5–69° 2θ) using a restrained Rietveld method (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) as implemented in TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]), with the Rwp falling from 0.064 to 0.038 during the refinement. All cation atomic positions (including H atoms) were refined, subject to a series of restraints on bond lengths, angles and, where appropriate, planarity. The distance and angle restraints were based on a geometric analysis of five cations in four crystal structures (Docherty, 2004[Docherty, A. (2004). PhD Thesis, University of Strathclyde, Glasgow, Scotland.]) closely related to the title compound, namely (a) 2-(4-hydroxy-2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-7-yl)­ethyl­ammonium chloride, (b) the monohydrate of (a), (c) N-[2-(4-hydroxy-2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-7-yl)­ethyl]-3-[2-(2-(4-methyl­phenyl)­ethoxy)­ethyl­sulfamoyl]­propyl­aminium besilate besilate and (d) the tosilate analogue of (c). This was supplemented by a geometric analysis of naphthalene rings using the knowledge base, MOGUL (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. In preparation.]). The half-occupancy anions could not be refined reliably using the strategy just described and were therefore refined as rigid bodies. A March–Dollase correction of intensities for preferred orientation (Dollase, 1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]) was applied and the refined value of the preferred orientation coefficient along the [001] direction was 1.13 (1).

Data collection: DIFFRAC Plus XRD Commander (Kienle & Jacob, 2003[Kienle, M. & Jacob, M. (2003). DIFFRAC Plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: DASH (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 2.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.]); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: enCIFer (Cambridge Crystallographic Data Centre, 2004[Cambridge Crystallographic Data Centre (2004). enCIFer. Version 1.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.]).

Supporting information


Computing details top

Data collection: Bruker AXS D8-Advance control sofware; data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS (Coehlo, 2003).

N-[2-(4-hydroxy-2-oxo-2,3-dihydro-1,3-benzothiazol-7-yl)ethyl]- 3-[2-(2-naphthalen-1-ylethoxy)ethylsulfonyl]propylaminium benzoate top
Crystal data top
C26H31N2O5S2+·C7H5O2Z = 2
Mr = 636.77F(000) = 672
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Cu Kα1 radiation, λ = 1.54056 Å
a = 7.63122 (17) ŵ = 1.94 mm1
b = 13.6673 (3) ÅT = 295 K
c = 15.8058 (5) ÅParticle morphology: needle
α = 84.385 (2)°white
β = 87.4653 (19)°cylinder, 12 × 0.7 mm
γ = 75.7135 (13)°Specimen preparation: Prepared at 295 K
V = 1589.52 (7) Å3
Data collection top
Bruker AXS D8 Advance
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tubeScan method: step
Primary focussing, Ge 111 monochromator2θmin = 5°, 2θmax = 69.000°, 2θstep = 0.014°
Specimen mounting: 0.7 mm borosilicate capillary
Refinement top
Least-squares matrix: selected elements only194 restraints
Rp = 0.0371 constraint
Rwp = 0.038Only H-atom coordinates refined
Rexp = 0.015Weighting scheme based on measured s.u.'s
4480 data points(Δ/σ)max = 0.049
Profile function: Fundamental parameters with axial divergence correctionBackground function: Chebyshev polynomial
213 parametersPreferred orientation correction: A March-Dollase correction of intensities for preferred orientation was applied. The refined value of the preferred orientation coefficient along the [0 0 1] direction was 1.13(1).
Special details top

Geometry. Bond distances, bond angles, torsion angles and H-bond geometries were calculated using PLATON (Spek, 2003; program version 280604)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.8648 (18)0.4241 (10)0.5995 (11)0.0588 (15)*
S21.249 (2)0.9911 (10)0.5989 (12)0.0588 (15)*
O10.993 (3)0.301 (2)0.478 (2)0.0588 (15)*
O20.555 (4)0.625 (2)0.347 (3)0.0588 (15)*
O31.381 (3)0.9424 (19)0.661 (2)0.0588 (15)*
O41.277 (3)0.956 (2)0.515 (2)0.0588 (15)*
O51.062 (4)1.182 (3)0.711 (2)0.0588 (15)*
N10.792 (7)0.453 (4)0.441 (3)0.0588 (15)*
N20.863 (6)0.734 (4)0.687 (3)0.0588 (15)*
C10.896 (7)0.382 (4)0.495 (3)0.0588 (15)*
C20.713 (7)0.537 (4)0.563 (4)0.0588 (15)*
C30.691 (7)0.539 (4)0.476 (4)0.0588 (15)*
C40.576 (6)0.622 (4)0.432 (5)0.0588 (15)*
C50.483 (6)0.701 (4)0.478 (4)0.0588 (15)*
H50.41 (5)0.76 (3)0.45 (3)0.0760*
C60.510 (6)0.698 (4)0.565 (4)0.0588 (15)*
H60.45 (6)0.75 (3)0.60 (3)0.0760*
C70.627 (7)0.618 (4)0.609 (4)0.0588 (15)*
C80.656 (6)0.616 (5)0.704 (4)0.0588 (15)*
H8A0.76 (5)0.56 (3)0.72 (3)0.0760*
H8B0.55 (5)0.61 (3)0.73 (3)0.0760*
C90.693 (8)0.713 (5)0.727 (4)0.0588 (15)*
H9A0.59 (5)0.77 (3)0.71 (3)0.0760*
H9B0.70 (6)0.71 (3)0.79 (3)0.0760*
C100.856 (7)0.845 (5)0.678 (4)0.0588 (15)*
H10A0.81 (5)0.87 (3)0.73 (3)0.0760*
H10B0.78 (6)0.88 (3)0.63 (3)0.0760*
C111.040 (7)0.864 (4)0.656 (4)0.0588 (15)*
H11A1.09 (5)0.83 (3)0.61 (3)0.0760*
H11B1.12 (5)0.84 (3)0.70 (3)0.0760*
C121.036 (7)0.975 (5)0.638 (4)0.0588 (15)*
H12A1.01 (6)1.01 (3)0.69 (3)0.0760*
H12B0.95 (5)1.01 (3)0.60 (3)0.0760*
C131.241 (6)1.123 (4)0.589 (4)0.0588 (15)*
H13A1.34 (6)1.13 (3)0.56 (3)0.0760*
H13B1.13 (5)1.16 (3)0.56 (3)0.0760*
C141.241 (7)1.162 (4)0.675 (5)0.0588 (15)*
H14A1.32 (5)1.11 (3)0.71 (3)0.0760*
H14B1.28 (5)1.22 (3)0.67 (3)0.0760*
C151.033 (7)1.240 (4)0.781 (5)0.0588 (15)*
H15A1.07 (5)1.30 (3)0.77 (3)0.0760*
H15B1.10 (5)1.20 (3)0.83 (3)0.0760*
C160.832 (8)1.267 (4)0.803 (3)0.0588 (15)*
H16A0.81 (6)1.32 (3)0.84 (3)0.0760*
H16B0.77 (5)1.29 (3)0.75 (2)0.0760*
C170.773 (6)1.176 (4)0.846 (4)0.0588 (15)*
C180.705 (7)1.116 (5)0.797 (3)0.0588 (15)*
H180.69 (5)1.13 (3)0.74 (3)0.0760*
C190.650 (7)1.033 (4)0.835 (4)0.0588 (15)*
H190.61 (5)0.99 (3)0.80 (3)0.0760*
C200.673 (7)1.004 (3)0.920 (5)0.0588 (15)*
H200.64 (5)0.94 (3)0.94 (4)0.0760*
C210.747 (6)1.062 (4)0.972 (5)0.0588 (15)*
C220.802 (6)1.148 (4)0.934 (4)0.0588 (15)*
C230.876 (6)1.205 (4)0.987 (6)0.0588 (15)*
H230.91 (6)1.27 (3)0.96 (3)0.0760*
C240.902 (7)1.175 (5)1.072 (5)0.0588 (15)*
H240.94 (6)1.22 (3)1.11 (3)0.0760*
C250.836 (7)1.096 (5)1.109 (3)0.0588 (15)*
H250.85 (5)1.08 (3)1.17 (3)0.0760*
C260.772 (7)1.035 (4)1.061 (5)0.0588 (15)*
H260.74 (5)0.98 (3)1.09 (3)0.0760*
H3N0.88 (6)0.71 (3)0.64 (3)0.0760*
H2N0.96 (5)0.70 (3)0.72 (3)0.0760*
H1N0.79 (7)0.45 (4)0.39 (3)0.0760*
H210.63 (6)0.57 (3)0.32 (3)0.0760*
O60.172 (13)0.504 (9)0.726 (8)0.0588 (15)*0.5
O70.117 (13)0.632 (9)0.803 (8)0.0588 (15)*0.5
C270.161 (13)0.538 (9)0.798 (8)0.0588 (15)*0.5
C280.199 (13)0.467 (9)0.876 (8)0.0588 (15)*0.5
C290.318 (13)0.373 (9)0.873 (8)0.0588 (15)*0.5
C300.353 (13)0.306 (9)0.946 (8)0.0588 (15)*0.5
C310.270 (13)0.335 (9)1.023 (8)0.0588 (15)*0.5
C320.150 (13)0.429 (9)1.026 (8)0.0588 (15)*0.5
C330.114 (13)0.495 (9)0.953 (8)0.0588 (15)*0.5
H290.376 (13)0.353 (9)0.820 (8)0.0760*0.5
H300.435 (13)0.241 (9)0.944 (8)0.0760*0.5
H310.294 (13)0.289 (9)1.073 (8)0.0760*0.5
H320.094 (13)0.448 (9)1.079 (8)0.0760*0.5
H330.032 (13)0.559 (9)0.955 (8)0.0760*0.5
O6P0.268 (13)0.520 (9)0.715 (8)0.0588 (15)*0.5
O7P0.093 (13)0.632 (9)0.790 (8)0.0588 (15)*0.5
C27P0.213 (13)0.550 (9)0.786 (8)0.0588 (15)*0.5
C28P0.289 (13)0.490 (9)0.866 (8)0.0588 (15)*0.5
C29P0.346 (13)0.385 (9)0.869 (8)0.0588 (15)*0.5
C30P0.415 (13)0.329 (9)0.943 (8)0.0588 (15)*0.5
C31P0.430 (13)0.379 (9)1.014 (8)0.0588 (15)*0.5
C32P0.375 (13)0.484 (9)1.011 (8)0.0588 (15)*0.5
C33P0.303 (13)0.539 (9)0.937 (8)0.0588 (15)*0.5
H29P0.336 (13)0.352 (9)0.820 (8)0.0760*0.5
H30P0.453 (13)0.258 (9)0.945 (8)0.0760*0.5
H31P0.478 (13)0.340 (9)1.065 (8)0.0760*0.5
H32P0.385 (13)0.517 (9)1.060 (8)0.0760*0.5
H33P0.265 (13)0.611 (9)0.935 (8)0.0760*0.5
Geometric parameters (Å, º) top
S1—C11.79 (5)C10—H10B1.0 (4)
S1—C21.75 (6)C11—H11A0.9 (4)
S2—O31.43 (3)C11—H11B0.9 (5)
S2—O41.44 (4)C12—H12A1.0 (5)
S2—C121.77 (6)C12—H12B0.9 (4)
S2—C131.78 (5)C13—H13B1.0 (4)
O1—C11.22 (6)C13—H13A0.9 (5)
O2—C41.36 (9)C14—H14B0.9 (5)
O5—C141.43 (7)C14—H14A1.0 (5)
O5—C151.40 (8)C15—H15A0.9 (4)
N1—C11.35 (7)C15—H15B1.0 (5)
N1—C31.39 (8)C16—H16A1.0 (5)
N2—C101.50 (8)C16—H16B1.0 (3)
N2—C91.50 (8)C18—H180.9 (5)
C2—C31.39 (9)C19—H191.0 (3)
C2—C71.39 (8)C20—H201.0 (5)
C3—C41.40 (8)C23—H231.0 (5)
C4—C51.39 (8)C24—H241.0 (5)
C5—C61.40 (9)C25—H251.0 (5)
C6—C71.38 (8)C26—H260.9 (4)
C7—C81.52 (9)O6—C271.26
C8—C91.50 (9)O6P—C27P1.25
C10—C111.51 (8)O7—C271.25
C11—C121.51 (9)O7P—C27P1.27
C13—C141.51 (10)C27—C281.48
C15—C161.52 (8)C27P—C28P1.50
C16—C171.52 (8)C28—C291.38
C17—C181.38 (8)C28P—C29P1.39
C17—C221.42 (9)C28—C331.40
C18—C191.38 (8)C28P—C33P1.38
C19—C201.37 (10)C29—C301.39
C20—C211.42 (9)C29P—C30P1.38
C21—C261.43 (11)C30—C311.39
C21—C221.42 (8)C30P—C31P1.39
C22—C231.42 (9)C31—C321.39
C23—C241.37 (12)C31P—C32P1.39
C24—C251.37 (9)C32—C331.39
C25—C261.37 (9)C32P—C33P1.38
O2—H211.0 (4)C29—H290.96
N1—H1N0.8 (5)C29P—H29P0.95
N2—H2N0.9 (5)C30—H300.95
N2—H3N0.8 (4)C30P—H30P0.94
C5—H50.9 (4)C31—H310.96
C6—H61.0 (5)C31P—H31P0.96
C8—H8A1.0 (4)C32—H320.95
C8—H8B0.9 (4)C32P—H32P0.95
C9—H9A1.0 (4)C33—H330.94
C9—H9B1.0 (5)C33P—H33P0.95
C10—H10A0.9 (5)
C1—S1—C292 (3)C17—C22—C21119 (5)
O3—S2—O4117 (2)C22—C23—C24121 (6)
O3—S2—C12108 (3)C23—C24—C25120 (6)
O3—S2—C13108 (2)C24—C25—C26121 (6)
O4—S2—C12108 (2)C21—C26—C25120 (5)
O4—S2—C13108 (3)O6—C27—O7119
C12—S2—C13108 (3)O6P—C27P—O7P120
C14—O5—C15116 (4)O6—C27—C28120
C1—N1—C3116 (5)O6P—C27P—C28P120
C9—N2—C10112 (5)O7—C27—C28120
O1—C1—N1127 (5)O7P—C27P—C28P120
S1—C1—N1109 (4)C27—C28—C29120
S1—C1—O1124 (4)C27P—C28P—C29P120
S1—C2—C3110 (4)C27—C28—C33120
C3—C2—C7122 (5)C27P—C28P—C33P120
S1—C2—C7128 (5)C29—C28—C33120
N1—C3—C2114 (5)C29P—C28P—C33P120
C2—C3—C4121 (5)C28—C29—C30121
N1—C3—C4126 (6)C28P—C29P—C30P120
O2—C4—C5121 (5)C29—C30—C31120
O2—C4—C3121 (5)C29P—C30P—C31P119
C3—C4—C5118 (7)C30—C31—C32120
C4—C5—C6120 (5)C30P—C31P—C32P121
C5—C6—C7122 (5)C31—C32—C33120
C2—C7—C8121 (5)C31P—C32P—C33P120
C6—C7—C8122 (5)C28—C33—C32120
C2—C7—C6117 (6)C28P—C33P—C32P120
C7—C8—C9112 (5)C28—C29—H29120
N2—C9—C8114 (5)C28P—C29P—H29P119
N2—C10—C11112 (5)C30—C29—H29119
C10—C11—C12113 (5)C30P—C29P—H29P120
S2—C12—C11111 (4)C29—C30—H30120
S2—C13—C14111 (4)C29P—C30P—H30P120
O5—C14—C13110 (4)C31—C30—H30120
O5—C15—C16109 (5)C31P—C30P—H30P120
C15—C16—C17111 (4)C30—C31—H31120
C18—C17—C22121 (5)C30P—C31P—H31P119
C16—C17—C18119 (5)C32—C31—H31121
C16—C17—C22120 (5)C32P—C31P—H31P120
C17—C18—C19120 (5)C31—C32—H32119
C18—C19—C20121 (5)C31P—C32P—H32P120
C19—C20—C21120 (5)C33—C32—H32121
C20—C21—C26122 (5)C33P—C32P—H32P121
C22—C21—C26119 (5)C28—C33—H33120
C20—C21—C22119 (6)C28P—C33P—H33P120
C17—C22—C23123 (5)C32—C33—H33120
C21—C22—C23118 (6)C32P—C33P—H33P120
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3N···O1i0.8 (4)2.1 (5)2.82 (6)151 (12)
N2—H2N···O7Pii0.9 (5)1.6 (4)2.51 (13)167 (14)
N1—H1N···O6Piii0.8 (5)1.7 (5)2.50 (13)161 (13)
O2—H21···O6Piii1.0 (4)1.4 (5)2.38 (12)174 (13)
N2—H2N···O7ii0.9 (5)1.8 (4)2.75 (13)168 (14)
N1—H1N···O6iii0.8 (5)1.9 (5)2.67 (13)152 (13)
O2—H21···O6iii1.0 (4)1.8 (5)2.67 (12)158 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank AstraZeneca R&D Charnwood for providing AR-C69457CC and studentship funding, and EPSRC for grant GR/N07462/01.

References

First citationBoultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987–993.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. In preparation.  Google Scholar
First citationCambridge Crystallographic Data Centre (2004). enCIFer. Version 1.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.  Google Scholar
First citationCoelho, A. A. (2003). TOPAS. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDavid, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932.  Web of Science CSD CrossRef Google Scholar
First citationDavid, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 2.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.  Google Scholar
First citationDocherty, A. (2004). PhD Thesis, University of Strathclyde, Glasgow, Scotland.  Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 114–116. Oxford University Press.  Google Scholar
First citationKienle, M. & Jacob, M. (2003). DIFFRAC Plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationPawley, G. S. (1981). J. Appl. Cryst. 14, 357–361.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds