organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro-1,3-benzoxazole

CROSSMARK_Color_square_no_text.svg

aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 1 September 2004; accepted 3 September 2004; online 11 September 2004)

The structure of the title compound, C7H5ClN2O, comprises a planar mol­ecule that associates via N—H⋯N interactions to form R22(8) graph set hydrogen-bonded dimers, while N—H⋯Cl associations from the second 2-amino H atom create a two-dimensional hydrogen-bonding network containing C22(8) helical chains.

Comment

2-Amino-5-chloro-1,3-benzoxazole, or Zoxazol­amine, (I[link]), is a human metabolite and a centrally acting myorelaxant that was formerly used as an antispasmodic and uricosuric; current uses for the compound include as a tool for assessing hepatic cytochrome P-450 activity in rodents (The Merck Index, 2001[The Merck Index (2001). 13th ed. Whitehouse Station: Merck and Co. Inc.]). Chemically, (I[link]) is a 2-amino­oxazole derivative, the Cambridge Structural Database, version of April 2004 (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) lists 22 (in total) 2-amino­oxazoles, 2-amino­oxazolines, 2-amino­oxa­diazo­les and 2-amino­benzoxazoles, four being co-crystals containing (I[link]) (Lynch, Daly & Parsons, 2000[Lynch, D. E., Daly, D. & Parsons, S. (2000). Acta Cryst. C56, 1478-1479.], Lynch, Singh & Parsons, 2000[Lynch, D. E., Singh, M. & Parsons, S. (2000). Cryst. Eng. 3, 71-79.]). The structure of (I), reported here, consists of a planar mol­ecule (Fig. 1[link]) that associates via N—H⋯N interactions, forming a R22(8) graph set (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) hydrogen-bonded dimer (Fig. 2[link]). The second 2-amino N—H donates to an adjacent Cl atom, creating a two-dimensional hydrogen-bonding network that consists of C22(8) helical chains. Hydro­gen-bonding associations are listed in Table 1[link]. Molecules of (I[link]) are slip-stacked in the b-axis direction, 3.36 (2) Å apart.[link]

[Scheme 1]
[Figure 1]
Figure 1
The molecular structure and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram for (I[link]). Dotted lines represent hydrogen bonds. [Symmetry codes (i) −x, −y, −z; (ii) x − ½, ½ − y, z − ½.]

Experimental

The title compound was purchased from Aldrich Chemical Co. and recrystallized from ethanol.

Crystal data
  • C7H5ClN2O

  • Mr = 168.58

  • Monoclinic, P21/n

  • a = 9.4403 (19) Å

  • b = 3.7390 (7) Å

  • c = 19.737 (4) Å

  • β = 101.67 (3)°

  • V = 682.2 (2) Å3

  • Z = 4

  • Dx = 1.641 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3789 reflections

  • θ = 2.9–27.5°

  • μ = 0.49 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.24 × 0.18 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.806, Tmax = 0.978

  • 4816 measured reflections

  • 1526 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

  • h = −12 → 12

  • k = −4 → 4

  • l = −22 → 25

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.084

  • S = 1.06

  • 1526 reflections

  • 100 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0405P)2 + 0.2976P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯N3i 0.88 2.04 2.901 (2) 166
N21—H22⋯Cl5ii 0.88 2.83 3.444 (2) 128
Symmetry codes: (i) -x,-y,-z; (ii) [x-{\script{1\over 2}},{\script{1\over 2}}-y,z-{\script{1\over 2}}].

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with aromatic C—H distances of 0.95 Å and N—H distances of 0.88 Å. The isotropic displacement parameters were set equal to 1.25Ueq of the carrier atom.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON97 (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 3-17.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 2003); software used to prepare material for publication: SHELXL97.

2-Amino-5-chloro-1,3-benzoxazole top
Crystal data top
C7H5ClN2OF(000) = 344
Mr = 168.58Dx = 1.641 Mg m3
Monoclinic, P21/nMelting point = 458–458.5 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.4403 (19) ÅCell parameters from 3789 reflections
b = 3.7390 (7) Åθ = 2.9–27.5°
c = 19.737 (4) ŵ = 0.49 mm1
β = 101.67 (3)°T = 120 K
V = 682.2 (2) Å3Plate, colourless
Z = 40.24 × 0.18 × 0.05 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
1526 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.5°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 44
Tmin = 0.806, Tmax = 0.978l = 2225
4816 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.2976P]
where P = (Fo2 + 2Fc2)/3
1526 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35183 (11)0.2435 (3)0.01453 (5)0.0168 (2)
C20.21001 (15)0.1379 (4)0.00663 (7)0.0168 (3)
N210.12672 (14)0.1887 (4)0.05575 (6)0.0234 (3)
H210.03590.11830.06410.029*
H220.16260.29260.08860.029*
N30.17429 (12)0.0105 (3)0.06061 (6)0.0165 (3)
C40.33211 (14)0.1232 (4)0.17882 (7)0.0146 (3)
H40.26010.22950.19970.018*
C50.47302 (15)0.0765 (4)0.21461 (7)0.0148 (3)
Cl50.51663 (4)0.21998 (9)0.300743 (16)0.01855 (14)
C60.58231 (15)0.0731 (4)0.18576 (7)0.0163 (3)
H60.67750.09480.21270.020*
C70.55165 (15)0.1915 (4)0.11709 (8)0.0167 (3)
H70.62350.29570.09590.021*
C80.41178 (15)0.1480 (4)0.08232 (7)0.0147 (3)
C90.30223 (14)0.0054 (4)0.11057 (7)0.0137 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0157 (5)0.0231 (6)0.0112 (5)0.0035 (4)0.0015 (4)0.0023 (4)
C20.0164 (7)0.0184 (7)0.0149 (7)0.0024 (6)0.0015 (5)0.0012 (5)
N210.0190 (7)0.0374 (8)0.0123 (6)0.0066 (5)0.0008 (5)0.0067 (5)
N30.0158 (6)0.0203 (6)0.0123 (5)0.0015 (5)0.0001 (4)0.0014 (5)
C40.0159 (7)0.0140 (7)0.0142 (7)0.0004 (5)0.0038 (5)0.0002 (5)
C50.0190 (7)0.0126 (7)0.0121 (6)0.0012 (5)0.0012 (5)0.0010 (5)
Cl50.0210 (2)0.0211 (2)0.0118 (2)0.00004 (13)0.00093 (15)0.00199 (12)
C60.0147 (7)0.0161 (7)0.0166 (6)0.0005 (5)0.0001 (5)0.0017 (5)
C70.0161 (7)0.0173 (7)0.0172 (7)0.0026 (5)0.0045 (6)0.0015 (5)
C80.0184 (7)0.0151 (7)0.0102 (6)0.0000 (6)0.0023 (5)0.0004 (5)
C90.0139 (6)0.0131 (7)0.0137 (6)0.0003 (5)0.0017 (5)0.0021 (5)
Geometric parameters (Å, º) top
O1—C21.3742 (17)C4—H40.95
O1—C81.3898 (17)C5—C61.3926 (19)
C2—N31.3045 (18)C5—Cl51.7504 (14)
C2—N211.3335 (19)C6—C71.399 (2)
N21—H210.88C6—H60.95
N21—H220.88C7—C81.369 (2)
N3—C91.3962 (18)C7—H70.95
C4—C51.385 (2)C8—C91.3937 (19)
C4—C91.3908 (19)
C2—O1—C8103.47 (11)C6—C5—Cl5118.17 (11)
N3—C2—N21127.81 (13)C5—C6—C7119.86 (13)
N3—C2—O1115.88 (13)C5—C6—H6120.1
N21—C2—O1116.28 (12)C7—C6—H6120.1
C2—N21—H21120.0C8—C7—C6115.94 (13)
C2—N21—H22120.0C8—C7—H7122.0
H21—N21—H22120.0C6—C7—H7122.0
C2—N3—C9103.97 (11)C7—C8—O1127.99 (12)
C5—C4—C9116.09 (12)C7—C8—C9124.53 (13)
C5—C4—H4122.0O1—C8—C9107.47 (12)
C9—C4—H4122.0C4—C9—C8119.75 (13)
C4—C5—C6123.82 (13)C4—C9—N3131.05 (12)
C4—C5—Cl5118.01 (10)C8—C9—N3109.21 (12)
C8—O1—C2—N30.01 (16)C2—O1—C8—C7179.64 (14)
C8—O1—C2—N21177.95 (13)C2—O1—C8—C90.43 (14)
N21—C2—N3—C9178.10 (15)C5—C4—C9—C80.2 (2)
O1—C2—N3—C90.43 (16)C5—C4—C9—N3179.91 (13)
C9—C4—C5—C61.0 (2)C7—C8—C9—C40.6 (2)
C9—C4—C5—Cl5179.99 (10)O1—C8—C9—C4179.34 (11)
C4—C5—C6—C71.0 (2)C7—C8—C9—N3179.36 (13)
Cl5—C5—C6—C7179.90 (11)O1—C8—C9—N30.71 (15)
C5—C6—C7—C80.3 (2)C2—N3—C9—C4179.37 (14)
C6—C7—C8—O1179.40 (13)C2—N3—C9—C80.68 (15)
C6—C7—C8—C90.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N3i0.882.042.901 (2)166
N21—H22···Cl5ii0.882.833.444 (2)128
Symmetry codes: (i) x, y, z; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The author thanks the EPSRC National Crystallography Service (Southampton, England) and the EPSRC Chemical Database Service at Daresbury.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLynch, D. E., Daly, D. & Parsons, S. (2000). Acta Cryst. C56, 1478–1479.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E., Singh, M. & Parsons, S. (2000). Cryst. Eng. 3, 71–79.  CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 3–17.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThe Merck Index (2001). 13th ed. Whitehouse Station: Merck and Co. Inc.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds