organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(p-Nitro­phen­oxy)­tetra­hydro­pyran

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
*Correspondence e-mail: rc305@cam.ac.uk

(Received 20 September 2004; accepted 23 September 2004; online 9 October 2004)

The title compound, C11H13NO4 forms supramolecular sheets parallel to (001) via C—H⋯O hydrogen bonds. Sheets stack along the c axis via additional C—H⋯O interactions.

Comment

As part of a continuing study of the decomposition kinetics of 2-(p-nitro­phenoxy)­tetra­hydro­pyran, (I[link]), in amorphous saccharides, we have determined the crystal structure of (I[link]) at 180 K. Compound (I[link]) was synthesized by a modification of the procedure of Fife & Jao (1968[Fife, T. H. & Jao, L. K. (1968). J. Am. Chem. Soc. 90, 4081-4085.]) (see Experimental). Crystals of (I[link]), as a racemic mixture, were obtained from its solution in hexane at room temperature.[link]

[Scheme 1]

The asymmetric unit of (I[link]) consists of only one mol­ecule. Two-dimensional networks (Fig. 2[link]) perpendicular to the c axis are formed via C2—H2⋯O4 and C9—H9B⋯O2 hydrogen bonds (Table 1[link]). These two-dimensional networks then stack along the c axis, linked by further C7—H7⋯O1 interactions.

[Figure 1]
Figure 1
The molecule of (I[link]), showing displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
The two-dimensional supramolecular network formed by C—H⋯O hydrogen bonds (dashed lines) perpendicular to the c axis.
[Figure 3]
Figure 3
Projection on to (001), showing the two-dimensional networks stacking along the c axis.

Experimental

3,4-Di­hydro-2H-pyran and p-nitro­phenol were obtained from Aldrich and Avocado, respectively, and were used without further purification. Toluene, bought from Aldrich, was further dried over sodium wire. p-Nitro­phenol (0.1 mol) was dissolved in dry toluene (100 ml) and an excess of 3,4 di­hydro-2H-pyran (30 ml) was added to the solution. The resulting solution was stirred under reflux at 378 K for 3 d. The reaction mixture was then diluted with ether, followed by washing with 2% NaOH several times to remove the unreacted p-nitro­phenol. The organic layer, dried over Na2SO4, was then filtered and evaporated. Crystals of (I[link]) were obtained by dissolving the crude sample in hexane followed by slow evaporation at room temperature.

Crystal data
  • C11H13NO4

  • Mr = 223.22

  • Monoclinic, P21/c

  • a = 7.4772 (1) Å

  • b = 21.9462 (4) Å

  • c = 6.7828 (1) Å

  • β = 102.491 (1)°

  • V = 1086.69 (3) Å3

  • Z = 4

  • Dx = 1.364 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 12872 reflections

  • θ = 1.0–27.5°

  • μ = 0.11 mm−1

  • T = 180 (2) K

  • Block, pale yellow

  • 0.46 × 0.23 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Thin-slice ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.891, Tmax = 0.984

  • 13336 measured reflections

  • 2476 independent reflections

  • 1970 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 27.5°

  • h = −9 → 9

  • k = −28 → 28

  • l = −8 → 8

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.08

  • 2476 reflections

  • 146 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0567P)2 + 0.2284P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.37 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.061 (8)

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.95 2.40 3.1783 (16) 139
C7—H7⋯O1ii 1.00 2.41 3.3956 (18) 170
C9—H9B⋯O2iii 0.99 2.52 3.2930 (19) 135
Symmetry codes: (i) x-1,y,z; (ii) [1+x,{\script{1\over 2}}-y,{\script{1\over 2}}+z]; (iii) [1-x,y-{\script{1\over 2}},{\script{3\over 2}}-z].

All H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined using a riding model, with the Uiso values for each H atom taken as 1.2Ueq of the carrier atom.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: XP (Sheldrick, 1993[Sheldrick, G. M. (1993). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1993) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

2-(p-Nitrophenoxy)terahydropyran top
Crystal data top
C11H13NO4F(000) = 472
Mr = 223.22Dx = 1.364 Mg m3
Monoclinic, P21/cMelting point: 332 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71069 Å
a = 7.4772 (1) ÅCell parameters from 12872 reflections
b = 21.9462 (4) Åθ = 1.0–27.5°
c = 6.7828 (1) ŵ = 0.11 mm1
β = 102.491 (1)°T = 180 K
V = 1086.69 (3) Å3Plate, pale yellow
Z = 40.46 × 0.23 × 0.16 mm
Data collection top
Nonius KappaCCD
diffractometer
2476 independent reflections
Radiation source: fine-focus sealed tube1970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Thin–slice ω and φ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 99
Tmin = 0.891, Tmax = 0.984k = 2828
13336 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.2284P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2476 reflectionsΔρmax = 0.35 e Å3
146 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.061 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0794 (2)0.31572 (6)0.83905 (18)0.0541 (4)
O10.08743 (19)0.30900 (6)0.81357 (19)0.0712 (4)
O20.1547 (2)0.36578 (5)0.8542 (2)0.0771 (4)
O30.49426 (12)0.10316 (4)0.89300 (14)0.0412 (3)
O40.74541 (13)0.12513 (5)0.75296 (16)0.0515 (3)
C10.19406 (19)0.26134 (6)0.85389 (18)0.0395 (3)
C20.10857 (18)0.20498 (6)0.83302 (19)0.0382 (3)
H20.02110.20200.80970.046*
C30.21496 (17)0.15338 (6)0.84666 (19)0.0364 (3)
H30.15850.11440.83310.044*
C40.40482 (17)0.15789 (6)0.88016 (18)0.0350 (3)
C50.48881 (18)0.21476 (6)0.8987 (2)0.0423 (3)
H50.61830.21790.91990.051*
C60.3819 (2)0.26676 (6)0.8859 (2)0.0444 (3)
H60.43760.30590.89920.053*
C70.69021 (17)0.10322 (7)0.9249 (2)0.0462 (4)
H70.74110.13061.04140.055*
C80.7531 (2)0.03892 (8)0.9800 (2)0.0529 (4)
H8A0.69430.02401.08820.063*
H8B0.88730.03891.03320.063*
C90.7073 (2)0.00382 (7)0.8016 (2)0.0486 (4)
H9A0.57320.01030.76420.058*
H9B0.76660.04380.83840.058*
C100.7730 (2)0.02266 (7)0.6232 (2)0.0504 (4)
H10A0.90850.02430.65420.060*
H10B0.73250.00370.50330.060*
C110.6961 (2)0.08599 (7)0.5787 (2)0.0506 (4)
H11A0.74320.10360.46560.061*
H11B0.56090.08370.53660.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0908 (10)0.0414 (7)0.0316 (6)0.0167 (7)0.0162 (6)0.0050 (5)
O10.0788 (9)0.0680 (8)0.0628 (8)0.0356 (7)0.0064 (6)0.0026 (6)
O20.1359 (13)0.0348 (6)0.0680 (8)0.0119 (6)0.0382 (8)0.0075 (5)
O30.0356 (5)0.0401 (5)0.0492 (6)0.0012 (3)0.0121 (4)0.0002 (4)
O40.0435 (5)0.0500 (6)0.0657 (7)0.0119 (4)0.0219 (5)0.0089 (5)
C10.0592 (8)0.0350 (7)0.0253 (6)0.0061 (5)0.0113 (5)0.0018 (5)
C20.0420 (7)0.0421 (7)0.0309 (6)0.0036 (5)0.0085 (5)0.0027 (5)
C30.0399 (6)0.0354 (6)0.0345 (6)0.0028 (5)0.0094 (5)0.0009 (5)
C40.0405 (6)0.0366 (6)0.0291 (6)0.0004 (5)0.0101 (5)0.0007 (5)
C50.0431 (7)0.0464 (8)0.0386 (7)0.0091 (5)0.0117 (5)0.0057 (6)
C60.0657 (9)0.0362 (7)0.0332 (7)0.0112 (6)0.0151 (6)0.0037 (5)
C70.0338 (7)0.0586 (9)0.0446 (8)0.0008 (6)0.0052 (5)0.0105 (6)
C80.0450 (7)0.0688 (10)0.0434 (8)0.0164 (7)0.0063 (6)0.0034 (7)
C90.0473 (7)0.0473 (8)0.0522 (8)0.0113 (6)0.0133 (6)0.0061 (6)
C100.0499 (8)0.0542 (9)0.0499 (8)0.0040 (6)0.0171 (6)0.0048 (7)
C110.0597 (9)0.0501 (8)0.0467 (8)0.0045 (6)0.0218 (7)0.0014 (6)
Geometric parameters (Å, º) top
N1—O21.2284 (18)C5—H50.9500
N1—O11.2308 (19)C6—H60.9500
N1—C11.4600 (17)C7—C81.509 (2)
O3—C41.3684 (15)C7—H71.0000
O3—C71.4340 (15)C8—C91.511 (2)
O4—C71.4033 (18)C8—H8A0.9900
O4—C111.4430 (18)C8—H8B0.9900
C1—C61.379 (2)C9—C101.517 (2)
C1—C21.3855 (18)C9—H9A0.9900
C2—C31.3754 (17)C9—H9B0.9900
C2—H20.9500C10—C111.510 (2)
C3—C41.3918 (17)C10—H10A0.9900
C3—H30.9500C10—H10B0.9900
C4—C51.3905 (18)C11—H11A0.9900
C5—C61.385 (2)C11—H11B0.9900
O2—N1—O1123.43 (14)O3—C7—H7108.7
O2—N1—C1118.27 (15)C8—C7—H7108.7
O1—N1—C1118.29 (13)C7—C8—C9112.19 (12)
C4—O3—C7118.57 (10)C7—C8—H8A109.2
C7—O4—C11114.06 (11)C9—C8—H8A109.2
C6—C1—C2121.65 (12)C7—C8—H8B109.2
C6—C1—N1120.21 (13)C9—C8—H8B109.2
C2—C1—N1118.14 (13)H8A—C8—H8B107.9
C3—C2—C1118.73 (12)C8—C9—C10110.15 (13)
C3—C2—H2120.6C8—C9—H9A109.6
C1—C2—H2120.6C10—C9—H9A109.6
C2—C3—C4120.47 (12)C8—C9—H9B109.6
C2—C3—H3119.8C10—C9—H9B109.6
C4—C3—H3119.8H9A—C9—H9B108.1
O3—C4—C5125.25 (11)C11—C10—C9109.71 (12)
O3—C4—C3114.53 (11)C11—C10—H10A109.7
C5—C4—C3120.22 (12)C9—C10—H10A109.7
C6—C5—C4119.37 (13)C11—C10—H10B109.7
C6—C5—H5120.3C9—C10—H10B109.7
C4—C5—H5120.3H10A—C10—H10B108.2
C1—C6—C5119.54 (12)O4—C11—C10111.43 (13)
C1—C6—H6120.2O4—C11—H11A109.3
C5—C6—H6120.2C10—C11—H11A109.3
O4—C7—O3110.46 (11)O4—C11—H11B109.3
O4—C7—C8113.22 (12)C10—C11—H11B109.3
O3—C7—C8106.88 (12)H11A—C11—H11B108.0
O4—C7—H7108.7
O2—N1—C1—C60.57 (18)C2—C1—C6—C50.31 (19)
O1—N1—C1—C6178.88 (12)N1—C1—C6—C5179.69 (11)
O2—N1—C1—C2178.83 (12)C4—C5—C6—C10.4 (2)
O1—N1—C1—C21.72 (18)C11—O4—C7—O366.70 (15)
C6—C1—C2—C30.60 (19)C11—O4—C7—C853.12 (15)
N1—C1—C2—C3179.99 (11)C4—O3—C7—O469.12 (14)
C1—C2—C3—C40.21 (19)C4—O3—C7—C8167.31 (11)
C7—O3—C4—C51.07 (18)O4—C7—C8—C950.17 (16)
C7—O3—C4—C3179.24 (10)O3—C7—C8—C971.68 (15)
C2—C3—C4—O3179.24 (11)C7—C8—C9—C1050.86 (16)
C2—C3—C4—C50.47 (19)C8—C9—C10—C1154.19 (16)
O3—C4—C5—C6178.91 (11)C7—O4—C11—C1057.01 (15)
C3—C4—C5—C60.77 (19)C9—C10—C11—O456.86 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.403.1783 (16)139
C7—H7···O1ii1.002.413.3956 (18)170
C9—H9B···O2iii0.992.523.2930 (19)135
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Pfizer Institute for Pharmaceutical Materials Science for funding the research. RC also acknowledges a Cambridge Commonwealth Trust and ORS Award. We thank Dr John Davies for assistance with data collection and structure solution and the EPSRC for financial assistance towards the purchase of the Nonius KappaCCD diffractometer.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFife, T. H. & Jao, L. K. (1968). J. Am. Chem. Soc. 90, 4081–4085.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1993). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds