organic compounds
2-(4-Ethoxybenzyl)indan
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, C18H20O, arose as an unexpected hydrogenation product. All its geometrical parameters are normal and the crystal packing is controlled by
Comment
The title compound, (II), was prepared from 2-(4-ethoxybenzylidene)indan-1-one, (I), by catalytic hydrogenation over palladium/carbon. The usual product of this type of reaction is the benzylindanone (Ganellin et al., 1967) or the benzylindanol (Cromwell & Ayer, 1960), but in this case there were no carbonyl or hydroxyl absorptions in the IR spectrum of (II). The 13C NMR data suggested the benzylindan structure for (II), which was confirmed by the determination described here.
All the geometrical parameters for (II) (Fig. 1) lie within their expected ranges (Allen et al., 1995). The five-membered ring (C10, C11, C12, C17 and C18) adopts an with C10 at the flap position, displaced by 0.494 (7) Å from the least-squares plane through the other four C atoms [r.m.s. deviation = 0.006 Å and maximum = 0.007 (3) for C17]. There are no π–π interactions in (II) and the crystal packing is controlled by (Fig. 2).
Experimental
A solution of 2-(4-ethoxybenzylidene)indan-1-one (0.12 g) (Watson et al., 1993) in ethanol (10 ml) containing 10% Pd/C (0.04 g) was shaken under an atmosphere of hydrogen at 293 K for 6 h. Evaporation of the ethanol after removal of the catalyst gave (II) (0.08 g, 70%) as a colourless oil, which slowly solidified. It was recrystallized from ethyl acetate/hexane (1:4) to yield colourless crystals (m.p. 331–333 K). 13C NMR (100 MHz): δ 14.9, 38.9, 40.7, 41.7, 63.4, 114.3, 124.5, 126.0, 129.7, 133.4, 143.3 and 157.2.
Crystal data
|
Refinement
|
|
Diffraction quality was poor, as reflected in the very high merging R factor of 0.256 and the high proportion (52%) of `unobserved' [I < 2σ(I)] reflections, even at 120 K. Merging equivalent reflections assuming only triclinic symmetry resulted in similar values for Rint. All H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined as riding on their carrier atoms. For all H atoms, the constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied as appropriate. The methyl group was allowed to rotate about the C1—C2 bond as a rigid group.
Data collection: COLLECT (Nonius, 1998); cell HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536804026492/bt6549sup1.cif
contains datablocks II, global. DOI:Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S1600536804026492/bt6549IIsup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.C18H20O | F(000) = 544 |
Mr = 252.34 | Dx = 1.193 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3361 reflections |
a = 16.5624 (12) Å | θ = 2.9–27.5° |
b = 5.6290 (3) Å | µ = 0.07 mm−1 |
c = 16.3266 (14) Å | T = 120 K |
β = 112.610 (4)° | Rod, colourless |
V = 1405.14 (17) Å3 | 0.22 × 0.06 × 0.04 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2604 independent reflections |
Radiation source: fine-focus sealed tube | 1259 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.256 |
ω and φ scans | θmax = 25.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −20→19 |
Tmin = 0.985, Tmax = 0.997 | k = −6→6 |
15379 measured reflections | l = −19→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.089 | H-atom parameters constrained |
wR(F2) = 0.211 | w = 1/[σ2(Fo2) + (0.0752P)2 + 0.112P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2604 reflections | Δρmax = 0.24 e Å−3 |
174 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.023 (4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3190 (3) | 0.0259 (8) | 0.4491 (3) | 0.0399 (13) | |
H1A | 0.2825 | −0.1172 | 0.4364 | 0.060* | |
H1B | 0.3417 | 0.0489 | 0.4024 | 0.060* | |
H1C | 0.2839 | 0.1640 | 0.4512 | 0.060* | |
C2 | 0.3947 (2) | −0.0021 (7) | 0.5377 (3) | 0.0338 (11) | |
H2A | 0.3726 | −0.0206 | 0.5857 | 0.041* | |
H2B | 0.4295 | −0.1445 | 0.5371 | 0.041* | |
C3 | 0.5209 (2) | 0.2181 (6) | 0.6295 (3) | 0.0268 (10) | |
C4 | 0.5430 (2) | 0.0529 (7) | 0.6966 (3) | 0.0295 (11) | |
H4 | 0.5063 | −0.0803 | 0.6922 | 0.035* | |
C5 | 0.6207 (2) | 0.0840 (7) | 0.7718 (3) | 0.0300 (11) | |
H5 | 0.6360 | −0.0303 | 0.8181 | 0.036* | |
C6 | 0.6753 (2) | 0.2753 (7) | 0.7804 (3) | 0.0275 (10) | |
C7 | 0.6505 (2) | 0.4409 (7) | 0.7118 (3) | 0.0328 (12) | |
H7 | 0.6866 | 0.5757 | 0.7167 | 0.039* | |
C8 | 0.5749 (2) | 0.4147 (7) | 0.6366 (3) | 0.0333 (12) | |
H8 | 0.5597 | 0.5291 | 0.5903 | 0.040* | |
C9 | 0.7600 (2) | 0.3054 (7) | 0.8602 (3) | 0.0284 (11) | |
H9A | 0.7593 | 0.1989 | 0.9082 | 0.034* | |
H9B | 0.7638 | 0.4709 | 0.8819 | 0.034* | |
C10 | 0.8412 (2) | 0.2505 (6) | 0.8403 (3) | 0.0259 (10) | |
H10 | 0.8375 | 0.3465 | 0.7874 | 0.031* | |
C11 | 0.8510 (2) | −0.0146 (6) | 0.8193 (3) | 0.0277 (11) | |
H11A | 0.8307 | −0.1215 | 0.8556 | 0.033* | |
H11B | 0.8181 | −0.0501 | 0.7557 | 0.033* | |
C12 | 0.9491 (2) | −0.0373 (6) | 0.8442 (3) | 0.0238 (10) | |
C13 | 0.9952 (2) | −0.2116 (7) | 0.8208 (3) | 0.0261 (10) | |
H13 | 0.9654 | −0.3406 | 0.7840 | 0.031* | |
C14 | 1.0860 (2) | −0.1946 (7) | 0.8520 (3) | 0.0278 (11) | |
H14 | 1.1182 | −0.3138 | 0.8365 | 0.033* | |
C15 | 1.1299 (2) | −0.0081 (6) | 0.9051 (3) | 0.0292 (11) | |
H15 | 1.1919 | 0.0006 | 0.9258 | 0.035* | |
C16 | 1.0835 (2) | 0.1677 (6) | 0.9283 (3) | 0.0274 (11) | |
H16 | 1.1135 | 0.2980 | 0.9641 | 0.033* | |
C17 | 0.9930 (2) | 0.1519 (6) | 0.8990 (3) | 0.0242 (10) | |
C18 | 0.9283 (2) | 0.3113 (6) | 0.9165 (3) | 0.0244 (10) | |
H18A | 0.9435 | 0.4808 | 0.9147 | 0.029* | |
H18B | 0.9257 | 0.2761 | 0.9749 | 0.029* | |
O1 | 0.44753 (16) | 0.2072 (5) | 0.5520 (2) | 0.0345 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.027 (2) | 0.044 (3) | 0.044 (3) | −0.0006 (19) | 0.008 (2) | 0.000 (2) |
C2 | 0.025 (2) | 0.039 (2) | 0.037 (3) | −0.0065 (18) | 0.013 (2) | −0.002 (2) |
C3 | 0.023 (2) | 0.025 (2) | 0.032 (3) | 0.0053 (17) | 0.011 (2) | 0.0022 (19) |
C4 | 0.026 (2) | 0.029 (2) | 0.033 (3) | 0.0004 (17) | 0.011 (2) | −0.0025 (19) |
C5 | 0.029 (2) | 0.029 (2) | 0.036 (3) | −0.0008 (17) | 0.016 (2) | 0.0003 (19) |
C6 | 0.024 (2) | 0.028 (2) | 0.030 (3) | 0.0016 (18) | 0.0095 (19) | −0.0003 (19) |
C7 | 0.026 (2) | 0.030 (2) | 0.039 (3) | −0.0053 (18) | 0.009 (2) | 0.001 (2) |
C8 | 0.031 (2) | 0.026 (2) | 0.040 (3) | 0.0046 (18) | 0.012 (2) | 0.0044 (19) |
C9 | 0.026 (2) | 0.028 (2) | 0.032 (3) | −0.0009 (17) | 0.012 (2) | 0.0019 (19) |
C10 | 0.023 (2) | 0.025 (2) | 0.026 (3) | −0.0005 (17) | 0.0050 (18) | 0.0014 (18) |
C11 | 0.024 (2) | 0.031 (2) | 0.028 (3) | −0.0032 (17) | 0.0099 (19) | −0.0008 (19) |
C12 | 0.028 (2) | 0.019 (2) | 0.026 (2) | −0.0002 (16) | 0.0120 (18) | 0.0019 (17) |
C13 | 0.030 (2) | 0.023 (2) | 0.024 (3) | −0.0028 (17) | 0.0100 (19) | 0.0018 (18) |
C14 | 0.028 (2) | 0.026 (2) | 0.032 (3) | 0.0037 (17) | 0.014 (2) | 0.0084 (19) |
C15 | 0.022 (2) | 0.030 (2) | 0.034 (3) | 0.0026 (18) | 0.008 (2) | 0.006 (2) |
C16 | 0.028 (2) | 0.024 (2) | 0.028 (3) | −0.0068 (17) | 0.008 (2) | −0.0029 (18) |
C17 | 0.026 (2) | 0.020 (2) | 0.027 (3) | 0.0006 (16) | 0.0109 (19) | 0.0006 (16) |
C18 | 0.024 (2) | 0.023 (2) | 0.025 (3) | −0.0030 (16) | 0.0082 (18) | 0.0012 (17) |
O1 | 0.0266 (15) | 0.0303 (16) | 0.038 (2) | −0.0045 (12) | 0.0030 (14) | 0.0048 (13) |
C1—C2 | 1.514 (6) | C9—H9B | 0.9900 |
C1—H1A | 0.9800 | C10—C18 | 1.538 (5) |
C1—H1B | 0.9800 | C10—C11 | 1.554 (5) |
C1—H1C | 0.9800 | C10—H10 | 1.0000 |
C2—O1 | 1.433 (4) | C11—C12 | 1.522 (5) |
C2—H2A | 0.9900 | C11—H11A | 0.9900 |
C2—H2B | 0.9900 | C11—H11B | 0.9900 |
C3—C4 | 1.376 (6) | C12—C13 | 1.384 (5) |
C3—O1 | 1.378 (5) | C12—C17 | 1.401 (5) |
C3—C8 | 1.399 (5) | C13—C14 | 1.394 (5) |
C4—C5 | 1.407 (5) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—C15 | 1.377 (5) |
C5—C6 | 1.378 (5) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | C15—C16 | 1.393 (5) |
C6—C7 | 1.393 (6) | C15—H15 | 0.9500 |
C6—C9 | 1.512 (5) | C16—C17 | 1.389 (5) |
C7—C8 | 1.384 (6) | C16—H16 | 0.9500 |
C7—H7 | 0.9500 | C17—C18 | 1.508 (5) |
C8—H8 | 0.9500 | C18—H18A | 0.9900 |
C9—C10 | 1.532 (5) | C18—H18B | 0.9900 |
C9—H9A | 0.9900 | ||
C2—C1—H1A | 109.5 | C9—C10—C11 | 114.5 (3) |
C2—C1—H1B | 109.5 | C18—C10—C11 | 104.3 (3) |
H1A—C1—H1B | 109.5 | C9—C10—H10 | 107.8 |
C2—C1—H1C | 109.5 | C18—C10—H10 | 107.8 |
H1A—C1—H1C | 109.5 | C11—C10—H10 | 107.8 |
H1B—C1—H1C | 109.5 | C12—C11—C10 | 102.3 (3) |
O1—C2—C1 | 107.4 (3) | C12—C11—H11A | 111.3 |
O1—C2—H2A | 110.2 | C10—C11—H11A | 111.3 |
C1—C2—H2A | 110.2 | C12—C11—H11B | 111.3 |
O1—C2—H2B | 110.2 | C10—C11—H11B | 111.3 |
C1—C2—H2B | 110.2 | H11A—C11—H11B | 109.2 |
H2A—C2—H2B | 108.5 | C13—C12—C17 | 120.6 (3) |
C4—C3—O1 | 124.9 (3) | C13—C12—C11 | 129.1 (3) |
C4—C3—C8 | 120.2 (4) | C17—C12—C11 | 110.2 (3) |
O1—C3—C8 | 114.9 (3) | C12—C13—C14 | 118.8 (4) |
C3—C4—C5 | 119.0 (4) | C12—C13—H13 | 120.6 |
C3—C4—H4 | 120.5 | C14—C13—H13 | 120.6 |
C5—C4—H4 | 120.5 | C15—C14—C13 | 121.2 (4) |
C6—C5—C4 | 122.0 (4) | C15—C14—H14 | 119.4 |
C6—C5—H5 | 119.0 | C13—C14—H14 | 119.4 |
C4—C5—H5 | 119.0 | C14—C15—C16 | 119.9 (4) |
C5—C6—C7 | 117.5 (4) | C14—C15—H15 | 120.0 |
C5—C6—C9 | 122.0 (4) | C16—C15—H15 | 120.0 |
C7—C6—C9 | 120.4 (3) | C17—C16—C15 | 119.7 (3) |
C8—C7—C6 | 121.9 (4) | C17—C16—H16 | 120.1 |
C8—C7—H7 | 119.1 | C15—C16—H16 | 120.1 |
C6—C7—H7 | 119.1 | C16—C17—C12 | 119.7 (4) |
C7—C8—C3 | 119.3 (4) | C16—C17—C18 | 130.4 (3) |
C7—C8—H8 | 120.3 | C12—C17—C18 | 110.0 (3) |
C3—C8—H8 | 120.3 | C17—C18—C10 | 103.2 (3) |
C6—C9—C10 | 113.2 (4) | C17—C18—H18A | 111.1 |
C6—C9—H9A | 108.9 | C10—C18—H18A | 111.1 |
C10—C9—H9A | 108.9 | C17—C18—H18B | 111.1 |
C6—C9—H9B | 108.9 | C10—C18—H18B | 111.1 |
C10—C9—H9B | 108.9 | H18A—C18—H18B | 109.1 |
H9A—C9—H9B | 107.7 | C3—O1—C2 | 117.0 (3) |
C9—C10—C18 | 114.2 (3) | ||
O1—C3—C4—C5 | 179.2 (4) | C17—C12—C13—C14 | −0.6 (6) |
C8—C3—C4—C5 | −0.5 (6) | C11—C12—C13—C14 | −179.9 (4) |
C3—C4—C5—C6 | 0.2 (6) | C12—C13—C14—C15 | −0.2 (6) |
C4—C5—C6—C7 | 0.6 (6) | C13—C14—C15—C16 | 0.0 (6) |
C4—C5—C6—C9 | −178.3 (4) | C14—C15—C16—C17 | 1.0 (6) |
C5—C6—C7—C8 | −1.1 (7) | C15—C16—C17—C12 | −1.8 (6) |
C9—C6—C7—C8 | 177.9 (4) | C15—C16—C17—C18 | 177.9 (4) |
C6—C7—C8—C3 | 0.8 (7) | C13—C12—C17—C16 | 1.6 (6) |
C4—C3—C8—C7 | 0.0 (6) | C11—C12—C17—C16 | −178.9 (4) |
O1—C3—C8—C7 | −179.6 (4) | C13—C12—C17—C18 | −178.2 (4) |
C5—C6—C9—C10 | 105.4 (5) | C11—C12—C17—C18 | 1.3 (5) |
C7—C6—C9—C10 | −73.5 (5) | C16—C17—C18—C10 | 160.0 (4) |
C6—C9—C10—C18 | 172.3 (3) | C12—C17—C18—C10 | −20.3 (4) |
C6—C9—C10—C11 | −67.5 (4) | C9—C10—C18—C17 | 156.4 (3) |
C9—C10—C11—C12 | −155.2 (3) | C11—C10—C18—C17 | 30.6 (4) |
C18—C10—C11—C12 | −29.6 (4) | C4—C3—O1—C2 | −5.5 (6) |
C10—C11—C12—C13 | −162.6 (4) | C8—C3—O1—C2 | 174.1 (4) |
C10—C11—C12—C17 | 18.0 (4) | C1—C2—O1—C3 | −179.7 (4) |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, section 9. 5, pp. 685–706. Dordrecht: Kluwer Academic Publishers. Google Scholar
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cromwell, W. H. & Ayer, R. P. (1960). J. Am. Chem. Soc. 82, 133–141. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ganellin, C. R., Loynes, J. M., Ridley, H. F. & Spickett, R. G. W. (1967). J. Med. Chem. 10, 826–833. CrossRef CAS PubMed Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell and D. Bloor, RSC Special Publication No. 137, pp. 112–117. London: Royal Society of Chemistry. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.