metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(2,2′-bi­pyridyl-κ2N,N′)chloro(1-phenyl-4,4′-bipyridinium-κN1′)­ruthenium(II) bis­­(hexa­fluoro­phosphate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Manchester, Manchester M13 9PL, England, and bEPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: b.coe@man.ac.uk

(Received 27 August 2004; accepted 24 September 2004; online 9 October 2004)

The crystal structure of the title compound, [RuCl(C16H13N2)(C10H8N2)2](PF6)2, is described. Although related compounds are known to display nonlinear optical (NLO) properties, the present salt crystallizes in the centrosymmetric space group P21/c, so is not expected to show bulk NLO effects.

Comment

Investigations into new molecular materials having nonlinear optical (NLO) properties are important for the development of emerging optoelectronic and photonic technologies (Bosshard et al., 1995[Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials, Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon and Breach.]; Nalwa & Miyata, 1997[Nalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.]). Recent studies in this field have involved a wide range of organotransition metal complexes, which can show very pronounced NLO effects (Di Bella, 2001[Di Bella, S. (2001). Chem. Soc. Rev. 30, 355-366.]; Coe, 2004[Coe, B. J. (2004). In Comprehensive Coordination Chemistry II: from Biology to Nanotechnology, Vol. 9, edited by J. A. McCleverty & T. J. Meyer, Nonlinear Optical Properties of Metal Complexes, pp. 621-687. Oxford: Elsevier Pergamon.]). Previous studies from our laboratory have included ruthenium(II) ammine complexes of N-aryl­ated pyridinium ligands, such as N-phenyl-4,4′-bipyridinium (PhQ+; Coe et al., 1998[Coe, B. J., Harris, J. A., Harrington, L. J., Jeffery, J. C., Rees, L. H., Houbrechts S. & Persoons, A. (1998). Inorg. Chem. 37, 3391-3399.], 2002[Coe, B. J., Harris, J. A. & Brunschwig, B. S. (2002). J. Phys. Chem. A, 106, 897-905.]; Coe, Jones et al., 2003[Coe, B. J., Jones, L. A., Harris, J. A., Sanderson, E. E., Brunschwig, B. S., Asselberghs, I., Clays, K. & Persoons, A. (2003). Dalton Trans. pp. 2335-2341.]). The creation of potentially useful quadratic NLO materials requires the optimization of both molecular and macroscopic properties. Active chromophores must be arranged non-centrosymmetrically for bulk quadratic NLO effects, such as frequency doubling (second harmonic generation, SHG), to be observed.

We have recently studied a series of complex salts containing cis-[Ru(NH3)4(L)2]4+ (L = PhQ+ etc.), which have strongly two-dimensional molecular NLO responses (Coe, Harris & Brunschwig, 2003[Coe, B. J., Harris, J. A. & Brunschwig, B. S. (2003). Dalton Trans. pp. 2384-2386.]). The investigation of related compounds is clearly of interest, and readily accessible targets include species in which the ammine ligands are replaced by the classical chelating 2,2′-bipyridyl (bpy) ligand. The new compound, (I[link]), was synthesized as an intermediate on the route to cis-[Ru(bpy)2(PhQ+)2]4+, by the reaction of cis-RuCl2(bpy)2·2H2O (Lay et al., 1986[Lay, P. A., Sargeson, A. M. & Taube, H. (1986). Inorg. Synth. 24, 291-299.]) with [PhQ+]PF6 (Coe et al., 2000[Coe, B. J., Beyer, T., Jeffery, J. C., Coles, S. J., Gelbrich, T., Hursthouse, M. B. & Light, M. E. (2000). J. Chem. Soc. Dalton Trans. pp. 797-803.]).

[Scheme 1]

The complex salt, (I[link]), shows an intense broad visible absorption band at λmax = 498 nm in aceto­nitrile. This absorption is attributable to d [\rightarrow] π* metal-to-ligand charge-transfer (MLCT) transitions from the Ru-based HOMO to the LUMOs localized on the bpy and PhQ+ ligands. PhQ+ is expected to be a stronger electron acceptor than bpy, so it is likely that the low-energy tail of the MLCT band corresponds to Ru[\rightarrow] PhQ+ excitations. Such low-energy MLCT bands are typically associated with large molecular quadratic NLO responses (Di Bella, 2001[Di Bella, S. (2001). Chem. Soc. Rev. 30, 355-366.]; Coe, 2004[Coe, B. J. (2004). In Comprehensive Coordination Chemistry II: from Biology to Nanotechnology, Vol. 9, edited by J. A. McCleverty & T. J. Meyer, Nonlinear Optical Properties of Metal Complexes, pp. 621-687. Oxford: Elsevier Pergamon.]). Cyclic voltammetric studies reveal a reversible RuIII/II wave at E1/2 = 0.88 V versus Ag–AgCl, together with several irreversible ligand-based reduction processes, the first of which has an Epc value of −0.63 V versus Ag–AgCl (most likely attributable to a PhQ+/0 process).

The molecular structure of the complex cation in (I) is as indicated by 1NMR spectroscopy, with an approximately octahedral metal centre and a cis arrangement of the bpy ligands (Fig. 1[link]). The PhQ+ ligand is highly twisted, with a dihedral angle of 37.5 (3)° defined by the ring planes N1/C1–C5 and N2/C9/C10/C6–C8, and an angle of 47.0 (3)° between the planes N2/C9/C10/C6–C8 and C11–C16. Smaller twists between the pyridyl and pyridinium rings of PhQ+ have been observed in the compounds trans-[Ru(NH3)4(PTZ)(PhQ+)](PF6)3·Et2O (PTZ = S-coordinated pheno­thia­zine; Coe et al., 1998[Coe, B. J., Harris, J. A., Harrington, L. J., Jeffery, J. C., Rees, L. H., Houbrechts S. & Persoons, A. (1998). Inorg. Chem. 37, 3391-3399.]) and trans-[RuCl(pdma)2(PhQ+)](PF6)3·MeCN [pdma = 1,2-phenyl­enebis­(di­methyl­arsine); Coe et al., 2000[Coe, B. J., Beyer, T., Jeffery, J. C., Coles, S. J., Gelbrich, T., Hursthouse, M. B. & Light, M. E. (2000). J. Chem. Soc. Dalton Trans. pp. 797-803.]], whilst fac-[Re(CO)3(LL)(PhQ+)](PF6)2 (L–L = N,N′-bis-iso­propyl-1,4-di­aza­buta­diene) also shows a highly twisted ligand structure (Busby et al., 2004[Busby, M., Liard, D. J., Motevalli, M., Toms, H. & Vlcek, A. Jr (2004). Inorg. Chim. Acta, 357, 167-176.]).

The crystal packing of (I[link]) is of interest with regard to quad­ratic NLO properties. Unfortunately, (I) adopts the centrosymmetric space group P21/c and is therefore not expected to display bulk NLO effects. Nevertheless, it is quite possible that metathesis of the hexa­fluoro­phosphate counter-anions may cause the complex cations to adopt a more favourable crystal structure.

[Figure 1]
Figure 1
View of the complex cation in salt (I[link]) (35% probability displacement ellipsoids).

Experimental

A solution of cis-RuCl2(bpy)2·2H2O (100 mg. 0.192 mmol) and [PhQ+]PF6 (280 mg, 0.740 mmol) in degassed 2:1 ethanol/acetone (60 ml) was heated at reflux in the dark under Ar for 2.5 h. The resulting red–purple solution was reduced in volume on a rotary evaporator, and addition of aqueous NH4PF6 produced a purple precipitate, which was filtered off, washed with water and dried. Excess [PhQ+]PF6 was removed by washing several times with methanol to afford a dark-purple solid. Yield 102 mg (55%). The product (29 mg) was further purified by vapour diffusion of diethyl ether into a concentrated acetone solution, giving 22 mg of dark-purple crystals. Analysis calculated for C36H29ClF12N6P2Ru: C 44.48, H 3.01, N 8.65%; found: C 44.50, H 2.86, N 8.51%. 1H NMR (300 MHz, CD3COCD3, p.p.m.): 10.10 (1H, d, J = 5.7 Hz, bpy H6), 9.52 (2H, d, J = 7.0 Hz, C5H4N), 9.11 (2H, br s, C5H4N), 8.80 (4H, d, J = 6.9 Hz, C5H4N), 8.73 (1H, d, J = 8.2 Hz, bpy H3), 8.67 (1H, d, J = 7.8 Hz, bpy H3), 8.64 (1H, d, J = 7.8 Hz, bpy H3), 8.26 (2H, m, bpy H4 and H3), 8.18 (1H, d, J = 5.1 Hz, bpy H6), 8.08–7.94 (7H, m, 2 Ph, 3bpy H4 and 2bpy H6), 7.84 (4H, m, 3 Ph and bpy H5), 7.76 (1H, m, J = 1.5, 5.8 and 7.5 Hz, bpy H5), 7.45 (1H, m, J = 1.5, 5.9 and 7.1 Hz, bpy H5), 7.37 (1H, m, J = 1.3, 5.9 and 7.6 Hz, bpy H5). ES–MS m/z = 995 ({M + Na+}+), 827 ({M − PF6}+). Crystals were obtained by slow diffusion of diethyl ether vapour into an acetone solution at 277 K.

Crystal data
  • [RuCl(C16H13N2)(C10H8N2)2](PF6)2

  • Mr = 972.11

  • Monoclinic, P21/c

  • a = 12.687 (3) Å

  • b = 23.424 (17) Å

  • c = 12.956 (8) Å

  • β = 104.80 (4)°

  • V = 3722 (4) Å3

  • Z = 4

  • Dx = 1.735 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8598 reflections

  • θ = 2.9–27.5°

  • μ = 0.68 mm−1

  • T = 120 (2) K

  • Plate, dark purple

  • 0.38 × 0.22 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.783, Tmax = 0.980

  • 50 477 measured reflections

  • 8537 independent reflections

  • 5485 reflections with I > 2σ(I)

  • Rint = 0.097

  • θmax = 27.5°

  • h = −16 → 15

  • k = −30 → 30

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.128

  • S = 1.03

  • 8537 reflections

  • 651 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0483P)2 + 5.3619P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.40 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ru1—N32 2.029 (3)
Ru1—N22 2.038 (3)
Ru1—N21 2.053 (3)
Ru1—N31 2.057 (3)
Ru1—N1 2.125 (3)
Ru1—Cl1 2.4059 (16)
N32—Ru1—N22 91.32 (13)
N32—Ru1—N21 98.91 (14)
N22—Ru1—N21 78.99 (14)
N32—Ru1—N31 79.60 (15)
N22—Ru1—N31 95.61 (13)
N21—Ru1—N31 174.40 (13)
N32—Ru1—N1 92.09 (13)
N22—Ru1—N1 175.56 (13)
N21—Ru1—N1 97.65 (13)
N31—Ru1—N1 87.81 (13)
N32—Ru1—Cl1 173.48 (10)
N22—Ru1—Cl1 84.68 (10)
N21—Ru1—Cl1 85.41 (11)
N31—Ru1—Cl1 95.63 (11)
N1—Ru1—Cl1 92.18 (10)

The two hexa­fluoro­phosphate anions were both disordered over two main sites [site-occupancy factors: (i) PF6 0.45 (2):0.55 (2) P1:P101; (ii) PF6 0.581 (5):0.419 (2) P11:P111]. To simplify the modelling, the P—F bonds were restrained to be similar in length, with angles close to 90°. These restraints have resulted in some closer contacts than expected. All H atoms were included in idealized positions, with C—H = 0.95 Å and Uiso(H) values set at 1.2Ueq(C). The maximum electron-density peak is 2.23 Å from atom H39.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT (Hooft, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: reference?.

(I) top
Crystal data top
[RuCl(C16H13N2)(C10H8N2)2](PF6)2F(000) = 1944
Mr = 972.11Dx = 1.735 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.687 (3) ÅCell parameters from 8598 reflections
b = 23.424 (17) Åθ = 2.9–27.5°
c = 12.956 (8) ŵ = 0.68 mm1
β = 104.80 (4)°T = 120 K
V = 3722 (4) Å3Plate, red
Z = 40.38 × 0.22 × 0.03 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
8537 independent reflections
Radiation source: Nonius FR591 rotating anode5485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ and ω scans to fill Ewald Sphereh = 1615
Absorption correction: multi-scan
(SORTAV, Blessing, 1995, 1997)
k = 3030
Tmin = 0.783, Tmax = 0.980l = 1616
50477 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0483P)2 + 5.3619P]
where P = (Fo2 + 2Fc2)/3
8537 reflections(Δ/σ)max < 0.001
651 parametersΔρmax = 1.40 e Å3
612 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.75061 (3)0.111296 (13)0.21958 (3)0.02808 (11)
Cl10.64391 (9)0.04872 (4)0.08574 (9)0.0369 (3)
C10.9900 (3)0.11951 (17)0.2087 (3)0.0333 (10)
H11.00090.13380.27930.040*
C21.0783 (3)0.11734 (17)0.1661 (3)0.0336 (10)
H21.14790.12980.20660.040*
C31.0648 (3)0.09659 (17)0.0622 (3)0.0308 (10)
C40.9614 (3)0.07829 (19)0.0102 (4)0.0373 (11)
H40.94840.06320.06000.045*
C50.8782 (4)0.08157 (18)0.0581 (4)0.0362 (10)
H50.80840.06830.02000.043*
C61.1534 (3)0.09743 (17)0.0066 (3)0.0313 (10)
C71.2622 (3)0.08703 (17)0.0571 (3)0.0331 (10)
H71.28210.07650.13040.040*
C81.3411 (3)0.09177 (18)0.0027 (3)0.0344 (10)
H81.41520.08440.03810.041*
C91.2097 (4)0.11577 (18)0.1524 (4)0.0364 (10)
H91.19160.12570.22600.044*
C101.1287 (4)0.11082 (19)0.1009 (3)0.0370 (10)
H101.05490.11660.13910.044*
C111.3976 (3)0.11371 (18)0.1598 (3)0.0346 (10)
C121.3931 (4)0.1609 (2)0.2240 (4)0.0431 (11)
H121.33870.18930.22850.052*
C131.4703 (4)0.1655 (2)0.2816 (4)0.0506 (13)
H131.46960.19780.32620.061*
C141.5476 (4)0.1243 (2)0.2752 (4)0.0493 (13)
H141.59980.12780.31600.059*
C151.5501 (4)0.0781 (2)0.2104 (4)0.0458 (12)
H151.60490.04990.20570.055*
C161.4748 (3)0.07181 (19)0.1519 (3)0.0357 (10)
H161.47600.03950.10730.043*
N10.8894 (3)0.10280 (13)0.1574 (3)0.0303 (8)
N21.3138 (3)0.10693 (14)0.1012 (3)0.0318 (8)
C210.8645 (4)0.00676 (18)0.3363 (4)0.0398 (11)
H210.92630.01830.31280.048*
C220.8682 (4)0.04451 (19)0.3905 (4)0.0443 (12)
H220.93210.06740.40400.053*
C230.7811 (5)0.0620 (2)0.4243 (4)0.0486 (13)
H230.78220.09740.46020.058*
C240.6908 (4)0.02721 (19)0.4056 (3)0.0411 (11)
H240.62870.03860.42870.049*
C250.6903 (4)0.02437 (18)0.3530 (3)0.0355 (10)
C260.6005 (4)0.06549 (18)0.3333 (3)0.0342 (10)
C270.5062 (4)0.0586 (2)0.3675 (4)0.0415 (11)
H270.49510.02480.40370.050*
C280.4289 (4)0.1013 (2)0.3483 (4)0.0453 (12)
H280.36440.09720.37210.054*
C290.4453 (4)0.1496 (2)0.2947 (4)0.0427 (11)
H290.39310.17960.28150.051*
C300.5389 (3)0.15359 (19)0.2607 (3)0.0358 (10)
H300.54980.18690.22290.043*
N210.7769 (3)0.04043 (14)0.3160 (3)0.0319 (8)
N220.6160 (3)0.11275 (14)0.2780 (3)0.0312 (8)
C310.6522 (3)0.18837 (18)0.0307 (3)0.0340 (10)
H310.62650.15410.00660.041*
C320.6250 (4)0.23930 (19)0.0205 (4)0.0403 (11)
H320.57890.24030.09090.048*
C330.6650 (4)0.28928 (19)0.0308 (4)0.0397 (11)
H330.64820.32510.00370.048*
C340.7295 (3)0.28589 (17)0.1329 (4)0.0341 (10)
H340.75870.31980.16950.041*
C350.7525 (3)0.23367 (17)0.1832 (3)0.0308 (9)
C360.8151 (3)0.22600 (17)0.2942 (3)0.0293 (9)
C370.8586 (4)0.27001 (19)0.3628 (4)0.0378 (11)
H370.85000.30840.33850.045*
C380.9141 (4)0.25818 (19)0.4658 (4)0.0416 (11)
H380.94500.28820.51330.050*
C390.9246 (4)0.2024 (2)0.4997 (3)0.0394 (11)
H390.96290.19330.57080.047*
C400.8789 (3)0.16000 (18)0.4291 (3)0.0343 (10)
H400.88520.12160.45350.041*
N310.7130 (3)0.18468 (13)0.1306 (3)0.0288 (8)
N320.8261 (3)0.17033 (14)0.3281 (3)0.0281 (8)
F11.3343 (12)0.1808 (5)0.4946 (14)0.081 (5)0.45 (2)
F21.2107 (13)0.1984 (7)0.5870 (11)0.074 (4)0.45 (2)
F31.1527 (10)0.2741 (5)0.4872 (17)0.097 (5)0.45 (2)
F41.1588 (13)0.1890 (8)0.4098 (12)0.117 (6)0.45 (2)
F51.2749 (13)0.2566 (7)0.3927 (18)0.124 (6)0.45 (2)
F61.3279 (8)0.2662 (5)0.569 (2)0.105 (6)0.45 (2)
P11.2432 (9)0.2276 (4)0.4897 (12)0.072 (3)0.45 (2)
F1011.3098 (7)0.2751 (3)0.4877 (12)0.080 (3)0.55 (2)
F1021.2117 (11)0.2166 (7)0.5690 (9)0.071 (3)0.55 (2)
F1031.1430 (8)0.1748 (4)0.4139 (9)0.060 (3)0.55 (2)
F1041.1295 (8)0.2679 (5)0.4225 (14)0.092 (4)0.55 (2)
F1051.2439 (7)0.2296 (5)0.3349 (8)0.078 (3)0.55 (2)
F1061.3239 (8)0.1792 (4)0.4792 (11)0.059 (3)0.55 (2)
P1011.2279 (5)0.2245 (3)0.4527 (7)0.0457 (16)0.55 (2)
F111.2027 (7)0.0807 (4)0.2224 (7)0.054 (2)0.581 (5)
F121.0650 (8)0.0206 (6)0.2242 (11)0.038 (3)0.581 (5)
F131.1163 (4)0.0208 (3)0.4038 (4)0.0532 (17)0.581 (5)
F141.2366 (4)0.0037 (2)0.3098 (5)0.0577 (18)0.581 (5)
F151.2575 (4)0.0787 (2)0.4007 (3)0.0438 (14)0.581 (5)
F161.0847 (4)0.10382 (18)0.3157 (4)0.0492 (15)0.581 (5)
P111.1611 (4)0.0492 (2)0.3136 (4)0.0307 (10)0.581 (5)
F1111.1848 (13)0.0931 (5)0.2491 (11)0.091 (6)0.419 (5)
F1121.0578 (11)0.0255 (9)0.2354 (15)0.047 (5)0.419 (5)
F1131.1773 (7)0.0282 (3)0.3503 (5)0.062 (2)0.419 (5)
F1141.2220 (5)0.0060 (3)0.2088 (6)0.059 (2)0.419 (5)
F1151.3033 (6)0.0400 (4)0.3723 (5)0.063 (2)0.419 (5)
F1161.1404 (8)0.0588 (5)0.3988 (7)0.078 (3)0.419 (5)
P1111.1815 (6)0.0333 (3)0.3028 (6)0.0393 (17)0.419 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0348 (2)0.02182 (17)0.0286 (2)0.00108 (15)0.00990 (14)0.00148 (15)
Cl10.0439 (6)0.0312 (6)0.0360 (6)0.0081 (5)0.0110 (5)0.0054 (5)
C10.034 (2)0.035 (2)0.030 (2)0.0032 (19)0.007 (2)0.0032 (19)
C20.035 (2)0.032 (2)0.029 (2)0.0009 (19)0.0006 (19)0.0024 (19)
C30.037 (2)0.025 (2)0.030 (2)0.0036 (17)0.008 (2)0.0003 (17)
C40.039 (3)0.044 (3)0.030 (2)0.007 (2)0.010 (2)0.011 (2)
C50.034 (2)0.036 (3)0.039 (3)0.0059 (19)0.010 (2)0.007 (2)
C60.037 (3)0.027 (2)0.030 (2)0.0001 (17)0.008 (2)0.0063 (18)
C70.039 (3)0.031 (2)0.030 (2)0.0003 (19)0.008 (2)0.0025 (19)
C80.033 (2)0.034 (2)0.033 (3)0.0007 (18)0.002 (2)0.0026 (19)
C90.041 (3)0.039 (3)0.028 (2)0.000 (2)0.007 (2)0.005 (2)
C100.034 (2)0.043 (3)0.032 (3)0.001 (2)0.005 (2)0.009 (2)
C110.039 (2)0.033 (2)0.033 (2)0.009 (2)0.010 (2)0.008 (2)
C120.053 (3)0.037 (3)0.042 (3)0.005 (2)0.018 (2)0.002 (2)
C130.062 (3)0.047 (3)0.045 (3)0.010 (3)0.018 (3)0.004 (2)
C140.047 (3)0.059 (3)0.047 (3)0.016 (2)0.024 (3)0.003 (3)
C150.042 (3)0.048 (3)0.049 (3)0.005 (2)0.015 (2)0.003 (2)
C160.032 (2)0.040 (3)0.035 (3)0.007 (2)0.009 (2)0.003 (2)
N10.036 (2)0.0267 (19)0.029 (2)0.0030 (15)0.0105 (16)0.0019 (15)
N20.037 (2)0.0274 (19)0.032 (2)0.0028 (15)0.0104 (17)0.0031 (16)
C210.050 (3)0.032 (2)0.037 (3)0.005 (2)0.011 (2)0.006 (2)
C220.070 (3)0.028 (2)0.033 (3)0.013 (2)0.011 (2)0.003 (2)
C230.084 (4)0.028 (3)0.032 (3)0.004 (3)0.013 (3)0.002 (2)
C240.061 (3)0.037 (3)0.027 (3)0.011 (2)0.015 (2)0.003 (2)
C250.053 (3)0.029 (2)0.026 (2)0.004 (2)0.013 (2)0.0019 (19)
C260.047 (3)0.031 (2)0.027 (2)0.007 (2)0.013 (2)0.0050 (19)
C270.054 (3)0.038 (3)0.036 (3)0.010 (2)0.018 (2)0.002 (2)
C280.044 (3)0.057 (3)0.040 (3)0.011 (2)0.021 (2)0.011 (2)
C290.040 (3)0.043 (3)0.047 (3)0.002 (2)0.014 (2)0.008 (2)
C300.036 (3)0.033 (2)0.036 (3)0.0007 (19)0.006 (2)0.005 (2)
N210.050 (2)0.0221 (18)0.0258 (19)0.0033 (16)0.0131 (17)0.0030 (15)
N220.034 (2)0.0311 (19)0.031 (2)0.0042 (16)0.0113 (16)0.0072 (17)
C310.036 (2)0.031 (2)0.034 (3)0.0028 (18)0.007 (2)0.004 (2)
C320.043 (3)0.038 (3)0.035 (3)0.001 (2)0.001 (2)0.005 (2)
C330.046 (3)0.032 (2)0.040 (3)0.004 (2)0.010 (2)0.010 (2)
C340.041 (3)0.022 (2)0.041 (3)0.0016 (18)0.013 (2)0.0003 (19)
C350.031 (2)0.029 (2)0.035 (3)0.0016 (18)0.013 (2)0.0017 (19)
C360.028 (2)0.030 (2)0.033 (2)0.0002 (17)0.0131 (19)0.0044 (19)
C370.044 (3)0.031 (2)0.039 (3)0.003 (2)0.013 (2)0.003 (2)
C380.046 (3)0.036 (3)0.043 (3)0.005 (2)0.012 (2)0.013 (2)
C390.046 (3)0.045 (3)0.026 (2)0.002 (2)0.008 (2)0.004 (2)
C400.042 (3)0.031 (2)0.031 (3)0.0005 (19)0.013 (2)0.002 (2)
N310.0317 (19)0.0272 (18)0.028 (2)0.0002 (14)0.0081 (16)0.0010 (15)
N320.0308 (19)0.0281 (18)0.027 (2)0.0017 (14)0.0111 (16)0.0047 (15)
F10.112 (11)0.060 (9)0.064 (9)0.018 (7)0.009 (7)0.016 (6)
F20.104 (8)0.056 (8)0.064 (7)0.028 (6)0.021 (6)0.009 (5)
F30.082 (7)0.051 (6)0.146 (13)0.011 (5)0.005 (8)0.030 (7)
F40.151 (12)0.115 (12)0.066 (8)0.051 (9)0.005 (8)0.003 (8)
F50.165 (13)0.089 (11)0.134 (14)0.008 (9)0.065 (12)0.055 (11)
F60.092 (7)0.062 (6)0.155 (16)0.010 (5)0.018 (8)0.049 (8)
P10.088 (5)0.034 (3)0.095 (7)0.001 (3)0.024 (4)0.008 (4)
F1010.083 (5)0.048 (4)0.101 (9)0.022 (3)0.009 (6)0.002 (5)
F1020.089 (6)0.081 (9)0.055 (6)0.008 (5)0.038 (5)0.006 (5)
F1030.065 (5)0.046 (4)0.060 (5)0.019 (3)0.001 (4)0.009 (3)
F1040.073 (5)0.058 (5)0.144 (11)0.021 (4)0.027 (6)0.034 (6)
F1050.087 (5)0.093 (7)0.057 (5)0.009 (4)0.024 (4)0.023 (4)
F1060.054 (5)0.052 (7)0.080 (7)0.005 (4)0.032 (5)0.001 (5)
P1010.046 (2)0.031 (2)0.063 (4)0.0042 (15)0.018 (2)0.005 (2)
F110.032 (3)0.087 (6)0.042 (4)0.015 (3)0.006 (3)0.017 (4)
F120.051 (5)0.031 (4)0.027 (5)0.010 (4)0.002 (4)0.003 (3)
F130.050 (3)0.071 (4)0.036 (3)0.016 (3)0.005 (2)0.021 (3)
F140.052 (3)0.039 (3)0.079 (5)0.016 (3)0.011 (3)0.002 (3)
F150.048 (3)0.043 (3)0.033 (3)0.011 (2)0.005 (2)0.010 (2)
F160.053 (3)0.037 (3)0.053 (3)0.008 (2)0.006 (2)0.009 (2)
P110.0355 (18)0.031 (2)0.0245 (19)0.0020 (15)0.0053 (13)0.0040 (15)
F1110.149 (13)0.028 (5)0.080 (10)0.025 (6)0.002 (7)0.021 (6)
F1120.040 (6)0.066 (10)0.036 (8)0.009 (5)0.014 (5)0.008 (6)
F1130.086 (6)0.046 (4)0.045 (4)0.005 (4)0.003 (4)0.016 (3)
F1140.056 (5)0.079 (5)0.045 (5)0.007 (4)0.023 (4)0.020 (4)
F1150.062 (5)0.083 (6)0.040 (4)0.016 (4)0.006 (4)0.005 (4)
F1160.083 (7)0.104 (8)0.047 (5)0.028 (6)0.017 (5)0.027 (6)
P1110.053 (4)0.034 (4)0.034 (2)0.006 (3)0.015 (2)0.002 (2)
Geometric parameters (Å, º) top
Ru1—N322.029 (3)C27—H270.9500
Ru1—N222.038 (3)C28—C291.371 (6)
Ru1—N212.053 (3)C28—H280.9500
Ru1—N312.057 (3)C29—C301.372 (6)
Ru1—N12.125 (3)C29—H290.9500
Ru1—Cl12.4059 (16)C30—N221.345 (5)
C1—N11.338 (5)C30—H300.9500
C1—C21.371 (6)C31—N311.330 (5)
C1—H10.9500C31—C321.366 (6)
C2—C31.400 (6)C31—H310.9500
C2—H20.9500C32—C331.377 (6)
C3—C41.381 (6)C32—H320.9500
C3—C61.481 (6)C33—C341.368 (6)
C4—C51.357 (6)C33—H330.9500
C4—H40.9500C34—C351.382 (6)
C5—N11.352 (5)C34—H340.9500
C5—H50.9500C35—N311.363 (5)
C6—C101.383 (6)C35—C361.465 (6)
C6—C71.390 (6)C36—N321.372 (5)
C7—C81.368 (6)C36—C371.381 (6)
C7—H70.9500C37—C381.370 (6)
C8—N21.349 (5)C37—H370.9500
C8—H80.9500C38—C391.373 (6)
C9—N21.334 (5)C38—H380.9500
C9—C101.367 (6)C39—C401.375 (6)
C9—H90.9500C39—H390.9500
C10—H100.9500C40—N321.331 (5)
C11—C161.372 (6)C40—H400.9500
C11—C121.375 (6)F1—P11.581 (11)
C11—N21.464 (5)F2—P11.579 (10)
C12—C131.380 (6)F3—P11.578 (11)
C12—H120.9500F4—P11.570 (11)
C13—C141.363 (7)F5—P11.568 (10)
C13—H130.9500F6—P11.569 (10)
C14—C151.366 (7)F101—P1011.565 (8)
C14—H140.9500F102—P1011.583 (8)
C15—C161.370 (6)F103—P1011.579 (9)
C15—H150.9500F104—P1011.578 (9)
C16—H160.9500F105—P1011.596 (8)
C21—N211.332 (5)F106—P1011.586 (9)
C21—C221.386 (6)F11—P111.593 (7)
C21—H210.9500F12—P111.600 (8)
C22—C231.352 (7)F13—P111.572 (6)
C22—H220.9500F14—P111.575 (5)
C23—C241.375 (7)F15—P111.594 (6)
C23—H230.9500F16—P111.609 (6)
C24—C251.386 (6)F111—P1111.570 (10)
C24—H240.9500F112—P1111.600 (11)
C25—N211.360 (5)F113—P1111.571 (8)
C25—C261.463 (6)F114—P1111.575 (8)
C26—N221.360 (5)F115—P1111.585 (9)
C26—C271.387 (6)F116—P1111.583 (8)
C27—C281.379 (7)
N32—Ru1—N2291.32 (13)C25—N21—Ru1114.7 (3)
N32—Ru1—N2198.91 (14)C30—N22—C26118.1 (4)
N22—Ru1—N2178.99 (14)C30—N22—Ru1126.3 (3)
N32—Ru1—N3179.60 (15)C26—N22—Ru1115.4 (3)
N22—Ru1—N3195.61 (13)N31—C31—C32122.8 (4)
N21—Ru1—N31174.40 (13)N31—C31—H31118.6
N32—Ru1—N192.09 (13)C32—C31—H31118.6
N22—Ru1—N1175.56 (13)C31—C32—C33119.5 (4)
N21—Ru1—N197.65 (13)C31—C32—H32120.3
N31—Ru1—N187.81 (13)C33—C32—H32120.3
N32—Ru1—Cl1173.48 (10)C34—C33—C32118.2 (4)
N22—Ru1—Cl184.68 (10)C34—C33—H33120.9
N21—Ru1—Cl185.41 (11)C32—C33—H33120.9
N31—Ru1—Cl195.63 (11)C33—C34—C35120.6 (4)
N1—Ru1—Cl192.18 (10)C33—C34—H34119.7
N1—C1—C2124.3 (4)C35—C34—H34119.7
N1—C1—H1117.9N31—C35—C34120.2 (4)
C2—C1—H1117.9N31—C35—C36115.2 (4)
C1—C2—C3119.2 (4)C34—C35—C36124.6 (4)
C1—C2—H2120.4N32—C36—C37120.8 (4)
C3—C2—H2120.4N32—C36—C35114.6 (3)
C4—C3—C2116.4 (4)C37—C36—C35124.6 (4)
C4—C3—C6120.7 (4)C38—C37—C36119.9 (4)
C2—C3—C6122.7 (4)C38—C37—H37120.1
C5—C4—C3120.8 (4)C36—C37—H37120.1
C5—C4—H4119.6C37—C38—C39119.2 (4)
C3—C4—H4119.6C37—C38—H38120.4
N1—C5—C4123.4 (4)C39—C38—H38120.4
N1—C5—H5118.3C38—C39—C40119.0 (4)
C4—C5—H5118.3C38—C39—H39120.5
C10—C6—C7117.1 (4)C40—C39—H39120.5
C10—C6—C3119.2 (4)N32—C40—C39122.9 (4)
C7—C6—C3123.7 (4)N32—C40—H40118.5
C8—C7—C6120.8 (4)C39—C40—H40118.5
C8—C7—H7119.6C31—N31—C35118.7 (4)
C6—C7—H7119.6C31—N31—Ru1126.4 (3)
N2—C8—C7120.0 (4)C35—N31—Ru1114.9 (3)
N2—C8—H8120.0C40—N32—C36118.2 (3)
C7—C8—H8120.0C40—N32—Ru1126.0 (3)
N2—C9—C10121.1 (4)C36—N32—Ru1115.8 (3)
N2—C9—H9119.5F5—P1—F690.0 (6)
C10—C9—H9119.5F5—P1—F489.6 (7)
C9—C10—C6120.4 (4)F6—P1—F4179.6 (8)
C9—C10—H10119.8F5—P1—F391.0 (6)
C6—C10—H10119.8F6—P1—F389.3 (6)
C16—C11—C12122.6 (4)F4—P1—F390.8 (6)
C16—C11—N2118.9 (4)F5—P1—F2179.7 (9)
C12—C11—N2118.5 (4)F6—P1—F290.2 (6)
C11—C12—C13117.7 (4)F4—P1—F290.2 (7)
C11—C12—H12121.1F3—P1—F288.7 (6)
C13—C12—H12121.1F5—P1—F189.9 (7)
C14—C13—C12120.7 (5)F6—P1—F190.1 (6)
C14—C13—H13119.7F4—P1—F189.8 (7)
C12—C13—H13119.7F3—P1—F1178.8 (8)
C13—C14—C15120.1 (4)F2—P1—F190.3 (7)
C13—C14—H14119.9F101—P101—F10490.6 (6)
C15—C14—H14119.9F101—P101—F103178.0 (7)
C14—C15—C16121.0 (5)F104—P101—F10388.0 (5)
C14—C15—H15119.5F101—P101—F10292.9 (7)
C16—C15—H15119.5F104—P101—F10291.4 (6)
C15—C16—C11117.8 (4)F103—P101—F10288.5 (6)
C15—C16—H16121.1F101—P101—F10691.5 (5)
C11—C16—H16121.1F104—P101—F106177.6 (8)
C1—N1—C5115.8 (3)F103—P101—F10689.9 (6)
C1—N1—Ru1124.2 (3)F102—P101—F10689.7 (6)
C5—N1—Ru1119.9 (3)F101—P101—F10589.0 (5)
C9—N2—C8120.5 (4)F104—P101—F10590.0 (6)
C9—N2—C11118.8 (4)F103—P101—F10589.6 (6)
C8—N2—C11120.7 (4)F102—P101—F105177.6 (7)
N21—C21—C22122.1 (4)F106—P101—F10588.8 (6)
N21—C21—H21118.9F13—P11—F1491.6 (4)
C22—C21—H21118.9F13—P11—F11177.1 (6)
C23—C22—C21120.1 (5)F14—P11—F1191.3 (5)
C23—C22—H22120.0F13—P11—F1590.8 (4)
C21—C22—H22120.0F14—P11—F1590.1 (4)
C22—C23—C24118.5 (4)F11—P11—F1589.2 (4)
C22—C23—H23120.8F13—P11—F1290.4 (6)
C24—C23—H23120.8F14—P11—F1290.2 (6)
C23—C24—C25120.2 (4)F11—P11—F1289.5 (6)
C23—C24—H24119.9F15—P11—F12178.7 (7)
C25—C24—H24119.9F13—P11—F1689.4 (4)
N21—C25—C24120.7 (4)F14—P11—F16178.9 (5)
N21—C25—C26114.8 (4)F11—P11—F1687.7 (4)
C24—C25—C26124.5 (4)F15—P11—F1690.0 (3)
N22—C26—C27121.0 (4)F12—P11—F1689.7 (6)
N22—C26—C25114.7 (4)F111—P111—F113176.8 (8)
C27—C26—C25124.3 (4)F111—P111—F11488.2 (7)
C28—C27—C26119.4 (4)F113—P111—F11488.9 (5)
C28—C27—H27120.3F111—P111—F11693.6 (8)
C26—C27—H27120.3F113—P111—F11689.3 (6)
C29—C28—C27119.8 (4)F114—P111—F116178.2 (7)
C29—C28—H28120.1F111—P111—F11591.7 (7)
C27—C28—H28120.1F113—P111—F11589.7 (5)
C28—C29—C30118.4 (4)F114—P111—F11590.9 (5)
C28—C29—H29120.8F116—P111—F11589.2 (6)
C30—C29—H29120.8F111—P111—F11289.6 (10)
N22—C30—C29123.4 (4)F113—P111—F11289.0 (9)
N22—C30—H30118.3F114—P111—F11290.0 (9)
C29—C30—H30118.3F116—P111—F11289.9 (9)
C21—N21—C25118.4 (4)F115—P111—F112178.4 (10)
C21—N21—Ru1126.6 (3)
 

Acknowledgements

The authors thank the EPSRC for funding crystallographic facilities and for a postdoctoral grant (GR/R81459).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials, Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon and Breach.  Google Scholar
First citationBusby, M., Liard, D. J., Motevalli, M., Toms, H. & Vlcek, A. Jr (2004). Inorg. Chim. Acta, 357, 167–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoe, B. J. (2004). In Comprehensive Coordination Chemistry II: from Biology to Nanotechnology, Vol. 9, edited by J. A. McCleverty & T. J. Meyer, Nonlinear Optical Properties of Metal Complexes, pp. 621–687. Oxford: Elsevier Pergamon.  Google Scholar
First citationCoe, B. J., Beyer, T., Jeffery, J. C., Coles, S. J., Gelbrich, T., Hursthouse, M. B. & Light, M. E. (2000). J. Chem. Soc. Dalton Trans. pp. 797–803.  Web of Science CSD CrossRef Google Scholar
First citationCoe, B. J., Harris, J. A. & Brunschwig, B. S. (2002). J. Phys. Chem. A, 106, 897–905.  Web of Science CrossRef CAS Google Scholar
First citationCoe, B. J., Harris, J. A. & Brunschwig, B. S. (2003). Dalton Trans. pp. 2384–2386.  Web of Science CrossRef Google Scholar
First citationCoe, B. J., Harris, J. A., Harrington, L. J., Jeffery, J. C., Rees, L. H., Houbrechts S. & Persoons, A. (1998). Inorg. Chem. 37, 3391–3399.  Google Scholar
First citationCoe, B. J., Jones, L. A., Harris, J. A., Sanderson, E. E., Brunschwig, B. S., Asselberghs, I., Clays, K. & Persoons, A. (2003). Dalton Trans. pp. 2335–2341.  Web of Science CrossRef Google Scholar
First citationDi Bella, S. (2001). Chem. Soc. Rev. 30, 355–366.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLay, P. A., Sargeson, A. M. & Taube, H. (1986). Inorg. Synth. 24, 291–299.  CrossRef CAS Google Scholar
First citationNalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds