organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3:5,6-Di-O-iso­propyl­­idene-2-C-hydro­xymethyl-D-talono-1,4-lactone

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography Laboratory, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and cArla Foods Ingredients, Viby J, Denmark
*Correspondence e-mail: howard.shallard-brown@lmh.ox.ac.uk

(Received 13 October 2004; accepted 25 October 2004; online 30 October 2004)

The title diacetonide, C13H20O7, readily available in quantity from D-tagatose, is likely to be a useful carbohydrate starting material. The current structure analysis resolves any ambig­uities arising from the synthetic route over the configuration at the new chiral centre and the size of the lactone ring, but otherwise shows no unusual features.

Comment

Sugars provide the largest group of readily available chiral building blocks and bio-active scaffolds (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S.(2004). Compt. Rend. Chim. 7, 65-90.]; Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: Wiley.]). Although little studied since initial investigations by Kiliani (Kiliani, 1885[Kiliani, H. (1885). Ber. Dtsch Chem. Ges. 18, 3066-3074.], 1928[Kiliani, H. (1928). Ber. Dtsch Chem. Ges. 61, 1155-1169.]; Gorin & Perlin, 1958[Gorin, P. A. J. & Perlin, A. S. (1958). Can. J. Chem. 36, 480-485.]), the reaction of ketoses with aqueous potassium cyanide easily produces a mixture of branched sugar lactones under aqueous conditions. The reaction of the lactones produced from D-fructose and L-sorbose with acetone in the presence of acid gives rise to readily crystallized diacetonides likely to furnish a new family of carbohydrate-derived chiral building blocks with branched carbon chains (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., Van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. In the press.]). The full exploitation of this technology requires access to a wide range of ketoses; in the past, only D-fructose and L-sorbose have been readily available. However, the impetus for the development of low calorie sweeteners has led to an extensive biotechnology which provides almost any hexose by combinations of microbial oxidations and enzyme-catalysed epimerizations (Granstrom et al., 2004[Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]). Thus D-tagatose (2[link]) (see scheme), previously considered a rare sugar, is prepared on an industrial scale for use in soft drinks and ready-to-eat cereals (Skytte, 2002[Skytte, U. P. (2002). Cereal Foods World, 47, 224-227.]).[link]

[Scheme 1]

The Kiliani reaction of cyanide with D-tagatose (2[link]) gave an excellent yield of different amounts of two lactones. Extraction of this mixture with acetone in the presence of sulfuric acid gave a mixture of diacetonides; the major product (1[link]) was easily isolated as a crystalline material. The current structure analysis of (1[link]) resolves any ambiguities arising from the synthetic route over the configuration at the new chiral centre and the size of the lactone ring. The diacetonide (1[link]) is likely to be a useful starting material for the preparation of a number of branched sugar mimics.

The crystal and molecular structures of (1[link]) show no unusual features. As expected for sugar derivatives, hydrogen bonding occurs between mol­ecules, in this case, linking mol­ecules into ribbons parallel to the c axis.

[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are of arbitrary radii.
[Figure 2]
Figure 2
Packing diagram viewed along the b axis. Molecules are linked into ribbons by hydrogen bonds (dashed lines).

Experimental

The title compound was crystallized from diethyl ether by inward diffusion of n-hexane to yield plate-like colourless crystals. These did not cleave well, leading to the use of a large crystal. The multi-scan technique was used to correct for changes in illuminated volume.

Crystal data
  • C13H20O7

  • Mr = 288.30

  • Orthorhombic, P212121

  • a = 7.8609 (3) Å

  • b = 10.7470 (4) Å

  • c = 16.5516 (6) Å

  • V = 1398.30 (9) Å3

  • Z = 4

  • Dx = 1.369 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1577 reflections

  • θ = 5–27°

  • μ = 0.11 mm−1

  • T = 190 K

  • Block, colourless

  • 0.65 × 0.25 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.97, Tmax = 0.98

  • 2981 measured reflections

  • 1804 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.013

  • θmax = 27.5°

  • h = −10 → 10

  • k = −13 → 13

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.074

  • S = 0.92

  • 1803 reflections

  • 181 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F) + 0.028 +0.385P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

All H atoms were observed in a difference electron-density map. The hydroxyl H atom was placed as found and the others were placed geometrically with isotropic displacement parameters related to the Ueq values of the adjacent atoms. The H-atom positions and Uiso values were regularized by refinement with slack restraints and the refinement completed with H-atom riding constraints [C—H = 0.98±0.02 Å; Uiso(H) = Ueq(C) ± 0.002 Å2; O—H no restraints]. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius BV, 1997); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(1) top
Crystal data top
C13H20O7F(000) = 616
Mr = 288.30Dx = 1.369 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1577 reflections
a = 7.8609 (3) Åθ = 5–27°
b = 10.7470 (4) ŵ = 0.11 mm1
c = 16.5516 (6) ÅT = 190 K
V = 1398.30 (9) Å3Plate, colourless
Z = 40.65 × 0.25 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1996)
h = 1010
Tmin = 0.97, Tmax = 0.98k = 1313
2981 measured reflectionsl = 2121
1804 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(F) + 0.028 + 0.385P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.92(Δ/σ)max = 0.000174
1803 reflectionsΔρmax = 0.26 e Å3
181 parametersΔρmin = 0.23 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5577 (2)0.41009 (18)0.13539 (11)0.0255
C20.4493 (2)0.46106 (17)0.20459 (10)0.0242
C30.4697 (3)0.36718 (17)0.27347 (11)0.0257
C40.5906 (2)0.41013 (19)0.33943 (11)0.0277
O50.75307 (17)0.43700 (13)0.30500 (8)0.0319
C60.8851 (3)0.37695 (19)0.35196 (11)0.0297
O70.80175 (19)0.34335 (14)0.42604 (8)0.0336
C80.6298 (3)0.3145 (2)0.40505 (12)0.0314
C90.9493 (3)0.2631 (2)0.30810 (13)0.0378
C101.0224 (3)0.4706 (2)0.36946 (15)0.0418
O110.53763 (19)0.25469 (12)0.23691 (8)0.0303
C120.5999 (3)0.27713 (18)0.16246 (12)0.0300
O130.6742 (2)0.19899 (14)0.12498 (9)0.0466
O140.28029 (17)0.46392 (13)0.17367 (7)0.0326
C150.2752 (2)0.41027 (19)0.09403 (11)0.0281
O160.44814 (17)0.40904 (13)0.06706 (7)0.0283
C170.1748 (3)0.4956 (2)0.03974 (12)0.0334
C180.2023 (3)0.2800 (2)0.09667 (14)0.0412
C190.7181 (3)0.4807 (2)0.11313 (13)0.0328
O200.6840 (2)0.60645 (13)0.09396 (8)0.0384
H210.48150.54380.22130.0277*
H310.35730.34590.29670.0300*
H410.54570.48710.36280.0331*
H810.55880.32690.45300.0368*
H820.61800.22740.38400.0363*
H911.03950.22330.34120.0452*
H920.85670.20390.29830.0454*
H930.99720.29310.25700.0453*
H1011.11560.43180.40150.0496*
H1020.97620.53890.40130.0491*
H1031.07130.50460.31860.0498*
H1710.16530.46130.01540.0402*
H1720.05860.50910.06060.0408*
H1730.23170.57650.03610.0403*
H1810.21140.24410.04260.0484*
H1820.26920.22980.13680.0481*
H1830.08170.28500.11260.0487*
H1910.79550.47780.15970.0391*
H1920.77230.43760.06700.0387*
H10.66370.61310.04650.0686*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0251 (9)0.0275 (9)0.0238 (9)0.0017 (9)0.0013 (8)0.0007 (8)
C20.0233 (8)0.0238 (9)0.0255 (9)0.0010 (9)0.0021 (8)0.0022 (7)
C30.0285 (10)0.0236 (9)0.0251 (9)0.0004 (9)0.0010 (9)0.0017 (8)
C40.0299 (10)0.0282 (10)0.0251 (9)0.0027 (9)0.0011 (8)0.0016 (8)
O50.0283 (7)0.0376 (7)0.0299 (7)0.0010 (7)0.0018 (6)0.0059 (6)
C60.0309 (10)0.0329 (10)0.0253 (9)0.0018 (9)0.0029 (9)0.0016 (8)
O70.0343 (7)0.0415 (8)0.0251 (7)0.0004 (7)0.0028 (6)0.0004 (6)
C80.0330 (10)0.0368 (11)0.0245 (9)0.0003 (10)0.0001 (9)0.0021 (8)
C90.0371 (11)0.0395 (11)0.0369 (11)0.0040 (11)0.0016 (10)0.0038 (10)
C100.0356 (11)0.0445 (13)0.0454 (12)0.0052 (11)0.0084 (11)0.0009 (11)
O110.0413 (8)0.0213 (6)0.0283 (7)0.0003 (7)0.0001 (7)0.0008 (5)
C120.0335 (10)0.0277 (10)0.0287 (10)0.0040 (9)0.0033 (9)0.0027 (8)
O130.0621 (11)0.0401 (8)0.0377 (8)0.0207 (9)0.0012 (8)0.0096 (7)
O140.0256 (7)0.0462 (8)0.0261 (7)0.0081 (7)0.0024 (6)0.0065 (6)
C150.0269 (9)0.0332 (10)0.0242 (9)0.0022 (10)0.0008 (8)0.0018 (8)
O160.0257 (6)0.0370 (7)0.0223 (6)0.0012 (7)0.0000 (5)0.0014 (6)
C170.0279 (10)0.0426 (12)0.0297 (10)0.0003 (10)0.0045 (9)0.0004 (9)
C180.0431 (13)0.0412 (12)0.0394 (11)0.0087 (12)0.0015 (11)0.0017 (10)
C190.0264 (10)0.0397 (11)0.0322 (10)0.0026 (10)0.0007 (9)0.0031 (9)
O200.0462 (9)0.0385 (8)0.0306 (7)0.0123 (8)0.0028 (7)0.0065 (6)
Geometric parameters (Å, º) top
C1—C21.529 (3)C9—H920.981
C1—C121.534 (3)C9—H930.980
C1—O161.421 (2)C10—H1010.996
C1—C191.517 (3)C10—H1020.974
C2—C31.531 (3)C10—H1030.996
C2—O141.424 (2)O11—C121.348 (2)
C2—H210.965C12—O131.196 (2)
C3—C41.519 (3)O14—C151.439 (2)
C3—O111.454 (2)C15—O161.431 (2)
C3—H310.990C15—C171.507 (3)
C4—O51.428 (2)C15—C181.513 (3)
C4—C81.527 (3)C17—H1710.987
C4—H410.979C17—H1720.987
O5—C61.449 (2)C17—H1730.979
C6—O71.437 (2)C18—H1810.976
C6—C91.509 (3)C18—H1821.005
C6—C101.504 (3)C18—H1830.986
O7—C81.430 (3)C19—O201.414 (3)
C8—H810.979C19—H1910.983
C8—H821.003C19—H1920.989
C9—H910.994O20—H10.805
C2—C1—C12103.61 (15)C6—C9—H93106.107
C2—C1—O16105.14 (14)H91—C9—H93110.057
C12—C1—O16110.86 (15)H92—C9—H93110.800
C2—C1—C19117.78 (16)C6—C10—H101110.508
C12—C1—C19110.91 (16)C6—C10—H102109.925
O16—C1—C19108.32 (15)H101—C10—H102107.531
C1—C2—C3105.26 (15)C6—C10—H103111.096
C1—C2—O14104.97 (14)H101—C10—H103108.681
C3—C2—O14112.33 (16)H102—C10—H103109.013
C1—C2—H21113.439C3—O11—C12111.42 (14)
C3—C2—H21111.502C1—C12—O11110.81 (16)
O14—C2—H21109.170C1—C12—O13127.44 (18)
C2—C3—C4113.61 (16)O11—C12—O13121.73 (18)
C2—C3—O11106.07 (13)C2—O14—C15110.28 (13)
C4—C3—O11108.78 (15)O14—C15—O16105.25 (14)
C2—C3—H31110.304O14—C15—C17108.47 (16)
C4—C3—H31110.477O16—C15—C17108.49 (15)
O11—C3—H31107.301O14—C15—C18110.78 (16)
C3—C4—O5109.52 (15)O16—C15—C18111.11 (17)
C3—C4—C8115.63 (16)C17—C15—C18112.46 (17)
O5—C4—C8103.88 (15)C15—O16—C1109.10 (14)
C3—C4—H41108.333C15—C17—H171111.309
O5—C4—H41107.994C15—C17—H172111.435
C8—C4—H41111.181H171—C17—H172107.957
C4—O5—C6109.68 (13)C15—C17—H173109.723
O5—C6—O7104.06 (15)H171—C17—H173107.997
O5—C6—C9110.03 (16)H172—C17—H173108.303
O7—C6—C9111.06 (17)C15—C18—H181108.134
O5—C6—C10108.64 (17)C15—C18—H182108.548
O7—C6—C10109.34 (16)H181—C18—H182110.829
C9—C6—C10113.29 (18)C15—C18—H183108.724
C6—O7—C8106.18 (14)H181—C18—H183109.643
C4—C8—O7102.53 (16)H182—C18—H183110.889
C4—C8—H81111.741C1—C19—O20112.00 (17)
O7—C8—H81108.162C1—C19—H191107.952
C4—C8—H82111.239O20—C19—H191108.905
O7—C8—H82111.980C1—C19—H192108.151
H81—C8—H82110.888O20—C19—H192110.815
C6—C9—H91108.835H191—C19—H192108.928
C6—C9—H92110.979C19—O20—H1109.949
H91—C9—H92109.980
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H1···O7i0.802.072.833 (3)159 (1)
Symmetry code: (i) x+3/2, y+1, z1/2.
 

Acknowledgements

Financial support (to RS) provided through the European Community's Human Potential Programme under contract HPRN–CT-2002–00173 is gratefully acknowledged. A generous gift of D-tagatose from Arla Foods allowed this work to be performed.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: Wiley.  Google Scholar
First citationGorin, P. A. J. & Perlin, A. S. (1958). Can. J. Chem. 36, 480–485.  CrossRef CAS Web of Science Google Scholar
First citationGranstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.  Web of Science CrossRef PubMed Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., Van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. In the press.  Google Scholar
First citationKiliani, H. (1885). Ber. Dtsch Chem. Ges. 18, 3066–3074.  CrossRef Google Scholar
First citationKiliani, H. (1928). Ber. Dtsch Chem. Ges. 61, 1155–1169.  CrossRef Google Scholar
First citationLichtenthaler, F. W. & Peters, S.(2004). Compt. Rend. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSkytte, U. P. (2002). Cereal Foods World, 47, 224–227.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds