inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dieuropium(III) tri­sulfate octahydrate: a redetermination at 120 K

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical and Biotechnology, Shanmuga Arts, Science, Technology and Research Academy (SASTRA), Tirumalaisamudram, Thanjavur 613 402, India, bDepartment of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: panch_45@yahoo.co.in

(Received 5 October 2004; accepted 14 October 2004; online 30 October 2004)

The title compound, Eu2(SO4)3·8H2O, crystallizes in space group C2/c, with one of the anions lying on a twofold rotation axis and the other in a general position, and is best formulated as [Eu(H2O)4/1(SO4)3/3(SO4)1/2]2, where one of the anions lies across a twofold axis. The coordination environment of EuIII consists of four water mol­ecules and four sulfate ions. All the water mol­ecules and sulfate ions are involved in hydrogen-bonding interactions. The structure is similar to that previously determined at 293 K [Wei & Zheng (2003[Wei, D.-Y. & Zheng, Y.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 277-278.]). Z. Kristallogr. New Cryst. Struct. 218, 277–278], but the cell parameters and the interatomic distances are more precise in the present determination.

Comment

Hydrated lanthanide(III) sulfates can adopt a number of different compositions, namely M2(SO4)3·9H2O, M2(SO4)3·8H2O, M2(SO4)3·5H2O and M2(SO4)3·4H2O, and the octahydrated sulfates of lanthanides LnIII exist as coordination polymers in which sulfate ions act as bridging bidentate and tridentate ligands; the presence of four coordinated water mol­ecules leads to a coordination number of eight for the lanthanide ion (Wickleder, 2002[Wickleder, M. S. (2002). Chem. Rev. 102, 2011-2087.]). The unit-cell dimensions for hydrated europium(III) sulfate were reported many years ago (Geller, 1957[Geller, S. (1957). Acta Cryst. 10, 713.]), and the crystal structure, in space group C2/c, has recently been reported using data collected at 293 K (Wei & Zheng, 2003[Wei, D.-Y. & Zheng, Y.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 277-278.]).

[Scheme 1]

We report here the structure at 120 K. The similarity of the unit-cell dimensions and atomic coordinates at 293 and 120 K indicates that the same phase has been utilized in all of these studies. The aims of the present investigation are the determination of more precise metrical parameters and the determination of the extent of hydration. The structure (Table 1[link] and Fig. 1[link]) indicates the presence of octacoordinate europium, with distorted square antiprismatic coordination by four water mol­ecules, one O atom from a sulfate ion in the μ2 bonding mode and three O atoms from three different anions in the μ3 bonding mode. The triply bridging anions lie in general positions, while the doubly bridging anions lie on twofold rotation axes.

Compound (I[link]) is, in fact, isostructural not only with yttrium(III) sulfate octahydrate (Held & Wickleder, 2003[Held, P. & Wickleder, M. (2003). Acta Cryst. E59, i98-i100.]) but also with the analogous lanthanide sulfates Ln2(SO4)3·8H2O, where Ln is Ce (Junk et al., 1999[Junk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601-605.]), Pr (Ahmed Farag et al., 1981[Ahmed Farag, I. S., El-Kordy, M. A. & Ahmed, N. A. (1981). Z. Kristallogr. 155, 165-171.]), Nd (Bartl & Rodek, 1983[Bartl, H. & Rodek, E. (1983). Z. Kristallogr. 162, 13-15.]), Sm (Podberezskaya & Borisov, 1976[Podberezskaya, N. V. & Borisov, S. (1976). Zh. Strukt. Khim. 17. 186-188.]), Dy (Junk et al., 1999[Junk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601-605.]), Er (Wickleder, 1999[Wickleder, M. S. (1999). Z. Anorg. Allg. Chem. 625, 1548-1555.]), Yb (Hiltunen & Niinistö, 1976[Hiltunen, L. & Niinistö, L. (1976). Cryst. Struct. Commun. 6, 561.]) or Lu (Junk et al., 1999[Junk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601-605.]). The coordination polymer in this structure is most readily envisaged as inversion-related pairs of chains comprising alternating cations and triply bridging anions, themselves generated by translation along the [010] direction, which are then linked into sheets by the doubly bridging anions. The coordination-polymer sheets are linked by hydrogen bonds (Table 2[link]) into a continuous three-dimensional framework structure. As noted for the yttrium analogue (Held & Wickleder, 2003[Held, P. & Wickleder, M. (2003). Acta Cryst. E59, i98-i100.]), one of the S—O bonds in the triply bridging anion is significantly longer than the others (Table 1[link]).

Some of the lanthanides, such as europium, can also exhibit lower oxidation states in sulfate salts. Thus, for example, europium(II) sulfate has been shown to be an­hydro­us and to crystallize in space group Pnma (Mayer et al., 1964[Mayer, I., Levy, E. & Glasner, A. (1964). Acta Cryst. 17, 1071-1072.]). Accordingly, the oxidation state of europium in (I[link]) was further confirmed by bond valence sum calculations (Brown, 1992[Brown, I. D. (1992). Acta Cryst. B48, 553-572.], 2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry. Oxford University Press.]). A total valence of 3.016 for europium was obtained using the observed Eu—O bond lengths (Table 1[link]) and a bond valence parameter of 2.036 Å for europium (Trzesowska et al., 2004[Trzesowska, A., Kruszynski, R. & Bartczak, T. J. (2004). Acta Cryst. B60, 174-178.]).

[Figure 1]
Figure 1
ORTEP diagram of (I[link]), showing the coordination geometry around europium, with 50% probability ellipsoids. [Symmetry codes: (a) −x, y, ½ − z; (b) ½ − x, ½ − y, 1 − z; (c) ½ − x, [3 \over 2] − y, 1 − z.]
[Figure 2]
Figure 2
Crystal structure of (I[link]), showing the sulfate coordination.
[Figure 3]
Figure 3
Packing diagram of (I[link]), viewed along the c axis.

Experimental

The title compound was obtained during the attempted preparation of a complex between 2,5-diketopiperazine and europium sulfate, in which 2,5-diketopiperazine (0.228 g, 2 mmol) was heated with europium sulfate (0.736 g, 1 mmol) in water (30 ml). The latter was obtained by the action of sulfuric acid on europium oxide. The crystallization of europium sulfate from solution is facilitated in the presence of other ligands (Held & Wickleder, 2003[Held, P. & Wickleder, M. (2003). Acta Cryst. E59, i98-i100.]; Wei & Zheng, 2003[Wei, D.-Y. & Zheng, Y.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 277-278.]).

Crystal data
  • Eu2(SO4)3·8H2O

  • Mr = 736.26

  • Monoclinic, C2/c

  • a = 13.5029 (3) Å

  • b = 6.7601 (1) Å

  • c = 18.2628 (3) Å

  • β = 102.2610 (13)°

  • V = 1629.02 (5) Å3

  • Z = 4

  • Dx = 3.002 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1869 reflections

  • θ = 3.1–27.5°

  • μ = 8.12 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer with FR591 rotating anode

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.477, Tmax = 0.616

  • 11 784 measured reflections

  • 1869 independent reflections

  • 1805 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 27.5°

  • h = −17 → 17

  • k = −8 → 8

  • l = −22 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.054

  • S = 1.26

  • 1869 reflections

  • 114 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0218P)2 + 6.1179P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.71 e Å−3

  • Δρmin = −1.32 e Å−3

Table 1
Selected interatomic distances(Å)

Eu1—O1 2.450 (3)
Eu1—O2 2.390 (2)
Eu1—O3 2.505 (2)
Eu1—O4 2.350 (3)
Eu1—O11 2.384 (2)
Eu1—O13 2.461 (2)
Eu1—O14 2.336 (2)
Eu1—O21 2.339 (2)
S1—O11i 1.473 (2)
S1—O12 1.459 (3)
S1—O13 1.499 (2)
S1—O14ii 1.463 (2)
S2—O21 1.470 (2)
S2—O22 1.478 (2)
Symmetry codes: (i) [{\script{1\over 2}}-x,{\script{3\over 2}}-y,1-z]; (ii) [{\script{1\over 2}}-x,{\script{1\over 2}}-y,1-z].

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O3i 0.84 2.08 2.910 (3) 170
O1—H12⋯O13ii 0.84 2.06 2.771 (3) 143
O2—H21⋯O12iii 0.84 1.87 2.704 (4) 171
O2—H22⋯O22iv 0.84 1.99 2.814 (3) 169
O3—H31⋯O22 0.84 1.96 2.759 (3) 159
O3—H32⋯O13iii 0.84 2.16 2.994 (3) 170
O4—H41⋯O12v 0.84 1.93 2.748 (4) 163
O4—H42⋯O22vi 0.84 1.97 2.788 (4) 165
Symmetry codes: (i) [{\script{1\over 2}}-x,{\script{1\over 2}}-y,1-z]; (ii) [{\script{1\over 2}}-x,{\script{3\over 2}}-y,1-z]; (iii) -x,1-y,1-z; (iv) x,1+y,z; (v) [x,1-y,z-{\script{1\over 2}}]; (vi) [{\script{1\over 2}}+x,{\script{1\over 2}}+y,z].

All H atoms were located in difference maps and then allowed to ride on their parent atoms, with O—H distances of 0.84 Å and with Uiso(H) = 1.2Ueq(O).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Dieuropium trisulfate octahydrate top
Crystal data top
[Eu2(SO4)3(H2O)8]F(000) = 1400
Mr = 736.26Dx = 3.002 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1869 reflections
a = 13.5029 (3) Åθ = 3.1–27.5°
b = 6.7601 (1) ŵ = 8.12 mm1
c = 18.2628 (3) ÅT = 120 K
β = 102.2610 (13)°Plate, colourless
V = 1629.02 (5) Å30.10 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
1869 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ & ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.477, Tmax = 0.616l = 2223
11784 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0218P)2 + 6.1179P]
where P = (Fo2 + 2Fc2)/3
1869 reflections(Δ/σ)max = 0.002
114 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 1.32 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.167587 (11)0.47732 (2)0.392539 (9)0.00436 (8)
O10.34495 (19)0.5163 (3)0.45743 (14)0.0075 (5)
O20.01431 (17)0.6639 (4)0.35904 (14)0.0140 (5)
O30.04016 (16)0.2634 (3)0.43634 (13)0.0083 (5)
O40.2592 (2)0.5073 (4)0.29716 (15)0.0123 (5)
S10.21644 (6)0.52970 (11)0.58924 (5)0.00457 (17)
O110.20077 (17)0.8241 (3)0.39758 (12)0.0077 (5)
O120.16150 (18)0.5354 (4)0.64991 (14)0.0097 (5)
O130.14441 (17)0.5794 (3)0.51715 (12)0.0076 (4)
O140.24242 (17)0.1670 (3)0.41959 (13)0.0103 (5)
S20.00000.17534 (16)0.25000.0053 (2)
O210.08491 (17)0.3008 (4)0.28701 (13)0.0106 (5)
O220.03310 (19)0.0515 (3)0.30707 (14)0.0089 (5)
H110.38140.43120.48380.009*
H120.36100.61660.48450.009*
H210.04340.61320.35490.017*
H220.00760.78430.34770.017*
H310.00640.19080.40280.010*
H320.00660.31840.45270.010*
H410.23690.47410.25240.015*
H420.31970.54290.30070.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.00432 (12)0.00358 (11)0.00492 (12)0.00052 (5)0.00041 (8)0.00030 (5)
O10.0081 (12)0.0060 (11)0.0069 (12)0.0006 (8)0.0017 (10)0.0003 (8)
O20.0059 (11)0.0084 (12)0.0258 (14)0.0008 (9)0.0012 (10)0.0046 (10)
O30.0067 (11)0.0085 (11)0.0095 (11)0.0019 (9)0.0008 (9)0.0017 (9)
O40.0083 (13)0.0217 (13)0.0073 (13)0.0068 (9)0.0029 (11)0.0032 (9)
S10.0046 (4)0.0032 (4)0.0057 (4)0.0001 (3)0.0007 (3)0.0002 (3)
O110.0066 (11)0.0053 (11)0.0107 (12)0.0019 (9)0.0008 (9)0.0003 (9)
O120.0072 (13)0.0157 (12)0.0066 (13)0.0018 (9)0.0021 (10)0.0016 (9)
O130.0076 (11)0.0081 (11)0.0059 (11)0.0001 (9)0.0010 (9)0.0001 (9)
O140.0115 (12)0.0029 (11)0.0158 (12)0.0019 (9)0.0012 (9)0.0003 (9)
S20.0052 (5)0.0049 (5)0.0053 (5)0.0000.0004 (4)0.000
O210.0094 (11)0.0139 (12)0.0078 (11)0.0078 (9)0.0006 (9)0.0041 (9)
O220.0104 (12)0.0071 (11)0.0091 (12)0.0008 (9)0.0022 (10)0.0023 (9)
Geometric parameters (Å, º) top
Eu1—O12.450 (3)O3—H310.84
Eu1—O22.390 (2)O3—H320.84
Eu1—O32.505 (2)O4—H410.84
Eu1—O42.350 (3)O4—H420.84
Eu1—O112.384 (2)S1—O11i1.473 (2)
Eu1—O132.461 (2)S1—O121.459 (3)
Eu1—O142.336 (2)S1—O131.499 (2)
Eu1—O212.339 (2)S1—O14ii1.463 (2)
O1—H110.84S2—O211.470 (2)
O1—H120.84S2—O21iii1.470 (2)
O2—H210.84S2—O221.478 (2)
O2—H220.84S2—O22iii1.478 (2)
O14—Eu1—O2179.93 (8)O1—Eu1—S162.92 (6)
O14—Eu1—O487.81 (8)O13—Eu1—S120.55 (5)
O21—Eu1—O470.58 (8)O3—Eu1—S174.07 (5)
O14—Eu1—O11143.67 (8)Eu1—O1—H11126.7
O21—Eu1—O11125.90 (8)Eu1—O1—H12118.4
O4—Eu1—O1179.62 (8)H11—O1—H1299.7
O14—Eu1—O2147.20 (8)Eu1—O2—H21122.9
O21—Eu1—O279.78 (8)Eu1—O2—H22128.1
O4—Eu1—O2109.18 (9)H21—O2—H22108.9
O11—Eu1—O268.68 (8)Eu1—O3—H31114.0
O14—Eu1—O170.11 (8)Eu1—O3—H32118.4
O21—Eu1—O1134.41 (8)H31—O3—H32100.7
O4—Eu1—O174.62 (9)Eu1—O4—H41124.2
O11—Eu1—O173.70 (7)Eu1—O4—H42128.6
O2—Eu1—O1140.48 (8)H41—O4—H42107.1
O14—Eu1—O13100.98 (8)O12—S1—O14ii111.97 (14)
O21—Eu1—O13140.61 (8)O12—S1—O11i110.40 (14)
O4—Eu1—O13148.41 (8)O14ii—S1—O11i109.58 (13)
O11—Eu1—O1375.44 (8)O12—S1—O13108.74 (14)
O2—Eu1—O1379.37 (8)O14ii—S1—O13107.30 (14)
O1—Eu1—O1379.97 (8)O11i—S1—O13108.75 (13)
O14—Eu1—O373.11 (8)O12—S1—Eu1139.49 (10)
O21—Eu1—O374.25 (8)O14ii—S1—Eu177.87 (10)
O4—Eu1—O3142.36 (8)O11i—S1—Eu1101.82 (9)
O11—Eu1—O3133.73 (7)S1i—O11—Eu1142.72 (14)
O2—Eu1—O376.72 (8)S1—O13—Eu1124.27 (13)
O1—Eu1—O3125.08 (8)S1ii—O14—Eu1161.88 (15)
O13—Eu1—O368.63 (8)O21—S2—O21iii109.6 (2)
O14—Eu1—S184.02 (6)O21—S2—O22108.99 (13)
O21—Eu1—S1147.46 (6)O21—S2—O22iii109.13 (13)
O4—Eu1—S1137.03 (7)O22—S2—O22iii111.0 (2)
O11—Eu1—S182.48 (5)S2—O21—Eu1149.58 (14)
O2—Eu1—S199.91 (6)
O14—Eu1—S1—O12108.91 (17)O2—Eu1—O11—S1i175.9 (2)
O21—Eu1—S1—O1248.3 (2)O1—Eu1—O11—S1i16.4 (2)
O4—Eu1—S1—O12170.80 (18)O13—Eu1—O11—S1i100.0 (2)
O11—Eu1—S1—O12104.91 (17)O3—Eu1—O11—S1i139.71 (19)
O2—Eu1—S1—O1238.20 (17)S1—Eu1—O11—S1i80.3 (2)
O1—Eu1—S1—O12179.60 (17)O12—S1—O13—Eu1155.83 (14)
O13—Eu1—S1—O1236.7 (2)O14ii—S1—O13—Eu134.53 (19)
O3—Eu1—S1—O1234.81 (17)O11i—S1—O13—Eu183.92 (17)
O14—Eu1—S1—O14ii0.82 (15)O14—Eu1—O13—S134.95 (17)
O21—Eu1—S1—O14ii61.43 (15)O21—Eu1—O13—S1122.42 (16)
O4—Eu1—S1—O14ii79.46 (13)O4—Eu1—O13—S169.0 (2)
O11—Eu1—S1—O14ii145.36 (11)O11—Eu1—O13—S1107.93 (16)
O2—Eu1—S1—O14ii147.93 (11)O2—Eu1—O13—S1178.45 (17)
O1—Eu1—S1—O14ii69.87 (11)O1—Eu1—O13—S132.33 (15)
O13—Eu1—S1—O14ii146.39 (19)O3—Eu1—O13—S1101.77 (16)
O3—Eu1—S1—O14ii74.93 (11)O21—Eu1—O14—S1ii31.0 (5)
O14—Eu1—S1—O11i108.59 (11)O4—Eu1—O14—S1ii39.7 (5)
O21—Eu1—S1—O11i169.20 (14)O11—Eu1—O14—S1ii108.8 (5)
O4—Eu1—S1—O11i28.30 (14)O2—Eu1—O14—S1ii83.6 (5)
O11—Eu1—S1—O11i37.59 (14)O1—Eu1—O14—S1ii114.1 (5)
O2—Eu1—S1—O11i104.30 (11)O13—Eu1—O14—S1ii170.9 (5)
O1—Eu1—S1—O11i37.90 (11)O3—Eu1—O14—S1ii107.5 (5)
O13—Eu1—S1—O11i105.84 (19)S1—Eu1—O14—S1ii177.4 (5)
O3—Eu1—S1—O11i177.30 (11)O21iii—S2—O21—Eu188.2 (3)
O14—Eu1—S1—O13145.56 (17)O22—S2—O21—Eu131.1 (3)
O21—Eu1—S1—O1384.96 (19)O22iii—S2—O21—Eu1152.5 (3)
O4—Eu1—S1—O13134.15 (18)O14—Eu1—O21—S288.9 (3)
O11—Eu1—S1—O1368.25 (17)O4—Eu1—O21—S2179.9 (3)
O2—Eu1—S1—O131.54 (17)O11—Eu1—O21—S2119.3 (3)
O1—Eu1—S1—O13143.74 (17)O2—Eu1—O21—S265.2 (3)
O3—Eu1—S1—O1371.46 (17)O1—Eu1—O21—S2137.7 (3)
O14—Eu1—O11—S1i11.2 (3)O13—Eu1—O21—S26.2 (4)
O21—Eu1—O11—S1i117.1 (2)O3—Eu1—O21—S213.7 (3)
O4—Eu1—O11—S1i60.4 (2)S1—Eu1—O21—S227.2 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O3ii0.842.082.910 (3)170
O1—H12···O13i0.842.062.771 (3)143
O2—H21···O12iv0.841.872.704 (4)171
O2—H22···O22v0.841.992.814 (3)169
O3—H31···O220.841.962.759 (3)159
O3—H32···O13iv0.842.162.994 (3)170
O4—H41···O12vi0.841.932.748 (4)163
O4—H42···O22vii0.841.972.788 (4)165
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y+1, z1/2; (vii) x+1/2, y+1/2, z.
 

Footnotes

Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

References

First citationAhmed Farag, I. S., El-Kordy, M. A. & Ahmed, N. A. (1981). Z. Kristallogr. 155, 165–171.  CAS Google Scholar
First citationBartl, H. & Rodek, E. (1983). Z. Kristallogr. 162, 13–15.  Google Scholar
First citationBrown, I. D. (1992). Acta Cryst. B48, 553–572.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry. Oxford University Press.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGeller, S. (1957). Acta Cryst. 10, 713.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHeld, P. & Wickleder, M. (2003). Acta Cryst. E59, i98–i100.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHiltunen, L. & Niinistö, L. (1976). Cryst. Struct. Commun. 6, 561.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJunk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601–605.  CAS Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMayer, I., Levy, E. & Glasner, A. (1964). Acta Cryst. 17, 1071–1072.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPodberezskaya, N. V. & Borisov, S. (1976). Zh. Strukt. Khim. 17. 186–188.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzesowska, A., Kruszynski, R. & Bartczak, T. J. (2004). Acta Cryst. B60, 174–178.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, D.-Y. & Zheng, Y.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 277–278.  CAS Google Scholar
First citationWickleder, M. S. (1999). Z. Anorg. Allg. Chem. 625, 1548–1555.  CrossRef CAS Google Scholar
First citationWickleder, M. S. (2002). Chem. Rev. 102, 2011–2087.  Web of Science CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds