metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(guanidinium) di­aqua­penta­kis­­(nitrato-κ2O,O′)­lanthanum

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 5 October 2004; accepted 7 October 2004; online 16 October 2004)

The title compound, (CH6N3)2[La(NO3)5(H2O)2], contains a network of guanidinium cations and the previously unseen di­aqua­pentakis­(nitrato)­lanthanum dianion, in which 12 O atoms surround La in a distorted icosahedral arrangement. A network of N—H⋯O and O—H⋯O hydrogen bonds helps to consolidate the crystal packing, resulting in a three-dimensional network. The La cation, one N atom and one O atom occupy a twofold axis.

Comment

The title compound, (I[link]) (Fig. 1[link]), contains a new lanthanum/nitrate/water complex anion. The La3+ cation, which occupies a twofold symmetry axis, is surrounded by five O,O′-bidentate nitrate groups [mean La—O = 2.693 (3) Å] and two water mol­ecules (Table 1[link]). The resulting O12 grouping (Fig. 2[link]) surrounding the La atom is a distorted icosahedron. As expected, the icosahedral O⋯O contacts associated with the nitrate ions [2.149 (2)–2.1627 (19) Å] are much shorter than the other contacts (O⋯O > 2.8 Å). Atoms O1, O4, O7, O3i and O6i [symmetry code: (i) −x, y, ½ − z] are approximately coplanar (r.m.s. deviation from the mean plane = 0.074 Å) and the symmetry-generated set O3/O6/O1i/O4i/O7i have the same r.m.s. deviation. The La cation is displaced by 0.9924 (7) Å from each set of five O atoms. The dihedral angle between the two sets of O atoms is 0.91 (2)°. The propeller-shaped guanidinium species in (I[link]) is unexceptional, with a typical mean C—N bond length of 1.314 (4) Å, indicating that the usual model of electronic delocalization (Harrison, 2003[Harrison, W. T. A. (2003). Acta Cryst. E59, o769-o770.]), leading to a C—N bond order of 1.33, is applicable here.[link]

[Scheme 1]

As well as Coulombic and van der Waals forces, the component species in (I) interact by way of O—H⋯O and N—H⋯O hydrogen bonds (Table 2[link]). The O—H⋯O bonds link adjacent [La(H2O)2(NO3)5]2− anions into an infinite (001) sheet (Fig. 3[link]). The guanidinium cations crosslink the (001) anionic sheets into a three-dimensional network (Fig. 4[link]), with mean H⋯O, N⋯O and N—H⋯O values of 2.14 Å, 2.973 (5) Å and 162°, respectively. The guanidinium N4—H3 vertex does not participate in hydrogen bonds.

La/nitrate/water anions related to the [La(H2O)2(NO3)5]2− species seen in (I[link]) include [La(H2O)(NO3)5]2− (Evans et al., 2002[Evans, D. J., Junk, P. C. & Smith, M. K. (2002). New J. Chem. 26, 1043-1048.]) and a number of examples of the hexakis­(nitrato) [La(NO3)6]3− species (Cui et al., 1999[Cui, Y., Zheng, F., Chen, J. & Huang, J. (1999). Acta Cryst. C55, IUC9900065.]; Drew et al., 2000[Drew, M. G. B., Iveson, P. B., Hudson, M. J., Liljenzin, J. O., Spjuth, L., Cordier, P.-Y., Enarsson, A., Hill, C. & Madic, C. (2000). J. Chem. Soc. Dalton Trans. pp. 821-830.]). The [La2(H2O)7(NO3)6] dinuclear cluster contains bridging nitrate groups (Weakley, 1982[Weakley, T. J. R. (1982). Inorg. Chem. Acta, 63, 161-168.]).

[Figure 1]
Figure 1
The component ions of (I[link]) (40% displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radius). [Symmetry code: (i) −x, y, ½ − z.]
[Figure 2]
Figure 2
The LaO12 icosahedron in (I[link]), with O⋯O contacts shown as solid lines. [Symmetry code: (i) −x, y, ½ − z.]
[Figure 3]
Figure 3
Detail of a hydrogen-bonded (dotted lines) anionic sheet in (I[link]). [Symmetry codes as in Table 2[link]; in addition, (v) x, 1 + y, z.]
[Figure 4]
Figure 4
A [010] projection of the unit-cell packing in (I[link]).

Experimental

The following solutions were mixed at 293 K in a Petri dish, resulting in a clear solution: 5 ml of 0.1 M guanidinium hydro­chloride ([CH6N3]+Cl), 5 ml of 0.1 M lanthanum nitrate, and 1 ml of 1 M HCl. Colourless block-like crystals of (I[link]) grew over the course of a few days as the water evaporated at 293 K.

Crystal data
  • (CH6N3)2[La(NO3)5(H2O)2]

  • Mr = 605.16

  • Monoclinic, C2/c

  • a = 10.9918 (6) Å

  • b = 9.0820 (5) Å

  • c = 20.5555 (11) Å

  • β = 94.500 (1)°

  • V = 2045.68 (19) Å3

  • Z = 4

  • Dx = 1.965 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3673 reflections

  • θ = 2.9–28.5°

  • μ = 2.19 mm−1

  • T = 293 (2) K

  • Block, colourless

  • 0.17 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 0.844

  • 9927 measured reflections

  • 3682 independent reflections

  • 3094 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 32.5°

  • h = −16 → 15

  • k = −13 → 12

  • l = −30 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.046

  • S = 0.91

  • 3682 reflections

  • 142 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0157P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

La1—O9 2.5409 (12)
La1—O3 2.6112 (14)
La1—O1 2.6603 (14)
La1—O6 2.7174 (15)
La1—O4 2.7254 (14)
La1—O7 2.7562 (16)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H1⋯O4i 0.81 2.13 2.9157 (18) 163
O9—H2⋯O1ii 0.80 2.14 2.9060 (18) 161
N4—H4⋯O8iii 0.86 2.26 3.069 (3) 156
N5—H5⋯O8 0.86 2.06 2.908 (3) 169
N5—H6⋯O3iv 0.86 2.02 2.863 (3) 166
N6—H7⋯O7 0.86 2.22 3.037 (3) 159
N6—H8⋯O6iii 0.86 2.16 2.989 (2) 161
Symmetry codes: (i) [{\script{1\over 2}}-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (ii) [{\script{1\over 2}}-x,y-{\script{1\over 2}},{\script{1\over 2}}-z]; (iii) [{\script{1\over 2}}+x,y-{\script{1\over 2}},z]; (iv) -x,1-y,-z.

The water H atoms were located in a difference map and refined as riding on O9 in their as-found relative positions. The N—H H atoms were placed in idealized locations (N—H = 0.86 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier atom) was applied in all cases. The maximum difference peak is at La1 and the largest difference hole is 0.56 Å from La1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ATOMS (Shape Software, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

Bis(guanidinium) diaquapentakis(nitrato-κ2O,O')lanthanum top
Crystal data top
(CH6N3)2[La(NO3)5(H2O)2]F(000) = 1192
Mr = 605.16Dx = 1.965 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3673 reflections
a = 10.9918 (6) Åθ = 2.9–28.5°
b = 9.0820 (5) ŵ = 2.19 mm1
c = 20.5555 (11) ÅT = 293 K
β = 94.500 (1)°Block, colourless
V = 2045.68 (19) Å30.17 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART1000 CCD
diffractometer
3682 independent reflections
Radiation source: fine-focus sealed tube3094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 32.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1615
Tmin = 0.707, Tmax = 0.844k = 1312
9927 measured reflectionsl = 3016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difmap (O-H) and geom (N-H)
wR(F2) = 0.046H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0157P)2]
where P = (Fo2 + 2Fc2)/3
3682 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.00000.642098 (17)0.25000.02453 (5)
O10.09473 (12)0.90974 (15)0.23924 (8)0.0411 (4)
O20.00001.1137 (2)0.25000.0877 (12)
N10.00000.9816 (3)0.25000.0422 (7)
O30.06367 (13)0.45066 (16)0.15884 (8)0.0439 (4)
O40.11411 (13)0.40085 (15)0.20462 (8)0.0401 (4)
O50.04385 (18)0.2771 (2)0.11957 (10)0.0734 (6)
N20.03253 (16)0.37254 (19)0.15993 (9)0.0400 (4)
O60.06808 (13)0.77556 (17)0.13453 (8)0.0453 (4)
O70.11162 (14)0.68127 (17)0.13578 (8)0.0474 (4)
O80.02837 (17)0.7806 (2)0.04701 (9)0.0689 (6)
N30.02408 (17)0.74586 (19)0.10504 (10)0.0413 (4)
O90.22927 (11)0.64245 (15)0.27811 (8)0.0439 (4)
H10.25960.72390.28100.053*
H20.28200.58200.28250.053*
C10.2587 (2)0.5006 (3)0.00306 (13)0.0488 (6)
N40.3114 (2)0.4031 (2)0.03940 (13)0.0725 (7)
H30.29020.39720.08050.087*
H40.36680.34550.02200.087*
N50.1742 (2)0.5887 (3)0.02918 (11)0.0680 (7)
H50.14020.65190.00530.082*
H60.15260.58330.07020.082*
N60.29067 (19)0.5099 (2)0.05970 (11)0.0626 (6)
H70.25620.57350.08320.075*
H80.34610.45250.07730.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02193 (7)0.02200 (7)0.02968 (9)0.0000.00206 (5)0.000
O10.0245 (7)0.0307 (7)0.0700 (12)0.0031 (5)0.0152 (7)0.0022 (7)
O20.0606 (16)0.0235 (12)0.186 (4)0.0000.058 (2)0.000
N10.0354 (14)0.0252 (12)0.068 (2)0.0000.0143 (13)0.000
O30.0401 (8)0.0459 (9)0.0439 (10)0.0142 (7)0.0086 (7)0.0129 (7)
O40.0379 (8)0.0342 (8)0.0461 (10)0.0061 (6)0.0091 (7)0.0047 (7)
O50.0835 (13)0.0677 (12)0.0659 (14)0.0328 (10)0.0143 (11)0.0387 (11)
N20.0455 (10)0.0347 (9)0.0389 (11)0.0099 (8)0.0019 (8)0.0067 (9)
O60.0411 (9)0.0547 (9)0.0413 (10)0.0142 (7)0.0111 (7)0.0106 (8)
O70.0430 (9)0.0529 (9)0.0474 (10)0.0163 (7)0.0105 (8)0.0101 (8)
O80.0791 (13)0.0894 (13)0.0408 (11)0.0313 (11)0.0209 (10)0.0240 (10)
N30.0477 (11)0.0401 (10)0.0374 (11)0.0101 (8)0.0109 (9)0.0073 (9)
O90.0221 (6)0.0295 (7)0.0797 (12)0.0005 (6)0.0022 (7)0.0084 (8)
C10.0469 (14)0.0483 (13)0.0512 (17)0.0087 (10)0.0032 (12)0.0092 (12)
N40.0796 (17)0.0672 (15)0.0711 (17)0.0217 (12)0.0088 (13)0.0218 (13)
N50.0658 (14)0.0906 (17)0.0450 (13)0.0346 (13)0.0120 (12)0.0131 (12)
N60.0671 (14)0.0702 (15)0.0486 (14)0.0335 (11)0.0087 (11)0.0024 (12)
Geometric parameters (Å, º) top
La1—O92.5409 (12)O4—N21.259 (2)
La1—O32.6112 (14)O5—N21.213 (2)
La1—O12.6603 (14)O6—N31.250 (2)
La1—O62.7174 (15)O7—N31.254 (2)
La1—O42.7254 (14)O8—N31.238 (2)
La1—O72.7562 (16)O9—H10.8114
La1—O9i2.5409 (12)O9—H20.7982
La1—O3i2.6112 (14)C1—N51.309 (3)
La1—O1i2.6603 (13)C1—N61.313 (3)
La1—O6i2.7174 (15)C1—N41.321 (3)
La1—O4i2.7254 (14)N4—H30.8600
La1—O7i2.7562 (16)N4—H40.8600
O1—N11.2632 (16)N5—H50.8600
O2—N11.200 (3)N5—H60.8600
N1—O1i1.2632 (16)N6—H70.8600
O3—N21.272 (2)N6—H80.8600
O9i—La1—O9179.86 (7)O3i—La1—O7125.81 (5)
O9i—La1—O368.43 (5)O1—La1—O766.92 (5)
O9—La1—O3111.67 (5)O1i—La1—O798.98 (5)
O9i—La1—O3i111.67 (5)O6i—La1—O7125.17 (5)
O9—La1—O3i68.43 (5)O6—La1—O746.28 (4)
O3—La1—O3i96.51 (7)O4i—La1—O7130.01 (5)
O9i—La1—O1111.57 (4)O4—La1—O764.19 (5)
O9—La1—O168.29 (4)O9i—La1—O7i72.16 (5)
O3—La1—O1129.30 (5)O9—La1—O7i107.82 (5)
O3i—La1—O1125.69 (5)O3—La1—O7i125.81 (5)
O9i—La1—O1i68.29 (4)O3i—La1—O7i65.59 (5)
O9—La1—O1i111.57 (4)O1—La1—O7i98.98 (5)
O3—La1—O1i125.69 (5)O1i—La1—O7i66.92 (5)
O3i—La1—O1i129.30 (5)O6i—La1—O7i46.28 (4)
O1—La1—O1i47.96 (6)O6—La1—O7i125.17 (5)
O9i—La1—O6i113.47 (5)O4i—La1—O7i64.19 (5)
O9—La1—O6i66.46 (5)O4—La1—O7i130.01 (5)
O3—La1—O6i164.53 (5)O7—La1—O7i165.17 (6)
O3i—La1—O6i68.30 (5)N1—O1—La197.15 (12)
O1—La1—O6i65.31 (5)O2—N1—O1i121.13 (11)
O1i—La1—O6i66.58 (5)O2—N1—O1121.13 (11)
O9i—La1—O666.46 (5)O1i—N1—O1117.7 (2)
O9—La1—O6113.47 (5)N2—O3—La1100.55 (11)
O3—La1—O668.30 (5)N2—O4—La195.36 (11)
O3i—La1—O6164.53 (5)O5—N2—O4122.66 (18)
O1—La1—O666.58 (5)O5—N2—O3121.08 (18)
O1i—La1—O665.31 (5)O4—N2—O3116.26 (17)
O6i—La1—O6127.02 (7)N3—O6—La198.58 (12)
O9i—La1—O4i66.67 (4)N3—O7—La196.56 (12)
O9—La1—O4i113.46 (4)O8—N3—O6120.37 (19)
O3—La1—O4i66.78 (5)O8—N3—O7121.2 (2)
O3i—La1—O4i47.45 (4)O6—N3—O7118.39 (19)
O1—La1—O4i163.06 (5)La1—O9—H1114.4
O1i—La1—O4i120.83 (4)La1—O9—H2136.4
O6i—La1—O4i99.34 (5)H1—O9—H2109.1
O6—La1—O4i123.71 (5)N5—C1—N6119.4 (2)
O9i—La1—O4113.46 (4)N5—C1—N4120.4 (3)
O9—La1—O466.67 (4)N6—C1—N4120.2 (2)
O3—La1—O447.45 (4)C1—N4—H3120.0
O3i—La1—O466.78 (5)C1—N4—H4120.0
O1—La1—O4120.83 (4)H3—N4—H4120.0
O1i—La1—O4163.06 (5)C1—N5—H5120.0
O6i—La1—O4123.71 (5)C1—N5—H6120.0
O6—La1—O499.34 (5)H5—N5—H6120.0
O4i—La1—O472.98 (7)C1—N6—H7120.0
O9i—La1—O7107.82 (5)C1—N6—H8120.0
O9—La1—O772.16 (5)H7—N6—H8120.0
O3—La1—O765.59 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1···O4ii0.812.132.9157 (18)163
O9—H2···O1iii0.802.142.9060 (18)161
N4—H4···O8iv0.862.263.069 (3)156
N5—H5···O80.862.062.908 (3)169
N5—H6···O3v0.862.022.863 (3)166
N6—H7···O70.862.223.037 (3)159
N6—H8···O6iv0.862.162.989 (2)161
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x, y+1, z.
 

Acknowledgements

AF thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

First citationBruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Y., Zheng, F., Chen, J. & Huang, J. (1999). Acta Cryst. C55, IUC9900065.  CrossRef IUCr Journals Google Scholar
First citationDrew, M. G. B., Iveson, P. B., Hudson, M. J., Liljenzin, J. O., Spjuth, L., Cordier, P.-Y., Enarsson, A., Hill, C. & Madic, C. (2000). J. Chem. Soc. Dalton Trans. pp. 821–830.  Web of Science CSD CrossRef Google Scholar
First citationEvans, D. J., Junk, P. C. & Smith, M. K. (2002). New J. Chem. 26, 1043–1048.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2003). Acta Cryst. E59, o769-o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWeakley, T. J. R. (1982). Inorg. Chem. Acta, 63, 161–168.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds