metal-organic compounds
Bis(guanidinium) diaquapentakis(nitrato-κ2O,O′)lanthanum
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, (CH6N3)2[La(NO3)5(H2O)2], contains a network of guanidinium cations and the previously unseen diaquapentakis(nitrato)lanthanum dianion, in which 12 O atoms surround La in a distorted icosahedral arrangement. A network of N—H⋯O and O—H⋯O hydrogen bonds helps to consolidate the crystal packing, resulting in a three-dimensional network. The La cation, one N atom and one O atom occupy a twofold axis.
Comment
The title compound, (I) (Fig. 1), contains a new lanthanum/nitrate/water complex anion. The La3+ cation, which occupies a twofold symmetry axis, is surrounded by five O,O′-bidentate nitrate groups [mean La—O = 2.693 (3) Å] and two water molecules (Table 1). The resulting O12 grouping (Fig. 2) surrounding the La atom is a distorted icosahedron. As expected, the icosahedral O⋯O contacts associated with the nitrate ions [2.149 (2)–2.1627 (19) Å] are much shorter than the other contacts (O⋯O > 2.8 Å). Atoms O1, O4, O7, O3i and O6i [symmetry code: (i) −x, y, ½ − z] are approximately coplanar (r.m.s. deviation from the mean plane = 0.074 Å) and the symmetry-generated set O3/O6/O1i/O4i/O7i have the same r.m.s. deviation. The La cation is displaced by 0.9924 (7) Å from each set of five O atoms. The dihedral angle between the two sets of O atoms is 0.91 (2)°. The propeller-shaped guanidinium species in (I) is unexceptional, with a typical mean C—N bond length of 1.314 (4) Å, indicating that the usual model of electronic delocalization (Harrison, 2003), leading to a C—N bond order of 1.33, is applicable here.
As well as Coulombic and ). The O—H⋯O bonds link adjacent [La(H2O)2(NO3)5]2− anions into an infinite (001) sheet (Fig. 3). The guanidinium cations crosslink the (001) anionic sheets into a three-dimensional network (Fig. 4), with mean H⋯O, N⋯O and N—H⋯O values of 2.14 Å, 2.973 (5) Å and 162°, respectively. The guanidinium N4—H3 vertex does not participate in hydrogen bonds.
the component species in (I) interact by way of O—H⋯O and N—H⋯O hydrogen bonds (Table 2La/nitrate/water anions related to the [La(H2O)2(NO3)5]2− species seen in (I) include [La(H2O)(NO3)5]2− (Evans et al., 2002) and a number of examples of the hexakis(nitrato) [La(NO3)6]3− species (Cui et al., 1999; Drew et al., 2000). The [La2(H2O)7(NO3)6] dinuclear cluster contains bridging nitrate groups (Weakley, 1982).
Experimental
The following solutions were mixed at 293 K in a Petri dish, resulting in a clear solution: 5 ml of 0.1 M guanidinium hydrochloride ([CH6N3]+Cl−), 5 ml of 0.1 M lanthanum nitrate, and 1 ml of 1 M HCl. Colourless block-like crystals of (I) grew over the course of a few days as the water evaporated at 293 K.
Crystal data
|
Refinement
|
|
The water H atoms were located in a difference map and refined as riding on O9 in their as-found relative positions. The N—H H atoms were placed in idealized locations (N—H = 0.86 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier atom) was applied in all cases. The maximum difference peak is at La1 and the largest difference hole is 0.56 Å from La1.
Data collection: SMART (Bruker, 1999); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536804025255/lh6290sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804025255/lh6290Isup2.hkl
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.(CH6N3)2[La(NO3)5(H2O)2] | F(000) = 1192 |
Mr = 605.16 | Dx = 1.965 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3673 reflections |
a = 10.9918 (6) Å | θ = 2.9–28.5° |
b = 9.0820 (5) Å | µ = 2.19 mm−1 |
c = 20.5555 (11) Å | T = 293 K |
β = 94.500 (1)° | Block, colourless |
V = 2045.68 (19) Å3 | 0.17 × 0.14 × 0.08 mm |
Z = 4 |
Bruker SMART1000 CCD diffractometer | 3682 independent reflections |
Radiation source: fine-focus sealed tube | 3094 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 32.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −16→15 |
Tmin = 0.707, Tmax = 0.844 | k = −13→12 |
9927 measured reflections | l = −30→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difmap (O-H) and geom (N-H) |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.0157P)2] where P = (Fo2 + 2Fc2)/3 |
3682 reflections | (Δ/σ)max = 0.001 |
142 parameters | Δρmax = 1.15 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.0000 | 0.642098 (17) | 0.2500 | 0.02453 (5) | |
O1 | 0.09473 (12) | 0.90974 (15) | 0.23924 (8) | 0.0411 (4) | |
O2 | 0.0000 | 1.1137 (2) | 0.2500 | 0.0877 (12) | |
N1 | 0.0000 | 0.9816 (3) | 0.2500 | 0.0422 (7) | |
O3 | −0.06367 (13) | 0.45066 (16) | 0.15884 (8) | 0.0439 (4) | |
O4 | 0.11411 (13) | 0.40085 (15) | 0.20462 (8) | 0.0401 (4) | |
O5 | 0.04385 (18) | 0.2771 (2) | 0.11957 (10) | 0.0734 (6) | |
N2 | 0.03253 (16) | 0.37254 (19) | 0.15993 (9) | 0.0400 (4) | |
O6 | −0.06808 (13) | 0.77556 (17) | 0.13453 (8) | 0.0453 (4) | |
O7 | 0.11162 (14) | 0.68127 (17) | 0.13578 (8) | 0.0474 (4) | |
O8 | 0.02837 (17) | 0.7806 (2) | 0.04701 (9) | 0.0689 (6) | |
N3 | 0.02408 (17) | 0.74586 (19) | 0.10504 (10) | 0.0413 (4) | |
O9 | 0.22927 (11) | 0.64245 (15) | 0.27811 (8) | 0.0439 (4) | |
H1 | 0.2596 | 0.7239 | 0.2810 | 0.053* | |
H2 | 0.2820 | 0.5820 | 0.2825 | 0.053* | |
C1 | 0.2587 (2) | 0.5006 (3) | −0.00306 (13) | 0.0488 (6) | |
N4 | 0.3114 (2) | 0.4031 (2) | −0.03940 (13) | 0.0725 (7) | |
H3 | 0.2902 | 0.3972 | −0.0805 | 0.087* | |
H4 | 0.3668 | 0.3455 | −0.0220 | 0.087* | |
N5 | 0.1742 (2) | 0.5887 (3) | −0.02918 (11) | 0.0680 (7) | |
H5 | 0.1402 | 0.6519 | −0.0053 | 0.082* | |
H6 | 0.1526 | 0.5833 | −0.0702 | 0.082* | |
N6 | 0.29067 (19) | 0.5099 (2) | 0.05970 (11) | 0.0626 (6) | |
H7 | 0.2562 | 0.5735 | 0.0832 | 0.075* | |
H8 | 0.3461 | 0.4525 | 0.0773 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.02193 (7) | 0.02200 (7) | 0.02968 (9) | 0.000 | 0.00206 (5) | 0.000 |
O1 | 0.0245 (7) | 0.0307 (7) | 0.0700 (12) | 0.0031 (5) | 0.0152 (7) | 0.0022 (7) |
O2 | 0.0606 (16) | 0.0235 (12) | 0.186 (4) | 0.000 | 0.058 (2) | 0.000 |
N1 | 0.0354 (14) | 0.0252 (12) | 0.068 (2) | 0.000 | 0.0143 (13) | 0.000 |
O3 | 0.0401 (8) | 0.0459 (9) | 0.0439 (10) | 0.0142 (7) | −0.0086 (7) | −0.0129 (7) |
O4 | 0.0379 (8) | 0.0342 (8) | 0.0461 (10) | 0.0061 (6) | −0.0091 (7) | −0.0047 (7) |
O5 | 0.0835 (13) | 0.0677 (12) | 0.0659 (14) | 0.0328 (10) | −0.0143 (11) | −0.0387 (11) |
N2 | 0.0455 (10) | 0.0347 (9) | 0.0389 (11) | 0.0099 (8) | −0.0019 (8) | −0.0067 (9) |
O6 | 0.0411 (9) | 0.0547 (9) | 0.0413 (10) | 0.0142 (7) | 0.0111 (7) | 0.0106 (8) |
O7 | 0.0430 (9) | 0.0529 (9) | 0.0474 (10) | 0.0163 (7) | 0.0105 (8) | 0.0101 (8) |
O8 | 0.0791 (13) | 0.0894 (13) | 0.0408 (11) | 0.0313 (11) | 0.0209 (10) | 0.0240 (10) |
N3 | 0.0477 (11) | 0.0401 (10) | 0.0374 (11) | 0.0101 (8) | 0.0109 (9) | 0.0073 (9) |
O9 | 0.0221 (6) | 0.0295 (7) | 0.0797 (12) | 0.0005 (6) | 0.0022 (7) | −0.0084 (8) |
C1 | 0.0469 (14) | 0.0483 (13) | 0.0512 (17) | 0.0087 (10) | 0.0032 (12) | −0.0092 (12) |
N4 | 0.0796 (17) | 0.0672 (15) | 0.0711 (17) | 0.0217 (12) | 0.0088 (13) | −0.0218 (13) |
N5 | 0.0658 (14) | 0.0906 (17) | 0.0450 (13) | 0.0346 (13) | −0.0120 (12) | −0.0131 (12) |
N6 | 0.0671 (14) | 0.0702 (15) | 0.0486 (14) | 0.0335 (11) | −0.0087 (11) | −0.0024 (12) |
La1—O9 | 2.5409 (12) | O4—N2 | 1.259 (2) |
La1—O3 | 2.6112 (14) | O5—N2 | 1.213 (2) |
La1—O1 | 2.6603 (14) | O6—N3 | 1.250 (2) |
La1—O6 | 2.7174 (15) | O7—N3 | 1.254 (2) |
La1—O4 | 2.7254 (14) | O8—N3 | 1.238 (2) |
La1—O7 | 2.7562 (16) | O9—H1 | 0.8114 |
La1—O9i | 2.5409 (12) | O9—H2 | 0.7982 |
La1—O3i | 2.6112 (14) | C1—N5 | 1.309 (3) |
La1—O1i | 2.6603 (13) | C1—N6 | 1.313 (3) |
La1—O6i | 2.7174 (15) | C1—N4 | 1.321 (3) |
La1—O4i | 2.7254 (14) | N4—H3 | 0.8600 |
La1—O7i | 2.7562 (16) | N4—H4 | 0.8600 |
O1—N1 | 1.2632 (16) | N5—H5 | 0.8600 |
O2—N1 | 1.200 (3) | N5—H6 | 0.8600 |
N1—O1i | 1.2632 (16) | N6—H7 | 0.8600 |
O3—N2 | 1.272 (2) | N6—H8 | 0.8600 |
O9i—La1—O9 | 179.86 (7) | O3i—La1—O7 | 125.81 (5) |
O9i—La1—O3 | 68.43 (5) | O1—La1—O7 | 66.92 (5) |
O9—La1—O3 | 111.67 (5) | O1i—La1—O7 | 98.98 (5) |
O9i—La1—O3i | 111.67 (5) | O6i—La1—O7 | 125.17 (5) |
O9—La1—O3i | 68.43 (5) | O6—La1—O7 | 46.28 (4) |
O3—La1—O3i | 96.51 (7) | O4i—La1—O7 | 130.01 (5) |
O9i—La1—O1 | 111.57 (4) | O4—La1—O7 | 64.19 (5) |
O9—La1—O1 | 68.29 (4) | O9i—La1—O7i | 72.16 (5) |
O3—La1—O1 | 129.30 (5) | O9—La1—O7i | 107.82 (5) |
O3i—La1—O1 | 125.69 (5) | O3—La1—O7i | 125.81 (5) |
O9i—La1—O1i | 68.29 (4) | O3i—La1—O7i | 65.59 (5) |
O9—La1—O1i | 111.57 (4) | O1—La1—O7i | 98.98 (5) |
O3—La1—O1i | 125.69 (5) | O1i—La1—O7i | 66.92 (5) |
O3i—La1—O1i | 129.30 (5) | O6i—La1—O7i | 46.28 (4) |
O1—La1—O1i | 47.96 (6) | O6—La1—O7i | 125.17 (5) |
O9i—La1—O6i | 113.47 (5) | O4i—La1—O7i | 64.19 (5) |
O9—La1—O6i | 66.46 (5) | O4—La1—O7i | 130.01 (5) |
O3—La1—O6i | 164.53 (5) | O7—La1—O7i | 165.17 (6) |
O3i—La1—O6i | 68.30 (5) | N1—O1—La1 | 97.15 (12) |
O1—La1—O6i | 65.31 (5) | O2—N1—O1i | 121.13 (11) |
O1i—La1—O6i | 66.58 (5) | O2—N1—O1 | 121.13 (11) |
O9i—La1—O6 | 66.46 (5) | O1i—N1—O1 | 117.7 (2) |
O9—La1—O6 | 113.47 (5) | N2—O3—La1 | 100.55 (11) |
O3—La1—O6 | 68.30 (5) | N2—O4—La1 | 95.36 (11) |
O3i—La1—O6 | 164.53 (5) | O5—N2—O4 | 122.66 (18) |
O1—La1—O6 | 66.58 (5) | O5—N2—O3 | 121.08 (18) |
O1i—La1—O6 | 65.31 (5) | O4—N2—O3 | 116.26 (17) |
O6i—La1—O6 | 127.02 (7) | N3—O6—La1 | 98.58 (12) |
O9i—La1—O4i | 66.67 (4) | N3—O7—La1 | 96.56 (12) |
O9—La1—O4i | 113.46 (4) | O8—N3—O6 | 120.37 (19) |
O3—La1—O4i | 66.78 (5) | O8—N3—O7 | 121.2 (2) |
O3i—La1—O4i | 47.45 (4) | O6—N3—O7 | 118.39 (19) |
O1—La1—O4i | 163.06 (5) | La1—O9—H1 | 114.4 |
O1i—La1—O4i | 120.83 (4) | La1—O9—H2 | 136.4 |
O6i—La1—O4i | 99.34 (5) | H1—O9—H2 | 109.1 |
O6—La1—O4i | 123.71 (5) | N5—C1—N6 | 119.4 (2) |
O9i—La1—O4 | 113.46 (4) | N5—C1—N4 | 120.4 (3) |
O9—La1—O4 | 66.67 (4) | N6—C1—N4 | 120.2 (2) |
O3—La1—O4 | 47.45 (4) | C1—N4—H3 | 120.0 |
O3i—La1—O4 | 66.78 (5) | C1—N4—H4 | 120.0 |
O1—La1—O4 | 120.83 (4) | H3—N4—H4 | 120.0 |
O1i—La1—O4 | 163.06 (5) | C1—N5—H5 | 120.0 |
O6i—La1—O4 | 123.71 (5) | C1—N5—H6 | 120.0 |
O6—La1—O4 | 99.34 (5) | H5—N5—H6 | 120.0 |
O4i—La1—O4 | 72.98 (7) | C1—N6—H7 | 120.0 |
O9i—La1—O7 | 107.82 (5) | C1—N6—H8 | 120.0 |
O9—La1—O7 | 72.16 (5) | H7—N6—H8 | 120.0 |
O3—La1—O7 | 65.59 (5) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H1···O4ii | 0.81 | 2.13 | 2.9157 (18) | 163 |
O9—H2···O1iii | 0.80 | 2.14 | 2.9060 (18) | 161 |
N4—H4···O8iv | 0.86 | 2.26 | 3.069 (3) | 156 |
N5—H5···O8 | 0.86 | 2.06 | 2.908 (3) | 169 |
N5—H6···O3v | 0.86 | 2.02 | 2.863 (3) | 166 |
N6—H7···O7 | 0.86 | 2.22 | 3.037 (3) | 159 |
N6—H8···O6iv | 0.86 | 2.16 | 2.989 (2) | 161 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, y−1/2, z; (v) −x, −y+1, −z. |
Acknowledgements
AF thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.
References
Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, Y., Zheng, F., Chen, J. & Huang, J. (1999). Acta Cryst. C55, IUC9900065. CrossRef IUCr Journals Google Scholar
Drew, M. G. B., Iveson, P. B., Hudson, M. J., Liljenzin, J. O., Spjuth, L., Cordier, P.-Y., Enarsson, A., Hill, C. & Madic, C. (2000). J. Chem. Soc. Dalton Trans. pp. 821–830. Web of Science CSD CrossRef Google Scholar
Evans, D. J., Junk, P. C. & Smith, M. K. (2002). New J. Chem. 26, 1043–1048. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harrison, W. T. A. (2003). Acta Cryst. E59, o769-o770. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Weakley, T. J. R. (1982). Inorg. Chem. Acta, 63, 161–168. CSD CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.