metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine)­di­chloro­gold(III) nitrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
*Correspondence e-mail: jkb@chem.sdu.dk

(Received 18 October 2004; accepted 20 October 2004; online 30 October 2004)

The title compound, [AuCl2(C10H8N2)]NO3, is layered parallel to ([\overline 1]01) by ππ stacking. The individual {[\overline 1]01} layers are held together by extensive C—H⋯O and C—H⋯Cl hydrogen bonding.

Comment

The title compound, [Au(bipy)Cl2]NO3, (I[link]), was synthesized by reaction of the corresponding chloride with ammonium nitrate in an attempt to synthesize [Au(bipy)(NH3)2](NO3)3.[link]

[Scheme 1]

Compound (I[link]) (Fig. 1[link]) is closely related to the previously characterized [Au(bipy)Cl2]BF4 salt, (II) [Cambridge Structural Database Version 5.25 (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode ZENFED (McInnes et al., 1995[McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023-2025.])], which has the same cation. Indeed, no change is observed in the intramolecular geometry of the cation in the two structures. It should noted that, while the cation in (II) has approximate C2v symmetry, this is exact in (I[link]) by being imposed by the space group (cf. Fig. 1[link]). There are significant differences in the packing between the two structures. Nitrate is a stronger donor than tetra­fluoro­borate and this is observed in the structure. (I[link]) and (II) both show axial interactions to the peripheral atoms of their counter-ions, NO3 and BF4, respectively, but these are found to be much shorter in (I[link]) than in (II): Au⋯O = 3.008 (5) Å versus Au⋯F = 3.165–3.781 Å.

More important are the short C—H⋯O and C—H⋯Cl interactions (Table 2[link]) illustrated in Fig. 2[link]. The nitrate ion is seen to be coplanar with the complex cation, except for a small twist induced by the Au⋯O interactions. These hydrogen bonds link cations and anions into sheets parallel to the ([\overline 1]01) plane. The sheets are then held together by Au⋯O interactions and ππ stacking between the pyridine rings, with centroid-to-centroid and plane-to-plane distances of 3.662 (3) and 3.336 Å, respectively. This is vastly different from the situation in (II), where no ππ stacking is observed and the mol­ecules pack in a herringbone manner through C—H⋯F interactions, comparable to the C—H⋯F seen in (I[link]), together with weaker C—H⋯Cl, C—H⋯π and Cl⋯π interactions.

[Figure 1]
Figure 1
View of (I[link]), shown with 50% probability displacement ellipsoids for the asymmetric unit only. [Symmetry codes: (i) −x, y, [{1 \over 2}] − z; (ii) 1 − x, y, [{1 \over 2}] − z.]
[Figure 2]
Figure 2
The short C—H⋯O and C—H⋯Cl interactions (dashed lines) in the (40[\overline 4]) plane.

Experimental

The title compound was produced according to an established procedure (McInnes et al., 1995[McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023-2025.]). In an attempt to replace the coordinated chloride with ammonia, a solution of the crude product was mixed with a concentrated solution of ammonium nitrate (4 M). Crystals of (I[link]) precipitated after one day at room temperature.

Crystal data
  • [AuCl2(C10H8N2)]NO3

  • Mr = 486.06

  • Monoclinic, C2/c

  • a = 6.9236 (2) Å

  • b = 14.0458 (4) Å

  • c = 13.0559 (4) Å

  • β = 96.5623 (13)°

  • V = 1261.44 (6) Å3

  • Z = 4

  • Dx = 2.559 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6608 reflections

  • θ = 2.9–27.5°

  • μ = 12.09 mm−1

  • T = 150 (2) K

  • Block, pale yellow

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.461, Tmax = 0.544

  • 10491 measured reflections

  • 1247 independent reflections

  • 1097 reflections with I > 2σ(I)

  • Rint = 0.071

  • θmax = 26°

  • h = −8 → 8

  • k = −17 → 17

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.053

  • S = 1.06

  • 1247 reflections

  • 88 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0222P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—N1 2.030 (4)
Au1—Cl1 2.2510 (15)
N1—Au1—N1ii 80.6 (2)
N1—Au1—Cl1 95.46 (12)
N1—Au1—Cl1ii 176.06 (11)
Cl1—Au1—Cl1ii 88.45 (9)
Symmetry code: (ii) [1-x,y,{\script{1\over 2}}-z].

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2iii 0.95 2.42 3.307 (7) 156
C4—H4⋯O2iv 0.95 2.55 3.205 (7) 126
C5—H5⋯O1v 0.95 2.65 3.582 (5) 167
C5—H5⋯O2iv 0.95 2.71 3.287 (7) 120
C6—H6⋯Cl1 0.95 2.64 3.231 (6) 121
C6—H6⋯Cl1vi 0.95 2.69 3.476 (5) 141
Symmetry codes: (iii) [{\script{1\over 2}}-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (iv) [x,1-y,z-{\script{1\over 2}}]; (v) -x,1-y,-z; (vi) [{\script{1\over 2}}-x,{\script{1\over 2}}-y,-z].

All H atoms were constrained to have optimum geometry in the riding model, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 1997–2000[Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

(2,2'-Bipyridine)dichlorogold(III) nitrate top
Crystal data top
[AuCl2(C10H8N2)]NO3F(000) = 904
Mr = 486.06Dx = 2.559 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6608 reflections
a = 6.9240 (2) Åθ = 2.9–27.5°
b = 14.0460 (4) ŵ = 12.09 mm1
c = 13.0560 (4) ÅT = 150 K
β = 96.562 (1)°Block, pale yellow
V = 1261.44 (6) Å30.3 × 0.1 × 0.05 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
1097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ and ω scansθmax = 26°, θmin = 3.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 88
Tmin = 0.461, Tmax = 0.544k = 1717
10491 measured reflectionsl = 1616
1247 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0222P)2]
where P = (Fo2 + 2Fc2)/3
1247 reflections(Δ/σ)max = 0.001
88 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.96 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.50.330309 (19)0.250.03725 (13)
N10.4035 (6)0.4405 (3)0.1574 (3)0.0347 (10)
N200.3842 (5)0.250.0448 (15)
O100.4719 (4)0.250.0720 (17)
O20.1008 (7)0.3406 (3)0.3192 (4)0.0684 (13)
Cl10.3870 (3)0.21547 (11)0.13868 (13)0.0662 (4)
C20.4463 (7)0.5274 (3)0.1986 (4)0.0352 (11)
C30.3881 (8)0.6077 (4)0.1435 (4)0.0467 (14)
H30.41770.66880.17220.056*
C40.2864 (8)0.5996 (4)0.0462 (5)0.0519 (15)
H40.24660.65480.00740.062*
C50.2437 (7)0.5101 (4)0.0065 (4)0.0481 (13)
H50.17510.50340.06040.058*
C60.2995 (8)0.4317 (4)0.0628 (4)0.0425 (12)
H60.26590.37030.03610.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.03767 (19)0.03693 (19)0.03505 (18)00.00486 (12)0
N10.035 (2)0.034 (2)0.034 (2)0.0018 (19)0.0003 (19)0.0035 (19)
N20.045 (4)0.043 (4)0.046 (4)00.004 (3)0
O10.079 (4)0.049 (4)0.090 (5)00.020 (4)0
O20.073 (3)0.072 (3)0.056 (3)0.011 (2)0.008 (2)0.017 (2)
Cl10.0814 (11)0.0485 (9)0.0632 (10)0.0002 (8)0.0159 (9)0.0147 (8)
C20.036 (3)0.036 (3)0.034 (3)0.001 (2)0.006 (2)0.003 (2)
C30.048 (3)0.044 (3)0.048 (3)0.005 (3)0.002 (3)0.002 (3)
C40.048 (3)0.052 (4)0.054 (4)0.016 (3)0.001 (3)0.016 (3)
C50.040 (3)0.067 (4)0.035 (3)0.005 (3)0.007 (2)0.002 (3)
C60.038 (3)0.052 (3)0.036 (3)0.001 (3)0.003 (2)0.003 (3)
Geometric parameters (Å, º) top
Au1—N1i2.030 (4)C2—C31.373 (7)
Au1—N12.030 (4)C2—C2i1.457 (9)
Au1—Cl12.2510 (15)C3—C41.386 (8)
Au1—Cl1i2.2510 (15)C3—H30.95
N1—C21.353 (6)C4—C51.379 (8)
N1—C61.362 (6)C4—H40.95
N2—O11.232 (8)C5—C61.356 (7)
N2—O2ii1.239 (5)C5—H50.95
N2—O21.239 (5)C6—H60.95
N1—Au1—N1i80.6 (2)C3—C2—C2i124.8 (3)
N1—Au1—Cl195.46 (12)C2—C3—C4120.1 (5)
N1—Au1—Cl1i176.06 (11)C2—C3—H3120
N1i—Au1—Cl1176.06 (11)C4—C3—H3120
N1i—Au1—Cl1i95.46 (12)C5—C4—C3119.0 (5)
Cl1—Au1—Cl1i88.45 (9)C5—C4—H4120.5
C2—N1—C6120.8 (4)C3—C4—H4120.5
C2—N1—Au1114.1 (3)C6—C5—C4120.0 (5)
C6—N1—Au1125.1 (3)C6—C5—H5120
O1—N2—O2ii119.7 (3)C4—C5—H5120
O1—N2—O2119.7 (3)C5—C6—N1120.4 (5)
O2ii—N2—O2120.7 (7)C5—C6—H6119.8
N1—C2—C3119.6 (4)N1—C6—H6119.8
N1—C2—C2i115.6 (3)
N1i—Au1—N1—C20.1 (2)N1—C2—C3—C40.1 (8)
Cl1—Au1—N1—C2179.6 (3)C2i—C2—C3—C4180.0 (6)
N1i—Au1—N1—C6178.2 (5)C2—C3—C4—C50.5 (9)
Cl1—Au1—N1—C62.3 (4)C3—C4—C5—C60.6 (8)
C6—N1—C2—C31.5 (7)C4—C5—C6—N12.2 (8)
Au1—N1—C2—C3179.8 (4)C2—N1—C6—C52.7 (8)
C6—N1—C2—C2i178.4 (5)Au1—N1—C6—C5179.3 (4)
Au1—N1—C2—C2i0.2 (7)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2iii0.952.423.307 (7)156
C4—H4···O2iv0.952.553.205 (7)126
C5—H5···O1v0.952.653.582 (5)167
C5—H5···O2iv0.952.713.287 (7)120
C6—H6···Cl10.952.643.231 (6)121
C6—H6···Cl1vi0.952.693.476 (5)141
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x, y+1, z; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

We thank the EPSRC for funding for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMcInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds