metal-organic compounds
(2,2′-Bipyridine)dichlorogold(III) nitrate
aDepartment of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
*Correspondence e-mail: jkb@chem.sdu.dk
The title compound, [AuCl2(C10H8N2)]NO3, is layered parallel to (01) by π–π stacking. The individual {01} layers are held together by extensive C—H⋯O and C—H⋯Cl hydrogen bonding.
Comment
The title compound, [Au(bipy)Cl2]NO3, (I), was synthesized by reaction of the corresponding chloride with ammonium nitrate in an attempt to synthesize [Au(bipy)(NH3)2](NO3)3.
Compound (I) (Fig. 1) is closely related to the previously characterized [Au(bipy)Cl2]BF4 salt, (II) [Cambridge Structural Database Version 5.25 (Allen, 2002) refcode ZENFED (McInnes et al., 1995)], which has the same cation. Indeed, no change is observed in the intramolecular geometry of the cation in the two structures. It should noted that, while the cation in (II) has approximate C2v symmetry, this is exact in (I) by being imposed by the (cf. Fig. 1). There are significant differences in the packing between the two structures. Nitrate is a stronger donor than tetrafluoroborate and this is observed in the structure. (I) and (II) both show axial interactions to the peripheral atoms of their counter-ions, NO3− and BF4−, respectively, but these are found to be much shorter in (I) than in (II): Au⋯O = 3.008 (5) Å versus Au⋯F = 3.165–3.781 Å.
More important are the short C—H⋯O and C—H⋯Cl interactions (Table 2) illustrated in Fig. 2. The nitrate ion is seen to be coplanar with the complex cation, except for a small twist induced by the Au⋯O interactions. These hydrogen bonds link cations and anions into sheets parallel to the (01) plane. The sheets are then held together by Au⋯O interactions and π–π stacking between the pyridine rings, with centroid-to-centroid and plane-to-plane distances of 3.662 (3) and 3.336 Å, respectively. This is vastly different from the situation in (II), where no π–π stacking is observed and the molecules pack in a herringbone manner through C—H⋯F interactions, comparable to the C—H⋯F seen in (I), together with weaker C—H⋯Cl, C—H⋯π and Cl⋯π interactions.
Experimental
The title compound was produced according to an established procedure (McInnes et al., 1995). In an attempt to replace the coordinated chloride with ammonia, a solution of the crude product was mixed with a concentrated solution of ammonium nitrate (4 M). Crystals of (I) precipitated after one day at room temperature.
Crystal data
|
Refinement
|
|
All H atoms were constrained to have optimum geometry in the riding model, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 1997–2000); cell HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536804026558/ng6054sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804026558/ng6054Isup2.hkl
Data collection: COLLECT (Nonius, 1997-2000); cell
HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).[AuCl2(C10H8N2)]NO3 | F(000) = 904 |
Mr = 486.06 | Dx = 2.559 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6608 reflections |
a = 6.9240 (2) Å | θ = 2.9–27.5° |
b = 14.0460 (4) Å | µ = 12.09 mm−1 |
c = 13.0560 (4) Å | T = 150 K |
β = 96.562 (1)° | Block, pale yellow |
V = 1261.44 (6) Å3 | 0.3 × 0.1 × 0.05 mm |
Z = 4 |
Nonius Kappa CCD diffractometer | 1097 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
φ and ω scans | θmax = 26°, θmin = 3.8° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −8→8 |
Tmin = 0.461, Tmax = 0.544 | k = −17→17 |
10491 measured reflections | l = −16→16 |
1247 independent reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0222P)2] where P = (Fo2 + 2Fc2)/3 |
1247 reflections | (Δ/σ)max = 0.001 |
88 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.96 e Å−3 |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.5 | 0.330309 (19) | 0.25 | 0.03725 (13) | |
N1 | 0.4035 (6) | 0.4405 (3) | 0.1574 (3) | 0.0347 (10) | |
N2 | 0 | 0.3842 (5) | 0.25 | 0.0448 (15) | |
O1 | 0 | 0.4719 (4) | 0.25 | 0.0720 (17) | |
O2 | 0.1008 (7) | 0.3406 (3) | 0.3192 (4) | 0.0684 (13) | |
Cl1 | 0.3870 (3) | 0.21547 (11) | 0.13868 (13) | 0.0662 (4) | |
C2 | 0.4463 (7) | 0.5274 (3) | 0.1986 (4) | 0.0352 (11) | |
C3 | 0.3881 (8) | 0.6077 (4) | 0.1435 (4) | 0.0467 (14) | |
H3 | 0.4177 | 0.6688 | 0.1722 | 0.056* | |
C4 | 0.2864 (8) | 0.5996 (4) | 0.0462 (5) | 0.0519 (15) | |
H4 | 0.2466 | 0.6548 | 0.0074 | 0.062* | |
C5 | 0.2437 (7) | 0.5101 (4) | 0.0065 (4) | 0.0481 (13) | |
H5 | 0.1751 | 0.5034 | −0.0604 | 0.058* | |
C6 | 0.2995 (8) | 0.4317 (4) | 0.0628 (4) | 0.0425 (12) | |
H6 | 0.2659 | 0.3703 | 0.0361 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.03767 (19) | 0.03693 (19) | 0.03505 (18) | 0 | −0.00486 (12) | 0 |
N1 | 0.035 (2) | 0.034 (2) | 0.034 (2) | 0.0018 (19) | 0.0003 (19) | 0.0035 (19) |
N2 | 0.045 (4) | 0.043 (4) | 0.046 (4) | 0 | 0.004 (3) | 0 |
O1 | 0.079 (4) | 0.049 (4) | 0.090 (5) | 0 | 0.020 (4) | 0 |
O2 | 0.073 (3) | 0.072 (3) | 0.056 (3) | 0.011 (2) | −0.008 (2) | 0.017 (2) |
Cl1 | 0.0814 (11) | 0.0485 (9) | 0.0632 (10) | −0.0002 (8) | −0.0159 (9) | −0.0147 (8) |
C2 | 0.036 (3) | 0.036 (3) | 0.034 (3) | 0.001 (2) | 0.006 (2) | 0.003 (2) |
C3 | 0.048 (3) | 0.044 (3) | 0.048 (3) | 0.005 (3) | 0.002 (3) | 0.002 (3) |
C4 | 0.048 (3) | 0.052 (4) | 0.054 (4) | 0.016 (3) | 0.001 (3) | 0.016 (3) |
C5 | 0.040 (3) | 0.067 (4) | 0.035 (3) | 0.005 (3) | −0.007 (2) | 0.002 (3) |
C6 | 0.038 (3) | 0.052 (3) | 0.036 (3) | −0.001 (3) | −0.003 (2) | −0.003 (3) |
Au1—N1i | 2.030 (4) | C2—C3 | 1.373 (7) |
Au1—N1 | 2.030 (4) | C2—C2i | 1.457 (9) |
Au1—Cl1 | 2.2510 (15) | C3—C4 | 1.386 (8) |
Au1—Cl1i | 2.2510 (15) | C3—H3 | 0.95 |
N1—C2 | 1.353 (6) | C4—C5 | 1.379 (8) |
N1—C6 | 1.362 (6) | C4—H4 | 0.95 |
N2—O1 | 1.232 (8) | C5—C6 | 1.356 (7) |
N2—O2ii | 1.239 (5) | C5—H5 | 0.95 |
N2—O2 | 1.239 (5) | C6—H6 | 0.95 |
N1—Au1—N1i | 80.6 (2) | C3—C2—C2i | 124.8 (3) |
N1—Au1—Cl1 | 95.46 (12) | C2—C3—C4 | 120.1 (5) |
N1—Au1—Cl1i | 176.06 (11) | C2—C3—H3 | 120 |
N1i—Au1—Cl1 | 176.06 (11) | C4—C3—H3 | 120 |
N1i—Au1—Cl1i | 95.46 (12) | C5—C4—C3 | 119.0 (5) |
Cl1—Au1—Cl1i | 88.45 (9) | C5—C4—H4 | 120.5 |
C2—N1—C6 | 120.8 (4) | C3—C4—H4 | 120.5 |
C2—N1—Au1 | 114.1 (3) | C6—C5—C4 | 120.0 (5) |
C6—N1—Au1 | 125.1 (3) | C6—C5—H5 | 120 |
O1—N2—O2ii | 119.7 (3) | C4—C5—H5 | 120 |
O1—N2—O2 | 119.7 (3) | C5—C6—N1 | 120.4 (5) |
O2ii—N2—O2 | 120.7 (7) | C5—C6—H6 | 119.8 |
N1—C2—C3 | 119.6 (4) | N1—C6—H6 | 119.8 |
N1—C2—C2i | 115.6 (3) | ||
N1i—Au1—N1—C2 | −0.1 (2) | N1—C2—C3—C4 | −0.1 (8) |
Cl1—Au1—N1—C2 | −179.6 (3) | C2i—C2—C3—C4 | 180.0 (6) |
N1i—Au1—N1—C6 | −178.2 (5) | C2—C3—C4—C5 | 0.5 (9) |
Cl1—Au1—N1—C6 | 2.3 (4) | C3—C4—C5—C6 | 0.6 (8) |
C6—N1—C2—C3 | −1.5 (7) | C4—C5—C6—N1 | −2.2 (8) |
Au1—N1—C2—C3 | −179.8 (4) | C2—N1—C6—C5 | 2.7 (8) |
C6—N1—C2—C2i | 178.4 (5) | Au1—N1—C6—C5 | −179.3 (4) |
Au1—N1—C2—C2i | 0.2 (7) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2iii | 0.95 | 2.42 | 3.307 (7) | 156 |
C4—H4···O2iv | 0.95 | 2.55 | 3.205 (7) | 126 |
C5—H5···O1v | 0.95 | 2.65 | 3.582 (5) | 167 |
C5—H5···O2iv | 0.95 | 2.71 | 3.287 (7) | 120 |
C6—H6···Cl1 | 0.95 | 2.64 | 3.231 (6) | 121 |
C6—H6···Cl1vi | 0.95 | 2.69 | 3.476 (5) | 141 |
Symmetry codes: (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y+1, z−1/2; (v) −x, −y+1, −z; (vi) −x+1/2, −y+1/2, −z. |
Acknowledgements
We thank the EPSRC for funding for the purchase of the diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.