organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-2-Phenyl­ethen-1-yl]­quinolin-8-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: jkb@chem.sdu.dk

(Received 9 September 2004; accepted 4 October 2004; online 9 October 2004)

The title compound, C17H13NO, dimerizes through O—H⋯N hydrogen bonds with H⋯N in the range 2.00–2.27 Å. These dimers form an extended structure through ππ stacking and C—H⋯π interactions.

Comment

Due to their luminescence, quinolin-8-olate complexes have been widely used in organic light-emitting diodes and much work has gone into tuning the exact wavelengths produced. In a recent publication, the substituents in the 4′ position of 5-phenyl­azoquinolin-8-ol, (II[link]), have been varied systematically and the free quinolin-8-ols have been structurally characterized. Their ZnII and AlIII complexes [Zn(II)2, Al(II)3] have also been investigated (La Deda et al., 2004[La Deda, M., Grisolia, A., Aiello, I., Crispini, A., Ghedini, M., Belviso, S., Amati, M. & Lelj, F. (2004). Dalton Trans. pp. 2424-2431.]). We report here the carbon analogue of La Deda's parent compound, viz. 5-[(E)-2-phenyl­ethen-1-yl]-quinolin-8-ol, (I[link]).[link]

[Scheme 1]

Compound (I[link]) crystallizes in the space group P21/c with three mol­ecules in the asymmetric unit. They are each essentially planar with modest twists around the ethyl­ene group of 179.51 (12), 177.63 (12) and 176.97 (12)° for mol­ecules A, B and C, respectively, but do show significant twists of the phenyl­ethenyl group relative to the quinoline [8.1 (2), 17.3 (2) and 8.1 (2)°, respectively]. The configuration is E and the phenyl group and the pyridine ring in the quinoline take an anti conformation in relation to one another. This is the same conformation found in (II) and can be rationalized as the one that ensures minimal interaction between the H atoms on the ethyl­ene and the pyridine.

All three mol­ecules dimerize through O—H⋯N hydrogen bonds [A with B and C with Ci; symmetry code: (i) 1 − x, 2 − y, −z; details given in Table 1[link]]. This motif is seen for about 20% of the ca 120 quinolin-8-ols in the Cambridge Structural Database (Version 5.25, November 2003 with three updates, the latest being July 2004; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 280-388.]). Half of these, however, are twisted out of planarity compared to (I[link]). The dimers stack through ππ interactions evident in Fig. 2[link]. The quinoline in mol­ecule C lies over that in B in a head-to-tail fashion (separation 3.49 Å), with the phenyl­ethenyl group above the quinoline in A (3.52 Å). Similarly, the phenyl­ethenyl group in B is below the quinoline in Ci (3.61 Å). This head-to-tail stacking and additional interaction through the phenyl is identical to the packing observed in both substituted examples of (II), but while the stacking continues throughout the structure in both of these, it is finite in (I[link]). Molecules A, B and C, together with their symmetry equivalents [related by symmetry code (i)], form a basic six-mol­ecule building block for the structure. This block then interacts weakly with symmetry-related blocks in a parallel but slightly offset position along c (Fig. 3[link]). Furthermore, stronger C—H⋯π interactions are found to blocks that are tilted and displaced along b (Fig. 4[link]). Both these latter interactions are also observed in (II), but again in an infinite form. Finally there are two C—H⋯O interactions to consider: C16A—H16A⋯O1A(1 + x, y, z) = 2.71 Å and C16B—H16B⋯O1B(x − 1, y, z) = 2.67 Å. The latter is particularly short and this is consistent with the observation that B is the mol­ecule with the largest deviation from planarity of the phenyl­ethenyl and quinoline groups.

[Figure 1]
Figure 1
View of mol­ecules A and B of (I[link]) (50% probability displacement ellipsoids). Dotted lines indicate hydrogen bonds.
[Figure 2]
Figure 2
Side view of the ππ stacking along [021] [symmetry code: (i) 1 − x, 2 − y, −z].
[Figure 3]
Figure 3
Parallel hexamers viewed along [021].
[Figure 4]
Figure 4
Central hexamer with C—H⋯π interactions to other hexamers.

Experimental

The title compound was synthesized via a Wittig reaction (Friedrich & Henning, 1959[Friedrich, K. & Henning, H.-G. (1959). Chem. Ber. 92, 2944-2952.]). Single crystals of (I[link]) were produced by leaving a 3:1 mixture of (I[link]) and AlCl3 dissolved in methanol to evaporate to dryness.

Crystal data
  • C17H13NO

  • Mr = 247.28

  • Monoclinic, P21/c

  • a = 11.9280 (1) Å

  • b = 11.0120 (1) Å

  • c = 28.1700 (3) Å

  • β = 92.654 (1)°

  • V = 3696.19 (6) Å3

  • Z = 12

  • Dx = 1.333 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 54 542 reflections

  • θ = 2.9–30.0°

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • Prism, translucent yellow

  • 0.38 × 0.20 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.922, Tmax = 0.997

  • 65 180 measured reflections

  • 10 796 independent reflections

  • 6893 reflections with I > 2σ(I)

  • Rint = 0.061

  • θmax = 30.0°

  • h = −16 → 16

  • k = −15 → 15

  • l = −39 → 39

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.04

  • 10 796 reflections

  • 526 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0688P)2 + 0.3349P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1B 0.88 (2) 2.15 (2) 2.8177 (16) 132.9 (17)
O1B—H1B⋯N1A 0.90 (2) 2.20 (2) 2.9173 (16) 135.6 (17)
O1C—H1C⋯N1Ci 0.94 (2) 2.00 (2) 2.7519 (15) 135.9 (16)
Symmetry code: (i) 1-x,2-y,-z.

H atoms in C—H bonds were constrained with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). Hydroxyl H atoms were located in a difference map and refined freely.

Data collection: COLLECT (Nonius, 1997–2000[Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: X-Seed (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

5-[(E)-2-Phenylethen-1-yl]quinolin-8-ol top
Crystal data top
C17H13NOF(000) = 1560
Mr = 247.28Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 54542 reflections
a = 11.9280 (1) Åθ = 2.9–30.0°
b = 11.0120 (1) ŵ = 0.08 mm1
c = 28.1700 (3) ÅT = 150 K
β = 92.654 (1)°Prism, translucent yellow
V = 3696.19 (6) Å30.38 × 0.2 × 0.05 mm
Z = 12
Data collection top
Nonius KappaCCD
diffractometer
6893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 30.0°, θmin = 3.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1616
Tmin = 0.922, Tmax = 0.997k = 1515
65180 measured reflectionsl = 3939
10796 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.3349P]
where P = (Fo2 + 2Fc2)/3
10796 reflections(Δ/σ)max = 0.001
526 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.00536 (8)1.15351 (10)0.26941 (4)0.0342 (2)
N1A1.14573 (9)1.28265 (10)0.21446 (4)0.0271 (2)
C1A1.19146 (11)1.22383 (11)0.25356 (5)0.0236 (3)
C2A1.11634 (10)1.15781 (12)0.28171 (5)0.0257 (3)
C3A1.15606 (11)1.09739 (12)0.32148 (5)0.0274 (3)
H3A1.10541.05490.34050.033*
C4A1.27068 (11)1.09773 (12)0.33426 (5)0.0267 (3)
H4A1.29611.05380.36170.032*
C5A1.34898 (11)1.15962 (11)0.30846 (5)0.0242 (3)
C6A1.30817 (10)1.22482 (11)0.26702 (4)0.0229 (3)
C7A1.37663 (11)1.29409 (12)0.23728 (5)0.0271 (3)
H7A1.45521.29870.24430.033*
C8A1.33061 (12)1.35407 (12)0.19872 (5)0.0306 (3)
H8A1.37661.40080.1790.037*
C9A1.21419 (11)1.34600 (13)0.18847 (5)0.0308 (3)
H9A1.18331.38820.16150.037*
C10A1.46876 (11)1.15961 (12)0.32301 (5)0.0268 (3)
H10A1.51861.1920.30090.032*
C11A1.51492 (11)1.11896 (12)0.36401 (5)0.0279 (3)
H11A1.46481.08610.38590.034*
C12A1.63404 (11)1.11915 (11)0.37918 (5)0.0247 (3)
C13A1.66713 (12)1.06657 (12)0.42280 (5)0.0304 (3)
H13A1.61161.03520.44260.036*
C14A1.77933 (12)1.05931 (13)0.43781 (5)0.0332 (3)
H14A1.79991.02270.46750.04*
C15A1.86129 (12)1.10533 (13)0.40960 (5)0.0323 (3)
H15A1.93831.09930.41950.039*
C16A1.83018 (11)1.16038 (13)0.36668 (5)0.0319 (3)
H16A1.88621.19310.34740.038*
C17A1.71838 (11)1.16804 (12)0.35167 (5)0.0282 (3)
H17A1.69831.20690.32240.034*
O1B0.98300 (8)1.32068 (9)0.13534 (4)0.0325 (2)
N1B0.84510 (9)1.20227 (10)0.19523 (4)0.0260 (2)
C1B0.79822 (10)1.24929 (11)0.15391 (4)0.0236 (3)
C2B0.87196 (11)1.30937 (12)0.12321 (5)0.0255 (3)
C3B0.83043 (11)1.35656 (12)0.08096 (5)0.0289 (3)
H3B0.87971.39580.06030.035*
C4B0.71575 (11)1.34747 (12)0.06792 (5)0.0294 (3)
H4B0.68921.38170.03860.035*
C5B0.63998 (11)1.29044 (12)0.09626 (5)0.0260 (3)
C6B0.68202 (10)1.24033 (11)0.14043 (5)0.0245 (3)
C7B0.61509 (11)1.17671 (12)0.17251 (5)0.0283 (3)
H7B0.53681.16760.16560.034*
C8B0.66268 (11)1.12858 (13)0.21328 (5)0.0296 (3)
H8B0.61791.08560.23470.036*
C9B0.77814 (11)1.14288 (12)0.22339 (5)0.0284 (3)
H9B0.80991.10830.25180.034*
C10B0.51995 (11)1.28230 (12)0.08217 (5)0.0289 (3)
H10B0.46921.27690.10710.035*
C11B0.47527 (11)1.28169 (12)0.03795 (5)0.0280 (3)
H11B0.5261.28390.01290.034*
C12B0.35474 (11)1.27795 (12)0.02420 (5)0.0266 (3)
C13B0.31851 (12)1.30248 (12)0.02270 (5)0.0299 (3)
H13B0.37251.31930.04550.036*
C14B0.20576 (12)1.30281 (13)0.03661 (5)0.0327 (3)
H14B0.18321.31990.06870.039*
C15B0.12565 (12)1.27828 (13)0.00391 (5)0.0329 (3)
H15B0.04821.27870.01340.04*
C16B0.15981 (12)1.25300 (14)0.04283 (5)0.0341 (3)
H16B0.10531.23590.06540.041*
C17B0.27245 (11)1.25247 (13)0.05679 (5)0.0307 (3)
H17B0.29441.23460.08890.037*
O1C0.51422 (8)0.93682 (10)0.06785 (4)0.0347 (2)
N1C0.64938 (9)1.04801 (10)0.00406 (4)0.0244 (2)
C1C0.69711 (10)1.00783 (11)0.04625 (4)0.0222 (3)
C2C0.62491 (11)0.95194 (12)0.07854 (5)0.0248 (3)
C3C0.66786 (11)0.91111 (12)0.12160 (5)0.0271 (3)
H3C0.61920.87520.14340.033*
C4C0.78202 (11)0.92167 (12)0.13378 (5)0.0260 (3)
H4C0.80940.8910.16360.031*
C5C0.85717 (10)0.97513 (11)0.10404 (5)0.0232 (3)
C6C0.81345 (10)1.01986 (11)0.05913 (4)0.0219 (3)
C7C0.87933 (11)1.07791 (12)0.02501 (5)0.0252 (3)
H7C0.95771.08820.03130.03*
C8C0.83096 (11)1.11881 (12)0.01667 (5)0.0273 (3)
H8C0.87511.1580.03930.033*
C9C0.71516 (11)1.10263 (12)0.02591 (5)0.0266 (3)
H9C0.68251.13230.05510.032*
C10C0.97697 (11)0.98371 (12)0.11767 (5)0.0261 (3)
H10C1.02531.00680.09340.031*
C11C1.02524 (11)0.96268 (12)0.16029 (5)0.0270 (3)
H11C0.97670.94350.1850.032*
C12C1.14578 (11)0.96604 (11)0.17310 (5)0.0244 (3)
C13C1.18417 (11)0.92764 (12)0.21819 (5)0.0261 (3)
H13C1.13150.90170.24040.031*
C14C1.29790 (11)0.92664 (12)0.23130 (5)0.0288 (3)
H14C1.32240.90010.26220.035*
C15C1.37544 (12)0.96429 (12)0.19935 (5)0.0310 (3)
H15C1.45330.96390.20820.037*
C16C1.33884 (11)1.00272 (13)0.15416 (5)0.0319 (3)
H16C1.39191.02790.13210.038*
C17C1.22566 (11)1.00432 (13)0.14131 (5)0.0285 (3)
H17C1.20161.03170.11050.034*
H1A0.9927 (16)1.1865 (18)0.2413 (8)0.074 (7)*
H1B0.9981 (17)1.289 (2)0.1646 (8)0.086 (8)*
H1C0.4915 (16)0.9616 (19)0.0369 (8)0.078 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0208 (5)0.0500 (6)0.0315 (6)0.0021 (4)0.0010 (4)0.0098 (5)
N1A0.0267 (6)0.0267 (6)0.0277 (6)0.0003 (5)0.0011 (5)0.0028 (5)
C1A0.0240 (7)0.0235 (6)0.0233 (6)0.0020 (5)0.0005 (5)0.0010 (5)
C2A0.0212 (7)0.0294 (7)0.0265 (7)0.0005 (5)0.0013 (5)0.0017 (5)
C3A0.0266 (7)0.0310 (7)0.0249 (7)0.0017 (5)0.0033 (6)0.0019 (5)
C4A0.0279 (7)0.0291 (7)0.0229 (6)0.0017 (5)0.0010 (5)0.0015 (5)
C5A0.0247 (7)0.0238 (6)0.0241 (7)0.0006 (5)0.0010 (5)0.0018 (5)
C6A0.0229 (7)0.0217 (6)0.0241 (6)0.0007 (5)0.0005 (5)0.0023 (5)
C7A0.0250 (7)0.0268 (7)0.0293 (7)0.0023 (5)0.0002 (6)0.0005 (5)
C8A0.0318 (8)0.0286 (7)0.0314 (7)0.0052 (6)0.0014 (6)0.0060 (6)
C9A0.0314 (8)0.0302 (7)0.0306 (7)0.0006 (6)0.0024 (6)0.0067 (6)
C10A0.0240 (7)0.0284 (7)0.0280 (7)0.0001 (5)0.0022 (6)0.0023 (5)
C11A0.0254 (7)0.0324 (7)0.0262 (7)0.0007 (5)0.0040 (6)0.0005 (6)
C12A0.0262 (7)0.0229 (6)0.0249 (7)0.0018 (5)0.0002 (5)0.0019 (5)
C13A0.0330 (8)0.0318 (7)0.0262 (7)0.0012 (6)0.0006 (6)0.0031 (6)
C14A0.0365 (8)0.0337 (8)0.0285 (7)0.0026 (6)0.0070 (6)0.0012 (6)
C15A0.0270 (7)0.0317 (7)0.0374 (8)0.0039 (6)0.0070 (6)0.0035 (6)
C16A0.0263 (7)0.0334 (7)0.0360 (8)0.0007 (6)0.0029 (6)0.0001 (6)
C17A0.0280 (7)0.0290 (7)0.0275 (7)0.0026 (5)0.0007 (6)0.0036 (6)
O1B0.0203 (5)0.0455 (6)0.0315 (6)0.0029 (4)0.0004 (4)0.0055 (5)
N1B0.0237 (6)0.0289 (6)0.0253 (6)0.0001 (4)0.0005 (5)0.0033 (5)
C1B0.0235 (7)0.0244 (6)0.0229 (6)0.0006 (5)0.0010 (5)0.0040 (5)
C2B0.0214 (7)0.0268 (7)0.0284 (7)0.0000 (5)0.0014 (5)0.0039 (5)
C3B0.0271 (7)0.0318 (7)0.0281 (7)0.0020 (6)0.0040 (6)0.0015 (6)
C4B0.0301 (7)0.0308 (7)0.0271 (7)0.0017 (6)0.0010 (6)0.0002 (6)
C5B0.0243 (7)0.0266 (7)0.0270 (7)0.0013 (5)0.0007 (6)0.0036 (5)
C6B0.0233 (7)0.0247 (6)0.0256 (7)0.0005 (5)0.0007 (5)0.0046 (5)
C7B0.0223 (7)0.0329 (7)0.0297 (7)0.0037 (5)0.0008 (6)0.0037 (6)
C8B0.0272 (7)0.0352 (7)0.0265 (7)0.0057 (6)0.0025 (6)0.0003 (6)
C9B0.0280 (7)0.0330 (7)0.0240 (7)0.0022 (6)0.0002 (6)0.0009 (6)
C10B0.0257 (7)0.0327 (7)0.0282 (7)0.0004 (6)0.0004 (6)0.0012 (6)
C11B0.0242 (7)0.0304 (7)0.0293 (7)0.0029 (5)0.0016 (6)0.0006 (6)
C12B0.0275 (7)0.0251 (7)0.0268 (7)0.0012 (5)0.0011 (6)0.0006 (5)
C13B0.0313 (8)0.0320 (7)0.0263 (7)0.0002 (6)0.0013 (6)0.0001 (6)
C14B0.0362 (8)0.0350 (8)0.0263 (7)0.0013 (6)0.0075 (6)0.0015 (6)
C15B0.0251 (7)0.0343 (8)0.0386 (8)0.0040 (6)0.0068 (6)0.0026 (6)
C16B0.0270 (7)0.0394 (8)0.0358 (8)0.0061 (6)0.0003 (6)0.0038 (6)
C17B0.0301 (8)0.0353 (8)0.0264 (7)0.0026 (6)0.0027 (6)0.0037 (6)
O1C0.0188 (5)0.0568 (7)0.0283 (5)0.0048 (4)0.0009 (4)0.0130 (5)
N1C0.0220 (6)0.0277 (6)0.0234 (6)0.0009 (4)0.0003 (4)0.0015 (4)
C1C0.0218 (6)0.0226 (6)0.0221 (6)0.0012 (5)0.0001 (5)0.0003 (5)
C2C0.0201 (7)0.0286 (7)0.0258 (7)0.0001 (5)0.0017 (5)0.0003 (5)
C3C0.0226 (7)0.0323 (7)0.0265 (7)0.0014 (5)0.0028 (5)0.0059 (6)
C4C0.0253 (7)0.0290 (7)0.0235 (6)0.0004 (5)0.0017 (5)0.0035 (5)
C5C0.0213 (6)0.0237 (6)0.0245 (7)0.0009 (5)0.0002 (5)0.0004 (5)
C6C0.0203 (6)0.0221 (6)0.0232 (6)0.0001 (5)0.0004 (5)0.0012 (5)
C7C0.0194 (6)0.0283 (7)0.0278 (7)0.0021 (5)0.0002 (5)0.0006 (5)
C8C0.0249 (7)0.0306 (7)0.0267 (7)0.0048 (5)0.0034 (6)0.0030 (6)
C9C0.0262 (7)0.0306 (7)0.0229 (6)0.0002 (5)0.0002 (5)0.0027 (5)
C10C0.0222 (7)0.0301 (7)0.0258 (7)0.0011 (5)0.0009 (5)0.0028 (5)
C11C0.0221 (7)0.0326 (7)0.0263 (7)0.0002 (5)0.0018 (5)0.0024 (6)
C12C0.0231 (7)0.0243 (6)0.0254 (7)0.0016 (5)0.0011 (5)0.0012 (5)
C13C0.0274 (7)0.0256 (7)0.0251 (7)0.0005 (5)0.0004 (6)0.0004 (5)
C14C0.0324 (8)0.0252 (7)0.0281 (7)0.0018 (5)0.0071 (6)0.0010 (5)
C15C0.0224 (7)0.0303 (7)0.0395 (8)0.0007 (5)0.0064 (6)0.0018 (6)
C16C0.0242 (7)0.0380 (8)0.0336 (8)0.0048 (6)0.0016 (6)0.0003 (6)
C17C0.0257 (7)0.0346 (7)0.0248 (7)0.0018 (6)0.0019 (6)0.0021 (6)
Geometric parameters (Å, º) top
O1A—C2A1.3536 (16)C8B—H8B0.95
O1A—H1A0.88 (2)C9B—H9B0.95
N1A—C9A1.3210 (17)C10B—C11B1.3320 (19)
N1A—C1A1.3693 (16)C10B—H10B0.95
C1A—C2A1.4234 (17)C11B—C12B1.4721 (18)
C1A—C6A1.4258 (17)C11B—H11B0.95
C2A—C3A1.3685 (19)C12B—C13B1.3971 (19)
C3A—C4A1.3977 (18)C12B—C17B1.4032 (18)
C3A—H3A0.95C13B—C14B1.3833 (19)
C4A—C5A1.3885 (18)C13B—H13B0.95
C4A—H4A0.95C14B—C15B1.3842 (19)
C5A—C6A1.4361 (18)C14B—H14B0.95
C5A—C10A1.4680 (18)C15B—C16B1.388 (2)
C6A—C7A1.4192 (17)C15B—H15B0.95
C7A—C8A1.3646 (19)C16B—C17B1.3823 (19)
C7A—H7A0.95C16B—H16B0.95
C8A—C9A1.4081 (19)C17B—H17B0.95
C8A—H8A0.95O1C—C2C1.3509 (15)
C9A—H9A0.95O1C—H1C0.94 (2)
C10A—C11A1.3335 (18)N1C—C9C1.3235 (16)
C10A—H10A0.95N1C—C1C1.3674 (16)
C11A—C12A1.4647 (18)C1C—C2C1.4212 (17)
C11A—H11A0.95C1C—C6C1.4242 (17)
C12A—C13A1.3985 (18)C2C—C3C1.3707 (18)
C12A—C17A1.4054 (17)C3C—C4C1.3937 (18)
C13A—C14A1.3869 (19)C3C—H3C0.95
C13A—H13A0.95C4C—C5C1.3862 (17)
C14A—C15A1.384 (2)C4C—H4C0.95
C14A—H14A0.95C5C—C6C1.4332 (18)
C15A—C16A1.388 (2)C5C—C10C1.4654 (18)
C15A—H15A0.95C6C—C7C1.4212 (17)
C16A—C17A1.3827 (19)C7C—C8C1.3606 (18)
C16A—H16A0.95C7C—H7C0.95
C17A—H17A0.95C8C—C9C1.4051 (18)
O1B—C2B1.3582 (16)C8C—H8C0.95
O1B—H1B0.90 (2)C9C—H9C0.95
N1B—C9B1.3243 (16)C10C—C11C1.3277 (18)
N1B—C1B1.3693 (17)C10C—H10C0.95
C1B—C6B1.4236 (17)C11C—C12C1.4666 (18)
C1B—C2B1.4248 (17)C11C—H11C0.95
C2B—C3B1.3700 (19)C12C—C13C1.3958 (18)
C3B—C4B1.4034 (19)C12C—C17C1.4023 (17)
C3B—H3B0.95C13C—C14C1.3894 (18)
C4B—C5B1.3841 (18)C13C—H13C0.95
C4B—H4B0.95C14C—C15C1.3836 (19)
C5B—C6B1.4304 (18)C14C—H14C0.95
C5B—C10B1.4707 (18)C15C—C16C1.392 (2)
C6B—C7B1.4184 (18)C15C—H15C0.95
C7B—C8B1.3644 (19)C16C—C17C1.3815 (19)
C7B—H7B0.95C16C—H16C0.95
C8B—C9B1.4023 (18)C17C—H17C0.95
C2A—O1A—H1A110.0 (13)N1B—C9B—H9B118.4
C9A—N1A—C1A117.53 (11)C8B—C9B—H9B118.4
N1A—C1A—C2A116.88 (11)C11B—C10B—C5B126.52 (12)
N1A—C1A—C6A123.92 (11)C11B—C10B—H10B116.7
C2A—C1A—C6A119.20 (12)C5B—C10B—H10B116.7
O1A—C2A—C3A119.34 (11)C10B—C11B—C12B126.14 (12)
O1A—C2A—C1A120.57 (12)C10B—C11B—H11B116.9
C3A—C2A—C1A120.08 (12)C12B—C11B—H11B116.9
C2A—C3A—C4A120.47 (12)C13B—C12B—C17B117.53 (12)
C2A—C3A—H3A119.8C13B—C12B—C11B119.93 (12)
C4A—C3A—H3A119.8C17B—C12B—C11B122.53 (13)
C5A—C4A—C3A122.69 (13)C14B—C13B—C12B121.51 (12)
C5A—C4A—H4A118.7C14B—C13B—H13B119.2
C3A—C4A—H4A118.7C12B—C13B—H13B119.2
C4A—C5A—C6A117.38 (12)C13B—C14B—C15B120.19 (14)
C4A—C5A—C10A121.56 (12)C13B—C14B—H14B119.9
C6A—C5A—C10A121.06 (11)C15B—C14B—H14B119.9
C7A—C6A—C1A115.37 (12)C14B—C15B—C16B119.27 (13)
C7A—C6A—C5A124.46 (12)C14B—C15B—H15B120.4
C1A—C6A—C5A120.16 (11)C16B—C15B—H15B120.4
C8A—C7A—C6A120.59 (12)C17B—C16B—C15B120.62 (13)
C8A—C7A—H7A119.7C17B—C16B—H16B119.7
C6A—C7A—H7A119.7C15B—C16B—H16B119.7
C7A—C8A—C9A119.29 (12)C16B—C17B—C12B120.87 (13)
C7A—C8A—H8A120.4C16B—C17B—H17B119.6
C9A—C8A—H8A120.4C12B—C17B—H17B119.6
N1A—C9A—C8A123.28 (13)C2C—O1C—H1C114.0 (12)
N1A—C9A—H9A118.4C9C—N1C—C1C117.80 (11)
C8A—C9A—H9A118.4N1C—C1C—C2C117.14 (11)
C11A—C10A—C5A126.82 (12)N1C—C1C—C6C123.55 (11)
C11A—C10A—H10A116.6C2C—C1C—C6C119.31 (12)
C5A—C10A—H10A116.6O1C—C2C—C3C118.57 (11)
C10A—C11A—C12A127.47 (12)O1C—C2C—C1C121.71 (12)
C10A—C11A—H11A116.3C3C—C2C—C1C119.72 (12)
C12A—C11A—H11A116.3C2C—C3C—C4C120.75 (12)
C13A—C12A—C17A117.58 (12)C2C—C3C—H3C119.6
C13A—C12A—C11A119.11 (12)C4C—C3C—H3C119.6
C17A—C12A—C11A123.30 (12)C5C—C4C—C3C122.58 (12)
C14A—C13A—C12A121.38 (13)C5C—C4C—H4C118.7
C14A—C13A—H13A119.3C3C—C4C—H4C118.7
C12A—C13A—H13A119.3C4C—C5C—C6C117.42 (12)
C15A—C14A—C13A120.07 (13)C4C—C5C—C10C121.27 (12)
C15A—C14A—H14A120C6C—C5C—C10C121.31 (11)
C13A—C14A—H14A120C7C—C6C—C1C115.62 (12)
C14A—C15A—C16A119.51 (13)C7C—C6C—C5C124.17 (12)
C14A—C15A—H15A120.2C1C—C6C—C5C120.22 (11)
C16A—C15A—H15A120.2C8C—C7C—C6C120.45 (12)
C17A—C16A—C15A120.55 (13)C8C—C7C—H7C119.8
C17A—C16A—H16A119.7C6C—C7C—H7C119.8
C15A—C16A—H16A119.7C7C—C8C—C9C119.47 (12)
C16A—C17A—C12A120.85 (13)C7C—C8C—H8C120.3
C16A—C17A—H17A119.6C9C—C8C—H8C120.3
C12A—C17A—H17A119.6N1C—C9C—C8C123.09 (12)
C2B—O1B—H1B110.2 (13)N1C—C9C—H9C118.5
C9B—N1B—C1B117.52 (11)C8C—C9C—H9C118.5
N1B—C1B—C6B123.69 (11)C11C—C10C—C5C127.05 (12)
N1B—C1B—C2B116.90 (11)C11C—C10C—H10C116.5
C6B—C1B—C2B119.41 (12)C5C—C10C—H10C116.5
O1B—C2B—C3B119.53 (12)C10C—C11C—C12C126.67 (12)
O1B—C2B—C1B120.80 (12)C10C—C11C—H11C116.7
C3B—C2B—C1B119.67 (12)C12C—C11C—H11C116.7
C2B—C3B—C4B120.61 (12)C13C—C12C—C17C117.92 (12)
C2B—C3B—H3B119.7C13C—C12C—C11C119.52 (11)
C4B—C3B—H3B119.7C17C—C12C—C11C122.54 (12)
C5B—C4B—C3B122.40 (13)C14C—C13C—C12C121.28 (12)
C5B—C4B—H4B118.8C14C—C13C—H13C119.4
C3B—C4B—H4B118.8C12C—C13C—H13C119.4
C4B—C5B—C6B117.70 (12)C15C—C14C—C13C119.91 (13)
C4B—C5B—C10B121.70 (12)C15C—C14C—H14C120
C6B—C5B—C10B120.59 (11)C13C—C14C—H14C120
C7B—C6B—C1B115.72 (12)C14C—C15C—C16C119.68 (13)
C7B—C6B—C5B124.04 (12)C14C—C15C—H15C120.2
C1B—C6B—C5B120.20 (11)C16C—C15C—H15C120.2
C8B—C7B—C6B120.24 (12)C17C—C16C—C15C120.30 (12)
C8B—C7B—H7B119.9C17C—C16C—H16C119.8
C6B—C7B—H7B119.9C15C—C16C—H16C119.8
C7B—C8B—C9B119.59 (12)C16C—C17C—C12C120.90 (13)
C7B—C8B—H8B120.2C16C—C17C—H17C119.6
C9B—C8B—H8B120.2C12C—C17C—H17C119.6
N1B—C9B—C8B123.21 (13)
C9A—N1A—C1A—C2A178.86 (12)C1B—C6B—C7B—C8B0.05 (18)
C9A—N1A—C1A—C6A1.53 (19)C5B—C6B—C7B—C8B178.00 (13)
N1A—C1A—C2A—O1A0.72 (18)C6B—C7B—C8B—C9B0.3 (2)
C6A—C1A—C2A—O1A178.91 (11)C1B—N1B—C9B—C8B1.35 (19)
N1A—C1A—C2A—C3A179.61 (12)C7B—C8B—C9B—N1B0.4 (2)
C6A—C1A—C2A—C3A0.76 (18)C4B—C5B—C10B—C11B27.5 (2)
O1A—C2A—C3A—C4A178.30 (12)C6B—C5B—C10B—C11B153.21 (14)
C1A—C2A—C3A—C4A1.4 (2)C5B—C10B—C11B—C12B177.63 (12)
C2A—C3A—C4A—C5A1.1 (2)C10B—C11B—C12B—C13B166.97 (14)
C3A—C4A—C5A—C6A0.21 (19)C10B—C11B—C12B—C17B11.9 (2)
C3A—C4A—C5A—C10A179.27 (12)C17B—C12B—C13B—C14B0.5 (2)
N1A—C1A—C6A—C7A1.13 (18)C11B—C12B—C13B—C14B178.34 (12)
C2A—C1A—C6A—C7A179.26 (11)C12B—C13B—C14B—C15B0.1 (2)
N1A—C1A—C6A—C5A179.47 (12)C13B—C14B—C15B—C16B0.2 (2)
C2A—C1A—C6A—C5A0.13 (18)C14B—C15B—C16B—C17B0.1 (2)
C4A—C5A—C6A—C7A178.94 (12)C15B—C16B—C17B—C12B0.3 (2)
C10A—C5A—C6A—C7A0.54 (19)C13B—C12B—C17B—C16B0.6 (2)
C4A—C5A—C6A—C1A0.40 (18)C11B—C12B—C17B—C16B178.23 (13)
C10A—C5A—C6A—C1A179.88 (11)C9C—N1C—C1C—C2C178.55 (11)
C1A—C6A—C7A—C8A0.14 (18)C9C—N1C—C1C—C6C1.09 (18)
C5A—C6A—C7A—C8A179.50 (13)N1C—C1C—C2C—O1C1.22 (18)
C6A—C7A—C8A—C9A0.4 (2)C6C—C1C—C2C—O1C179.12 (11)
C1A—N1A—C9A—C8A0.9 (2)N1C—C1C—C2C—C3C179.29 (12)
C7A—C8A—C9A—N1A0.0 (2)C6C—C1C—C2C—C3C0.37 (18)
C4A—C5A—C10A—C11A10.4 (2)O1C—C2C—C3C—C4C178.29 (12)
C6A—C5A—C10A—C11A169.09 (13)C1C—C2C—C3C—C4C1.2 (2)
C5A—C10A—C11A—C12A179.51 (12)C2C—C3C—C4C—C5C1.2 (2)
C10A—C11A—C12A—C13A176.76 (14)C3C—C4C—C5C—C6C0.34 (19)
C10A—C11A—C12A—C17A2.1 (2)C3C—C4C—C5C—C10C179.35 (12)
C17A—C12A—C13A—C14A1.99 (19)N1C—C1C—C6C—C7C0.27 (18)
C11A—C12A—C13A—C14A176.96 (12)C2C—C1C—C6C—C7C179.36 (11)
C12A—C13A—C14A—C15A0.4 (2)N1C—C1C—C6C—C5C179.88 (11)
C13A—C14A—C15A—C16A1.0 (2)C2C—C1C—C6C—C5C0.49 (18)
C14A—C15A—C16A—C17A0.9 (2)C4C—C5C—C6C—C7C179.34 (12)
C15A—C16A—C17A—C12A0.8 (2)C10C—C5C—C6C—C7C1.66 (19)
C13A—C12A—C17A—C16A2.15 (19)C4C—C5C—C6C—C1C0.50 (17)
C11A—C12A—C17A—C16A176.75 (13)C10C—C5C—C6C—C1C178.50 (11)
C9B—N1B—C1B—C6B1.63 (18)C1C—C6C—C7C—C8C0.46 (18)
C9B—N1B—C1B—C2B177.93 (11)C5C—C6C—C7C—C8C179.39 (12)
N1B—C1B—C2B—O1B1.21 (18)C6C—C7C—C8C—C9C0.36 (19)
C6B—C1B—C2B—O1B179.20 (11)C1C—N1C—C9C—C8C1.21 (19)
N1B—C1B—C2B—C3B178.91 (12)C7C—C8C—C9C—N1C0.5 (2)
C6B—C1B—C2B—C3B0.68 (18)C4C—C5C—C10C—C11C11.8 (2)
O1B—C2B—C3B—C4B179.14 (12)C6C—C5C—C10C—C11C169.28 (13)
C1B—C2B—C3B—C4B0.73 (19)C5C—C10C—C11C—C12C176.97 (12)
C2B—C3B—C4B—C5B0.6 (2)C10C—C11C—C12C—C13C172.42 (13)
C3B—C4B—C5B—C6B0.40 (19)C10C—C11C—C12C—C17C6.2 (2)
C3B—C4B—C5B—C10B179.67 (12)C17C—C12C—C13C—C14C0.30 (19)
N1B—C1B—C6B—C7B0.95 (18)C11C—C12C—C13C—C14C178.42 (12)
C2B—C1B—C6B—C7B178.61 (11)C12C—C13C—C14C—C15C0.04 (19)
N1B—C1B—C6B—C5B179.08 (12)C13C—C14C—C15C—C16C0.2 (2)
C2B—C1B—C6B—C5B0.48 (18)C14C—C15C—C16C—C17C0.5 (2)
C4B—C5B—C6B—C7B178.31 (12)C15C—C16C—C17C—C12C0.8 (2)
C10B—C5B—C6B—C7B2.41 (19)C13C—C12C—C17C—C16C0.7 (2)
C4B—C5B—C6B—C1B0.34 (18)C11C—C12C—C17C—C16C177.99 (13)
C10B—C5B—C6B—C1B179.62 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1B0.88 (2)2.15 (2)2.8177 (16)132.9 (17)
O1A—H1A···N1A0.88 (2)2.27 (2)2.7316 (15)112.7 (16)
O1B—H1B···N1A0.90 (2)2.20 (2)2.9173 (16)135.6 (17)
O1B—H1B···N1B0.90 (2)2.27 (2)2.7403 (14)112.2 (16)
O1C—H1C···N1Ci0.94 (2)2.00 (2)2.7519 (15)135.9 (16)
Symmetry code: (i) x+1, y+2, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 280–388.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriedrich, K. & Henning, H.-G. (1959). Chem. Ber. 92, 2944–2952.  CrossRef CAS Web of Science Google Scholar
First citationLa Deda, M., Grisolia, A., Aiello, I., Crispini, A., Ghedini, M., Belviso, S., Amati, M. & Lelj, F. (2004). Dalton Trans. pp. 2424–2431.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds