organic compounds
5-Amino-5-deoxy-2-C-hydroxymethyl-2,3-O-isopropylidene-D-talono-1,5-lactam
aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bChemical Crystallography Laboratory, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and cMolecular Nature Ltd, Insitute of Grassland and Environmental Research, Aberystwyth SY23 3EB, Wales
*Correspondence e-mail: andrew.cowley@chem.ox.ac.uk
The title compound, C10H17NO6, was prepared by carrying out three SN2 displacements on a branched sugar derivative, one of which was not planned. Its was determined to confirm the identity and stereochemistry of the product.
Comment
Even though the value of carbohydrate building blocks to provide access to ). The Kiliani reaction on cheap although hitherto hardly explored, produces protected branched easily. Such materials are likely to have many uses, but initially we are studying the easy preparation of branched sugar mimetics in which the ring oxygen of the sugar is replaced by nitrogen (Winchester & Fleet, 1992; Asano et al., 2000). The biological properties of branched are promising (Ichikawa & Igarashi, 1995, Ichikawa et al., 1998), but the difficulties in the synthesis of such compounds have hindered a substantive investigation of these properties. The branched diacetonide (I) was readily prepared from D-fructose and was readily transformed into the trifluoromethanesulfonate (2). It was anticipated that treatment of (2) with an oxygen would result in a single inversion of configuration at C5. However, the major product isolated, (3) had undergone inversion of configuration at both C4 and C5. The alcohol (3) was elaborated by standard reactions to the title lactam (4), the structure of which is hereby firmly established by X-ray crystallographic analysis. The configuration at C4 of the lactam (4) unequivocally demonstrates that an unexpected double inversion took place in the transformation of (2) to (3).
synthetic materials is well recognized, there are no easily available branched sugar intermediates (Bols, 1996The NH and OH groups all form clearly defined intermolecular hydrogen bonds, linking bilayers of molecules running parallel to the crystallographic ab plane.
Experimental
The lactam (4) was prepared from the diacetonide (1) derived from fructose (Hotchliss et al., 2004). The title material was crystallized from methanol to yield colourless plates.
Crystal data
|
Refinement
|
The weighting scheme used a Chebychev polynomial (Watkin, 1994, Prince, 1982): w = {1 − [(Fo − Fc)/6σ(F)]2}2/[1.14T0(x) + 0.561T1(x) + 0.916T2(x)], where x = Fc/Fmax.
Friedel pairs of reflections were merged prior to use in Ueq of the parent atom.
The of the compound was assumed on the basis of that of the optically pure starting material. The NH and OH H atoms were located in a difference Fourier map and their coordinates and isotropic displacement parameters were subsequently refined. All other H atoms were positioned geometrically (C—H = 1.00 Å), with isotropic displacement parameters set equal to 1.2Data collection: COLLECT (Nonius, 2000); cell DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Shape Software, 2002); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536804025292/rz6003sup1.cif
contains datablocks global, 4. DOI:Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S1600536804025292/rz60034sup2.hkl
Data collection: COLLECT (Nonius, 2000); cell
COLLECT and DENZO; data reduction: COLLECT and DENZO (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Shape Software, 2002); software used to prepare material for publication: CRYSTALS.C10H17NO6 | F(000) = 264 |
Mr = 247.25 | Dx = 1.460 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1266 (2) Å | Cell parameters from 5291 reflections |
b = 6.7254 (2) Å | θ = 5–28° |
c = 13.8419 (5) Å | µ = 0.12 mm−1 |
β = 99.6456 (14)° | T = 150 K |
V = 562.28 (3) Å3 | Plate, colourless |
Z = 2 | 0.38 × 0.38 × 0.14 mm |
Nonius KappaCCD diffractometer | 1211 reflections with I > 3.00u(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 27.4°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1996) | h = −7→7 |
Tmin = 0.96, Tmax = 0.98 | k = −8→8 |
5291 measured reflections | l = −17→17 |
1372 independent reflections |
Refinement on F | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.034 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 1.14 0.561 0.916 |
S = 1.10 | (Δ/σ)max = 0.004 |
1211 reflections | Δρmax = 0.20 e Å−3 |
170 parameters | Δρmin = −0.16 e Å−3 |
1 restraint |
x | y | z | Uiso*/Ueq | ||
N1 | 0.1580 (2) | 0.3518 (2) | 0.37174 (11) | 0.0176 | |
C1 | 0.1315 (2) | 0.2536 (3) | 0.28694 (12) | 0.0160 | |
C2 | 0.3054 (3) | 0.2808 (2) | 0.21935 (13) | 0.0154 | |
C3 | 0.4612 (2) | 0.4553 (3) | 0.24723 (10) | 0.0153 | |
C4 | 0.5232 (2) | 0.4908 (2) | 0.35601 (11) | 0.0151 | |
C5 | 0.3214 (2) | 0.5061 (3) | 0.40842 (11) | 0.0161 | |
O1 | −0.0245 (2) | 0.1385 (2) | 0.26071 (10) | 0.0239 | |
C6 | 0.4241 (3) | 0.0847 (3) | 0.20754 (13) | 0.0206 | |
O2 | 0.5652 (2) | 0.0291 (2) | 0.29613 (10) | 0.0215 | |
O3 | 0.1949 (2) | 0.3367 (2) | 0.12375 (9) | 0.0211 | |
O4 | 0.3350 (2) | 0.6200 (2) | 0.20346 (9) | 0.0182 | |
C7 | 0.1964 (3) | 0.5502 (3) | 0.11614 (12) | 0.0183 | |
C8 | 0.2954 (3) | 0.6069 (3) | 0.02649 (14) | 0.0292 | |
C9 | −0.0325 (3) | 0.6348 (3) | 0.11512 (15) | 0.0303 | |
O5 | 0.66148 (19) | 0.66075 (19) | 0.37549 (9) | 0.0196 | |
C10 | 0.2106 (3) | 0.7109 (3) | 0.40523 (12) | 0.0203 | |
O6 | 0.0666 (2) | 0.7158 (2) | 0.47624 (9) | 0.0245 | |
H1 | 0.050 (5) | 0.324 (5) | 0.411 (2) | 0.042 (8)* | |
H2 | 0.699 (6) | 0.064 (6) | 0.293 (2) | 0.054 (9)* | |
H3 | 0.604 (6) | 0.768 (6) | 0.340 (2) | 0.052 (9)* | |
H4 | −0.075 (5) | 0.680 (5) | 0.4463 (19) | 0.038 (7)* | |
H31 | 0.6060 | 0.4317 | 0.2249 | 0.0186* | |
H41 | 0.6082 | 0.3709 | 0.3835 | 0.0179* | |
H51 | 0.3818 | 0.4842 | 0.4793 | 0.0194* | |
H61 | 0.5153 | 0.0999 | 0.1545 | 0.0252* | |
H62 | 0.3111 | −0.0220 | 0.1891 | 0.0252* | |
H81 | 0.2976 | 0.7550 | 0.0203 | 0.0355* | |
H82 | 0.4501 | 0.5545 | 0.0336 | 0.0355* | |
H83 | 0.2039 | 0.5485 | −0.0334 | 0.0355* | |
H91 | −0.0270 | 0.7829 | 0.1098 | 0.0358* | |
H92 | −0.0858 | 0.5974 | 0.1771 | 0.0358* | |
H93 | −0.1361 | 0.5800 | 0.0578 | 0.0358* | |
H101 | 0.3263 | 0.8163 | 0.4205 | 0.0247* | |
H102 | 0.1232 | 0.7347 | 0.3385 | 0.0247* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0164 (7) | 0.0179 (7) | 0.0198 (6) | −0.0030 (5) | 0.0066 (5) | 0.0004 (6) |
C1 | 0.0130 (7) | 0.0138 (7) | 0.0217 (8) | 0.0014 (6) | 0.0043 (5) | 0.0041 (6) |
C2 | 0.0166 (7) | 0.0140 (7) | 0.0159 (8) | −0.0015 (6) | 0.0038 (6) | 0.0003 (6) |
C3 | 0.0151 (6) | 0.0147 (7) | 0.0167 (7) | −0.0016 (6) | 0.0045 (5) | 0.0009 (6) |
C4 | 0.0140 (7) | 0.0152 (8) | 0.0155 (7) | −0.0008 (5) | 0.0011 (5) | −0.0004 (6) |
C5 | 0.0147 (7) | 0.0186 (7) | 0.0152 (7) | −0.0019 (6) | 0.0026 (5) | −0.0004 (6) |
O1 | 0.0182 (6) | 0.0233 (6) | 0.0307 (6) | −0.0075 (5) | 0.0056 (4) | −0.0016 (6) |
C6 | 0.0246 (8) | 0.0146 (8) | 0.0237 (9) | 0.0000 (6) | 0.0076 (6) | −0.0018 (6) |
O2 | 0.0155 (6) | 0.0166 (6) | 0.0326 (7) | −0.0008 (5) | 0.0047 (5) | 0.0034 (5) |
O3 | 0.0300 (7) | 0.0156 (6) | 0.0166 (6) | −0.0047 (5) | 0.0004 (5) | −0.0006 (5) |
O4 | 0.0234 (6) | 0.0134 (5) | 0.0162 (6) | −0.0013 (4) | −0.0010 (4) | 0.0009 (4) |
C7 | 0.0208 (8) | 0.0164 (8) | 0.0170 (8) | −0.0048 (6) | 0.0011 (6) | 0.0010 (6) |
C8 | 0.0362 (10) | 0.0332 (11) | 0.0192 (8) | −0.0112 (9) | 0.0076 (7) | 0.0018 (7) |
C9 | 0.0208 (9) | 0.0315 (10) | 0.0371 (10) | 0.0010 (8) | 0.0004 (7) | 0.0023 (9) |
O5 | 0.0141 (5) | 0.0185 (6) | 0.0248 (6) | −0.0042 (5) | −0.0007 (4) | −0.0012 (5) |
C10 | 0.0178 (7) | 0.0227 (8) | 0.0213 (8) | −0.0004 (6) | 0.0063 (6) | −0.0046 (7) |
O6 | 0.0161 (5) | 0.0370 (7) | 0.0215 (6) | −0.0008 (5) | 0.0060 (4) | −0.0103 (6) |
N1—C1 | 1.333 (2) | C6—H62 | 1.000 |
N1—C5 | 1.471 (2) | O2—H2 | 0.86 (3) |
N1—H1 | 0.94 (3) | O3—C7 | 1.440 (2) |
C1—C2 | 1.542 (2) | O4—C7 | 1.435 (2) |
C1—O1 | 1.236 (2) | C7—C8 | 1.518 (2) |
C2—C3 | 1.521 (2) | C7—C9 | 1.511 (2) |
C2—C6 | 1.528 (2) | C8—H81 | 1.000 |
C2—O3 | 1.432 (2) | C8—H82 | 1.000 |
C3—C4 | 1.509 (2) | C8—H83 | 1.000 |
C3—O4 | 1.426 (2) | C9—H91 | 1.000 |
C3—H31 | 1.000 | C9—H92 | 1.000 |
C4—C5 | 1.538 (2) | C9—H93 | 1.000 |
C4—O5 | 1.4215 (19) | O5—H3 | 0.91 (4) |
C4—H41 | 1.000 | C10—O6 | 1.427 (2) |
C5—C10 | 1.533 (2) | C10—H101 | 1.000 |
C5—H51 | 1.000 | C10—H102 | 1.000 |
C6—O2 | 1.427 (2) | O6—H4 | 0.93 (3) |
C6—H61 | 1.000 | ||
C1—N1—C5 | 128.95 (13) | C2—C6—H62 | 108.982 |
C1—N1—H1 | 114.5 (19) | O2—C6—H62 | 108.982 |
C5—N1—H1 | 116 (2) | H61—C6—H62 | 109.467 |
N1—C1—C2 | 118.74 (14) | C6—O2—H2 | 109 (2) |
N1—C1—O1 | 122.89 (15) | C2—O3—C7 | 108.74 (13) |
C2—C1—O1 | 118.36 (15) | C3—O4—C7 | 107.81 (13) |
C1—C2—C3 | 113.93 (13) | O3—C7—O4 | 105.95 (14) |
C1—C2—C6 | 110.60 (13) | O3—C7—C8 | 108.57 (16) |
C3—C2—C6 | 113.79 (13) | O4—C7—C8 | 110.19 (14) |
C1—C2—O3 | 108.93 (13) | O3—C7—C9 | 111.03 (15) |
C3—C2—O3 | 102.22 (13) | O4—C7—C9 | 107.58 (15) |
C6—C2—O3 | 106.70 (13) | C8—C7—C9 | 113.27 (16) |
C2—C3—C4 | 114.70 (13) | C7—C8—H81 | 109.467 |
C2—C3—O4 | 102.65 (12) | C7—C8—H82 | 109.467 |
C4—C3—O4 | 109.21 (13) | H81—C8—H82 | 109.476 |
C2—C3—H31 | 110.567 | C7—C8—H83 | 109.467 |
C4—C3—H31 | 104.177 | H81—C8—H83 | 109.476 |
O4—C3—H31 | 115.933 | H82—C8—H83 | 109.476 |
C3—C4—C5 | 113.15 (13) | C7—C9—H91 | 109.467 |
C3—C4—O5 | 111.05 (13) | C7—C9—H92 | 109.467 |
C5—C4—O5 | 110.94 (13) | H91—C9—H92 | 109.476 |
C3—C4—H41 | 106.285 | C7—C9—H93 | 109.467 |
C5—C4—H41 | 106.403 | H91—C9—H93 | 109.476 |
O5—C4—H41 | 108.711 | H92—C9—H93 | 109.476 |
N1—C5—C4 | 110.13 (13) | C4—O5—H3 | 112 (2) |
N1—C5—C10 | 110.58 (13) | C5—C10—O6 | 108.81 (14) |
C4—C5—C10 | 115.68 (13) | C5—C10—H101 | 109.637 |
N1—C5—H51 | 110.696 | O6—C10—H101 | 109.637 |
C4—C5—H51 | 104.970 | C5—C10—H102 | 109.637 |
C10—C5—H51 | 104.465 | O6—C10—H102 | 109.637 |
C2—C6—O2 | 111.42 (13) | H101—C10—H102 | 109.467 |
C2—C6—H61 | 108.982 | C10—O6—H4 | 109.0 (16) |
O2—C6—H61 | 108.982 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O6i | 0.94 (3) | 1.96 (3) | 2.8510 (19) | 156 (3) |
O2—H2···O1ii | 0.86 (3) | 1.89 (3) | 2.7408 (17) | 169 (3) |
O5—H3···O2iii | 0.91 (4) | 1.86 (4) | 2.7338 (18) | 161 (3) |
O6—H4···O5iv | 0.93 (3) | 1.75 (3) | 2.6610 (18) | 167 (3) |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x−1, y, z. |
Acknowledgements
Financial support (to RS and MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley and Sons. Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. Accepted. Google Scholar
Ichikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4586–4587. Google Scholar
Ichikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007–3018. Web of Science CrossRef CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Shape Software (2002). ATOMS for Windows. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. Google Scholar
Watkin, D. J. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210. CrossRef PubMed CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.