organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-O-tert-Butyldi­methylsilyl-2,2′:5,6-di-O-iso­propyl­idene-2-C-hydroxymethyl-D-1,4-gluconolactone

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography Laboratory, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: andrew.cowley@chem.ox.ac.uk

(Received 3 September 2004; accepted 7 October 2004; online 30 October 2004)

The title compound, C19H34O7Si, is derived from the minor component of a Kiliani reaction on D-fructose. Its crystal structure has been determined in order to confirm its structure and stereochemistry.

Comment

Carbohydrates provide the most diverse set of building blocks for the synthesis of enantiomerically pure compounds (Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley and Sons.]). At present, all these scaffolds have linear carbon chains and there are no accessible branched sugar chirons (Hanessian, 1983[Hanessian, S. (1983). The Total Synthesis of Natural Products. The Chiron Approach. New York: Pergamon Press.]). Such materials, if readily and cheaply available, are likely to have many uses. In particular, they will provide efficient access to highly functionalized compounds containing non-linear carbon chains. While the carbon linear extension of an aldose with cyanide to provide a higher sugar (the Kiliani ascension) has long been developed as an industrial process (Hudson, 1945[Hudson, C. S. (1945). Adv. Carbohydr. Chem. 1, 2-36.]), the cyano­hydrin reaction with ketoses is barely reported. The Kiliani reaction of cyanide with D-fructose was first studied long ago (Kiliani, 1885[Kiliani, H. (1885). Ber. Dtsch Chem. Ges. 18, 3066-3074.], 1928[Kiliani, H. (1928). Ber. Dtsch Chem. Ges. 61, 1155-1169.]) but has only been reported subsequently very rarely (Gorin & Perlin, 1958[Gorin, P. A. J. & Perlin, A. S. (1958). Can. J. Chem. 36, 480-485.]). In practice, the Kiliani reaction of D-fructose (2[link]) proceeds in good yield to give a mixture of the two diastereomers (3[link]) and (4[link]) which cannot easily be separated. However, direct treatment of this crude material produced the diacetonide (7[link]) as the major product, which crystallized relatively easily. A second diacetonide was also isolated which could have been either of the diacetonides (5[link]) or (6[link]). This unknown product was converted to a crystalline tert-butyl­di­methyl­silyl ether (1[link]), the structure and stereochemistry of which were unequivocally determined by X-ray crystallographic analysis. This firmly established that the minor component in the acetonation reaction was the gluco-diacectonide (5[link]). [link]

[Scheme 1]
[Figure 1]
Figure 1
View of the title mol­ecule, showing displacement ellipsoids at the 40% probability level. H atoms are shown as spheres of arbitrary radius.

Experimental

The diacetonide (1[link]) was prepared from fructose (2[link]) (Hotchkiss et al., 2004[Gorin, P. A. J. & Perlin, A. S. (1958). Can. J. Chem. 36, 480-485.]). The title material was crystallized from methanol as colourless plates.

Crystal data
  • C19H34O7Si

  • Mr = 402.56

  • Orthorhombic, P212121

  • a = 6.4765 (2) Å

  • b = 13.2189 (2) Å

  • c = 25.7075 (6) Å

  • V = 2200.88 (9) Å3

  • Z = 4

  • Dx = 1.215 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 12716 reflections

  • θ = 5–28°

  • μ = 0.14 mm−1

  • T = 150 K

  • Fragment, colourless

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.95, Tmax = 0.97

  • 12716 measured reflections

  • 4801 independent reflections

  • 4025 reflections with I > 3 s(I)

  • Rint = 0.051

  • θmax = 27.5°

  • h = −8 → 8

  • k = −17 → 17

  • l = −33 → 33

Refinement
  • Refinement on F

  • R = 0.037

  • R = missing

  • wR = 0.040

  • S = 1.11

  • 4025 reflections

  • 245 parameters

  • H-atom parameters not refined

  • Weighting scheme: see text

  • (Δ/σ)max = 0.002

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1960 Friedel pairs

  • Flack parameter = 0.04 (12)

The weighting scheme used a Chebychev polynomial (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.], Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]): w = {1 − [(Fo − Fc)/6σ(F)]2 }2/[0.682T0(x) +0.0517T1(x) + 0.322T2(x)], where x = Fc/Fmax. All H atoms were positioned geometrically (C—H = 1.0 Å), and refined as riding, with Uiso(H) = 1.2Ueq( parent atom).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT Software. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS for Windows (Shape Software, 2002[Shape Software (2002). ATOMS for Windows. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Shape Software, 2002); software used to prepare material for publication: CRYSTALS.

2,2:5,6-Di-O-isopropylidene-2-C-hydroxymethyl-D-glucono-1,4-lactone top
Crystal data top
C19H34O7SiDx = 1.215 Mg m3
Mr = 402.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 12716 reflections
a = 6.4765 (2) Åθ = 5–28°
b = 13.2189 (2) ŵ = 0.14 mm1
c = 25.7075 (6) ÅT = 150 K
V = 2200.88 (9) Å3Fragment, colourless
Z = 40.40 × 0.20 × 0.20 mm
F(000) = 872
Data collection top
Nonius KappaCCD
diffractometer
4025 reflections with I > 3s(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1996)
h = 88
Tmin = 0.95, Tmax = 0.97k = 1717
12716 measured reflectionsl = 3333
4801 independent reflections
Refinement top
Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.037 Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982): [weight] = 1.0/[A0T0(x) + A1T1(x) ··· + An-1]Tn-1(x)],
where Ai are the Chebychev coefficients listed below and x = F /Fmax; Method = Robust Weighting (Prince, 1982); W = [weight][1-(δF/6*σF)2]2, with Ai are 0.682, 0.0517 and 0.322
wR(F2) = 0.040(Δ/σ)max = 0.002
S = 1.11Δρmax = 0.45 e Å3
4025 reflectionsΔρmin = 0.29 e Å3
245 parametersAbsolute structure: Flack (1983), 1960 Friedel pairs
0 restraintsAbsolute structure parameter: 0.04 (12)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4926 (3)0.53606 (15)0.65813 (8)0.0294
C20.3245 (3)0.60741 (14)0.63831 (7)0.0250
C30.1536 (3)0.53363 (13)0.62149 (7)0.0233
C40.1835 (3)0.45070 (14)0.66269 (7)0.0256
C50.1052 (3)0.34631 (14)0.64869 (7)0.0290
C60.2326 (4)0.28319 (14)0.61049 (8)0.0311
C70.3930 (3)0.68839 (15)0.60018 (8)0.0298
O10.6740 (2)0.55148 (12)0.66145 (6)0.0404
O20.2560 (2)0.66510 (9)0.68228 (5)0.0276
O30.19790 (19)0.49591 (10)0.57091 (5)0.0236
O40.4057 (2)0.44775 (10)0.67221 (6)0.0307
O50.1073 (3)0.28604 (10)0.69480 (5)0.0391
O60.1906 (3)0.18228 (10)0.62718 (5)0.0323
O70.2507 (2)0.76772 (10)0.61047 (5)0.0303
C80.2105 (3)0.76835 (14)0.66506 (8)0.0280
C90.3552 (4)0.83863 (15)0.69389 (9)0.0371
C100.0146 (3)0.79115 (16)0.67321 (8)0.0350
Si10.03555 (8)0.50884 (4)0.52065 (2)0.0236
C110.1794 (3)0.41558 (16)0.52733 (9)0.0366
C120.0733 (3)0.63982 (14)0.51977 (9)0.0328
C130.1963 (3)0.48244 (14)0.46134 (7)0.0259
C140.0658 (4)0.50093 (18)0.41223 (8)0.0399
C150.3853 (4)0.55315 (17)0.45984 (8)0.0355
C160.2708 (4)0.37175 (15)0.46185 (8)0.0354
C170.1740 (4)0.18483 (14)0.68259 (8)0.0309
C180.3799 (5)0.1662 (2)0.70760 (10)0.0483
C190.0099 (4)0.11074 (17)0.69883 (10)0.0467
H310.01090.56230.61960.0280*
H410.09840.46860.69380.0307*
H510.03140.36080.63210.0348*
H610.38300.29930.61340.0373*
H620.18590.29420.57380.0373*
H710.53810.71030.60720.0358*
H720.38130.66420.56340.0358*
H910.32810.91000.68300.0446*
H920.33180.83190.73220.0446*
H930.50140.82040.68550.0446*
H1010.04460.86170.66140.0420*
H1020.04890.78460.71100.0420*
H1030.10000.74240.65270.0420*
H1110.27670.42310.49740.0440*
H1120.25510.42830.56060.0440*
H1130.12150.34540.52760.0440*
H1210.17000.64700.48970.0393*
H1220.14970.65260.55290.0393*
H1230.04160.68990.51620.0393*
H1410.15120.48690.38060.0478*
H1420.01830.57290.41160.0478*
H1430.05690.45500.41250.0478*
H1510.46930.53830.42810.0426*
H1520.47140.54200.49160.0426*
H1530.33770.62510.45880.0426*
H1610.35610.35840.43020.0425*
H1620.35590.35950.49370.0425*
H1630.14860.32550.46200.0425*
H1810.42730.09610.69930.0579*
H1820.36700.17410.74620.0579*
H1830.48260.21620.69400.0579*
H1910.05610.04050.69040.0560*
H1920.01430.11660.73710.0560*
H1930.12110.12590.67980.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (11)0.0293 (9)0.0272 (9)0.0020 (8)0.0007 (8)0.0052 (8)
C20.0298 (9)0.0214 (8)0.0237 (9)0.0011 (8)0.0033 (7)0.0026 (7)
C30.0266 (9)0.0199 (8)0.0235 (8)0.0010 (7)0.0019 (7)0.0005 (7)
C40.0306 (9)0.0208 (8)0.0253 (9)0.0016 (8)0.0041 (8)0.0001 (7)
C50.0405 (11)0.0215 (9)0.0251 (9)0.0017 (8)0.0040 (8)0.0035 (7)
C60.0458 (12)0.0213 (9)0.0261 (10)0.0013 (9)0.0033 (8)0.0001 (7)
C70.0355 (10)0.0250 (9)0.0289 (10)0.0054 (8)0.0058 (8)0.0020 (8)
O10.0284 (7)0.0454 (9)0.0473 (9)0.0007 (7)0.0019 (7)0.0021 (7)
O20.0406 (8)0.0185 (6)0.0236 (6)0.0008 (6)0.0042 (6)0.0005 (5)
O30.0286 (6)0.0205 (6)0.0217 (6)0.0018 (6)0.0004 (5)0.0011 (5)
O40.0341 (7)0.0263 (7)0.0318 (7)0.0039 (6)0.0048 (6)0.0017 (6)
O50.0715 (11)0.0194 (6)0.0262 (7)0.0048 (7)0.0107 (7)0.0014 (5)
O60.0517 (9)0.0191 (6)0.0259 (7)0.0006 (6)0.0004 (7)0.0019 (5)
O70.0447 (8)0.0226 (6)0.0235 (7)0.0015 (6)0.0034 (6)0.0005 (5)
C80.0382 (11)0.0195 (9)0.0263 (10)0.0002 (8)0.0015 (8)0.0014 (7)
C90.0497 (14)0.0251 (10)0.0366 (11)0.0050 (9)0.0017 (10)0.0059 (8)
C100.0399 (12)0.0317 (10)0.0332 (10)0.0044 (9)0.0025 (9)0.0031 (8)
Si10.0258 (2)0.0192 (2)0.0259 (2)0.00095 (18)0.0020 (2)0.0000 (2)
C110.0308 (10)0.0310 (10)0.0481 (13)0.0052 (8)0.0045 (10)0.0043 (9)
C120.0349 (11)0.0268 (9)0.0366 (10)0.0078 (8)0.0036 (9)0.0001 (8)
C130.0314 (9)0.0221 (9)0.0242 (8)0.0028 (7)0.0037 (7)0.0010 (7)
C140.0500 (12)0.0421 (11)0.0275 (9)0.0076 (11)0.0094 (9)0.0020 (9)
C150.0397 (11)0.0351 (11)0.0318 (10)0.0026 (9)0.0053 (9)0.0015 (8)
C160.0430 (12)0.0268 (10)0.0363 (11)0.0064 (9)0.0028 (9)0.0021 (8)
C170.0492 (12)0.0188 (8)0.0249 (9)0.0006 (8)0.0019 (9)0.0018 (7)
C180.0597 (17)0.0468 (13)0.0383 (12)0.0057 (12)0.0106 (12)0.0037 (11)
C190.0662 (17)0.0282 (10)0.0457 (13)0.0093 (11)0.0102 (12)0.0026 (10)
Geometric parameters (Å, º) top
C1—C21.528 (3)C10—H1021.000
C1—O11.196 (3)C10—H1031.000
C1—O41.346 (2)Si1—C111.867 (2)
C2—C31.538 (3)Si1—C121.8695 (19)
C2—C71.518 (3)Si1—C131.879 (2)
C2—O21.434 (2)C11—H1111.000
C3—C41.537 (3)C11—H1121.000
C3—O31.422 (2)C11—H1131.000
C3—H311.000C12—H1211.000
C4—C51.514 (3)C12—H1221.000
C4—O41.460 (2)C12—H1231.000
C4—H411.000C13—C141.539 (3)
C5—C61.530 (3)C13—C151.540 (3)
C5—O51.428 (2)C13—C161.541 (3)
C5—H511.000C14—H1411.000
C6—O61.427 (2)C14—H1421.000
C6—H611.000C14—H1431.000
C6—H621.000C15—H1511.000
C7—O71.421 (2)C15—H1521.000
C7—H711.000C15—H1531.000
C7—H721.000C16—H1611.000
O2—C81.465 (2)C16—H1621.000
O3—Si11.6745 (13)C16—H1631.000
O5—C171.440 (2)C17—C181.501 (3)
O6—C171.429 (2)C17—C191.504 (3)
O7—C81.427 (2)C18—H1811.000
C8—C91.514 (3)C18—H1821.000
C8—C101.503 (3)C18—H1831.000
C9—H911.000C19—H1911.000
C9—H921.000C19—H1921.000
C9—H931.000C19—H1931.000
C10—H1011.000
C2—C1—O1128.22 (19)H102—C10—H103109.476
C2—C1—O4109.10 (16)O3—Si1—C11109.26 (9)
O1—C1—O4122.68 (19)O3—Si1—C12109.91 (8)
C1—C2—C3102.43 (15)C11—Si1—C12109.35 (10)
C1—C2—C7116.29 (17)O3—Si1—C13105.02 (7)
C3—C2—C7118.43 (16)C11—Si1—C13111.41 (9)
C1—C2—O2106.60 (15)C12—Si1—C13111.79 (9)
C3—C2—O2109.64 (15)Si1—C11—H111109.467
C7—C2—O2102.97 (14)Si1—C11—H112109.467
C2—C3—C499.66 (15)H111—C11—H112109.475
C2—C3—O3109.51 (14)Si1—C11—H113109.467
C4—C3—O3110.77 (14)H111—C11—H113109.476
C2—C3—H31116.048H112—C11—H113109.476
C4—C3—H31114.899Si1—C12—H121109.467
O3—C3—H31105.931Si1—C12—H122109.467
C3—C4—C5116.37 (16)H121—C12—H122109.476
C3—C4—O4105.02 (15)Si1—C12—H123109.466
C5—C4—O4110.24 (16)H121—C12—H123109.476
C3—C4—H41108.208H122—C12—H123109.476
C5—C4—H41102.775Si1—C13—C14109.38 (14)
O4—C4—H41114.577Si1—C13—C15110.36 (13)
C4—C5—C6117.96 (17)C14—C13—C15108.62 (17)
C4—C5—O5107.94 (15)Si1—C13—C16110.05 (13)
C6—C5—O5102.90 (15)C14—C13—C16109.25 (16)
C4—C5—H51102.898C15—C13—C16109.15 (17)
C6—C5—H51107.931C13—C14—H141109.467
O5—C5—H51117.957C13—C14—H142109.467
C5—C6—O6102.35 (15)H141—C14—H142109.476
C5—C6—H61111.222C13—C14—H143109.467
O6—C6—H61111.222H141—C14—H143109.475
C5—C6—H62111.222H142—C14—H143109.476
O6—C6—H62111.222C13—C15—H151109.467
H61—C6—H62109.467C13—C15—H152109.466
C2—C7—O7102.18 (15)H151—C15—H152109.476
C2—C7—H71111.263C13—C15—H153109.466
O7—C7—H71111.263H151—C15—H153109.476
C2—C7—H72111.263H152—C15—H153109.476
O7—C7—H72111.263C13—C16—H161109.467
H71—C7—H72109.467C13—C16—H162109.467
C2—O2—C8108.63 (14)H161—C16—H162109.475
C3—O3—Si1122.88 (11)C13—C16—H163109.467
C1—O4—C4110.13 (15)H161—C16—H163109.476
C5—O5—C17109.89 (14)H162—C16—H163109.476
C6—O6—C17106.97 (14)O5—C17—O6105.17 (14)
C7—O7—C8107.80 (14)O5—C17—C18108.98 (18)
O2—C8—O7104.78 (14)O6—C17—C18110.88 (19)
O2—C8—C9107.40 (16)O5—C17—C19109.42 (18)
O7—C8—C9111.84 (17)O6—C17—C19108.32 (17)
O2—C8—C10109.88 (16)C18—C17—C19113.72 (19)
O7—C8—C10108.37 (17)C17—C18—H181109.467
C9—C8—C10114.16 (18)C17—C18—H182109.467
C8—C9—H91109.467H181—C18—H182109.476
C8—C9—H92109.467C17—C18—H183109.467
H91—C9—H92109.476H181—C18—H183109.476
C8—C9—H93109.467H182—C18—H183109.476
H91—C9—H93109.475C17—C19—H191109.467
H92—C9—H93109.476C17—C19—H192109.467
C8—C10—H101109.467H191—C19—H192109.476
C8—C10—H102109.467C17—C19—H193109.466
H101—C10—H102109.476H191—C19—H193109.476
C8—C10—H103109.466H192—C19—H193109.476
H101—C10—H103109.475
 

Acknowledgements

Financial support (to RS and MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley and Sons.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGorin, P. A. J. & Perlin, A. S. (1958). Can. J. Chem. 36, 480–485.  CrossRef CAS Web of Science Google Scholar
First citationHanessian, S. (1983). The Total Synthesis of Natural Products. The Chiron Approach. New York: Pergamon Press.  Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. Accepted.  Google Scholar
First citationHudson, C. S. (1945). Adv. Carbohydr. Chem. 1, 2–36.  CAS Google Scholar
First citationKiliani, H. (1885). Ber. Dtsch Chem. Ges. 18, 3066–3074.  CrossRef Google Scholar
First citationKiliani, H. (1928). Ber. Dtsch Chem. Ges. 61, 1155–1169.  CrossRef Google Scholar
First citationNonius (2000). COLLECT Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationShape Software (2002). ATOMS for Windows. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.  Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds