organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RS)-Benzyl mandelate

CROSSMARK_Color_square_no_text.svg

aColloids, Crystals and Interfaces Group, Department of Chemical Engineering, UMIST, PO Box 88, Manchester M60 1QD, England, and bDepartment of Chemistry, UMIST, PO Box 88, Manchester M60 1QD, England
*Correspondence e-mail: robila.mughal@postgrad.umist.ac.uk

(Received 20 September 2004; accepted 4 October 2004; online 9 October 2004)

A benzyl ester of mandelic acid, C15H14O3, was obtained by the crystallization of racemic mandelic acid from benzyl alcohol followed by vacuum drying at 363 K. The structure is composed of two hydrogen-bonded chains of S or R configuration, running along the shortest crystallographic b axis. There is one mol­ecule in the asymmetric unit and each mol­ecule forms four intermolecular hydrogen bonds with two other mol­ecules of the same chirality.

Comment

During the crystallization of racemic mandelic acid from benzyl alcohol and drying off the solvent in a vacuum oven, colourless needle-shaped crystals of (RS)-benzyl mandelate (BM), (I), were obtained. The crystal structure of this compound was not found in the Cambridge Structural Database (CSD, Version 1.6; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and hence its structure was determined by single-crystal X-ray diffraction at 150 K.[link]

[Scheme 1]

The compound BM has one mol­ecule in the asymmetric unit. Fig. 1[link] shows the structure and the atom labelling. The bond lengths and angles are unexceptional. Each mol­ecule forms four intermolecular hydrogen bonds to two neighbouring mol­ecules, as shown in Fig. 2[link]. The unit-cell contents of BM are shown in Fig. 3[link].

The crystal structure is composed of two types of chains that run along the shortest crystallographic axis, b, which is the needle axis. The C11(5) chain runs through the hydroxyl and carbonyl groups via —C=O⋯H—O— hydrogen bonding. The C11(2) chain arises from the linking of OH in one mol­ecule to OH of another mol­ecule. Fig. 4[link] shows the packing of the two chains and the resulting bilayer sandwich. Layers of hydrogen-bonded chains are sandwiched between bilayers of phenyl rings. There is face–edge interaction between the phenyl rings of each mol­ecule, and also between the phenyl rings of adjacent mol­ecules in the same chain. Each C11(5) and C11(2) chain is composed of either all-S configuration mol­ecules or all-R mol­ecules, and the chains pack such that there are alternating R and S chains, as shown in Fig. 5[link]. There are no hydrogen-bonding interactions between R and S mol­ecules. The hydrogen bonds are listed in Table 1[link].

[Figure 1]
Figure 1
The crystallographically independent mol­ecule in the asymmetric unit of BM; displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Hydro­gen bonds (dashed lines) formed by each independent mol­ecule with the neighbouring two mol­ecules.
[Figure 3]
Figure 3
The unit-cell contents of BM, viewed along b.
[Figure 4]
Figure 4
The C11(5) (purple) and C11(2) (orange) hydrogen-bonded chains (dashed lines) of BM, viewed along c.
[Figure 5]
Figure 5
Packing of alternating R and S chains, together with the phenyl bilayer and the sandwiched hydrogen-bonded chains.

Experimental

A saturated solution of racemic mandelic acid (supplied by Sigma—Aldrich, 99%) in benzyl alcohol was prepared at 323 K and stirred at 343 K for 2 h. On cooling to 298–303 K, needle-shaped crystals of racemic mandelic acid formed; these were vacuum-filtered and then dried in a vacuum oven at 363 K to remove benzyl alcohol mother liquor. After a few weeks in the vacuum oven, crystals of (RS)-benzyl mandelate were found alongside an orange–yellow amorphous glass-like residue.

Crystal data
  • C15H14O3

  • Mr = 242.15

  • Monoclinic, P21/n

  • a = 8.0627 (3) Å

  • b = 5.6494 (2) Å

  • c = 26.7944 (11) Å

  • β = 94.130 (1)°

  • V = 1217.30 (8) Å3

  • Z = 4

  • Dx = 1.321 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7192 reflections

  • θ = 1–26°

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • Needle, colourless

  • 0.25 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.978, Tmax = 0.994

  • 7192 measured reflections

  • 2425 independent reflections

  • 1732 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 26.5°

  • h = −7 → 10

  • k = −5 → 7

  • l = −32 → 33

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.089

  • S = 1.02

  • 2425 reflections

  • 220 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0342P)2 + 0.1653P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.026 (4)

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.94 (2) 2.08 (2) 2.8711 (15) 141.2 (18)
O3—H3⋯O3i 0.94 (2) 2.17 (2) 2.9522 (6) 140.1 (19)
Symmetry code: (i) [{\script{3\over 2}}-x,y-{\script{1\over 2}},{\script{1\over 2}}-z].

All H atoms were located in a difference Fourier map and refined isotropically.

Data collection: COLLECT (Nonius, 1997–2000[Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

(I) top
Crystal data top
C15H14O3F(000) = 512
Mr = 242.15Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19781 reflections
a = 8.0627 (3) Åθ = 1–26°
b = 5.6494 (2) ŵ = 0.09 mm1
c = 26.7944 (11) ÅT = 150 K
β = 94.130 (1)°Needle, colourless
V = 1217.30 (8) Å30.25 × 0.1 × 0.1 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2425 independent reflections
Radiation source: Enraf–Nonius FR5901732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 710
Tmin = 0.978, Tmax = 0.994k = 57
7192 measured reflectionsl = 3233
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039All H-atom parameters refined
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.1653P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2425 reflectionsΔρmax = 0.20 e Å3
220 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45128 (18)0.6686 (2)0.20888 (5)0.0254 (3)
C20.59343 (18)0.4981 (3)0.20329 (5)0.0266 (4)
C30.62714 (17)0.4970 (2)0.14824 (5)0.0245 (3)
C40.70938 (18)0.6880 (3)0.12828 (6)0.0283 (4)
C50.7309 (2)0.6970 (3)0.07748 (6)0.0332 (4)
C60.6696 (2)0.5168 (3)0.04634 (6)0.0349 (4)
C70.5876 (2)0.3270 (3)0.06609 (6)0.0336 (4)
C80.56580 (19)0.3168 (3)0.11684 (6)0.0283 (4)
C90.16228 (19)0.7244 (3)0.19014 (6)0.0287 (4)
C100.15042 (17)0.8770 (2)0.14424 (5)0.0243 (3)
C110.06166 (19)1.0879 (2)0.14517 (6)0.0293 (4)
C120.0375 (2)1.2255 (3)0.10280 (6)0.0345 (4)
C130.1025 (2)1.1563 (3)0.05884 (7)0.0352 (4)
C140.1933 (2)0.9489 (3)0.05773 (6)0.0350 (4)
C150.21728 (19)0.8091 (3)0.10006 (6)0.0294 (4)
O10.30683 (12)0.57077 (16)0.19239 (4)0.0278 (3)
O20.46677 (12)0.86900 (17)0.22456 (4)0.0339 (3)
O30.72933 (13)0.58119 (18)0.23477 (4)0.0356 (3)
H20.5569 (16)0.344 (2)0.2129 (5)0.020 (3)*
H30.798 (3)0.452 (4)0.2455 (8)0.090 (7)*
H40.7517 (18)0.817 (3)0.1497 (5)0.032 (4)*
H50.789 (2)0.832 (3)0.0638 (6)0.041 (4)*
H60.683 (2)0.524 (3)0.0117 (6)0.042 (5)*
H70.5475 (19)0.197 (3)0.0447 (6)0.034 (4)*
H80.5101 (19)0.187 (3)0.1302 (5)0.034 (4)*
H9A0.0632 (19)0.610 (2)0.1888 (5)0.030 (4)*
H9B0.1662 (18)0.818 (2)0.2197 (5)0.026 (4)*
H110.0162 (19)1.137 (3)0.1761 (6)0.036 (4)*
H120.025 (2)1.368 (3)0.1032 (6)0.040 (4)*
H130.083 (2)1.247 (3)0.0281 (6)0.042 (4)*
H140.241 (2)0.899 (3)0.0274 (6)0.040 (5)*
H150.2794 (19)0.659 (3)0.0991 (5)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0300 (9)0.0265 (8)0.0198 (8)0.0025 (6)0.0028 (6)0.0021 (6)
C20.0261 (8)0.0223 (7)0.0308 (8)0.0013 (7)0.0025 (6)0.0013 (6)
C30.0202 (8)0.0220 (7)0.0310 (8)0.0043 (6)0.0002 (6)0.0015 (6)
C40.0249 (8)0.0239 (8)0.0363 (9)0.0024 (6)0.0032 (7)0.0003 (7)
C50.0282 (9)0.0285 (8)0.0434 (10)0.0029 (7)0.0060 (7)0.0066 (8)
C60.0335 (10)0.0417 (9)0.0299 (9)0.0077 (7)0.0038 (7)0.0024 (8)
C70.0338 (9)0.0327 (9)0.0340 (9)0.0009 (7)0.0003 (7)0.0078 (7)
C80.0259 (8)0.0241 (8)0.0350 (9)0.0009 (6)0.0025 (7)0.0009 (7)
C90.0252 (9)0.0321 (8)0.0291 (9)0.0021 (7)0.0048 (7)0.0011 (7)
C100.0196 (8)0.0251 (7)0.0282 (8)0.0041 (6)0.0008 (6)0.0024 (6)
C110.0282 (9)0.0297 (8)0.0302 (9)0.0004 (6)0.0029 (7)0.0031 (7)
C120.0309 (9)0.0260 (8)0.0462 (11)0.0027 (7)0.0002 (8)0.0006 (7)
C130.0343 (10)0.0352 (9)0.0355 (10)0.0040 (7)0.0015 (7)0.0087 (8)
C140.0373 (10)0.0392 (9)0.0293 (9)0.0021 (7)0.0076 (7)0.0001 (7)
C150.0281 (9)0.0270 (8)0.0336 (9)0.0007 (7)0.0061 (7)0.0014 (7)
O10.0249 (6)0.0264 (5)0.0321 (6)0.0004 (4)0.0014 (4)0.0010 (4)
O20.0322 (6)0.0297 (6)0.0397 (7)0.0005 (5)0.0017 (5)0.0096 (5)
O30.0328 (7)0.0329 (6)0.0388 (7)0.0021 (5)0.0120 (5)0.0024 (5)
Geometric parameters (Å, º) top
C1—O21.2110 (16)C9—O11.4508 (17)
C1—O11.3352 (17)C9—C101.499 (2)
C1—C21.513 (2)C9—H9A1.026 (15)
C2—O31.4139 (17)C9—H9B0.950 (14)
C2—C31.519 (2)C10—C151.390 (2)
C2—H20.959 (13)C10—C111.391 (2)
C3—C81.389 (2)C11—C121.378 (2)
C3—C41.394 (2)C11—H110.971 (15)
C4—C51.385 (2)C12—C131.379 (2)
C4—H40.974 (15)C12—H120.953 (16)
C5—C61.385 (2)C13—C141.383 (2)
C5—H50.980 (17)C13—H130.974 (16)
C6—C71.385 (2)C14—C151.384 (2)
C6—H60.944 (16)C14—H140.964 (17)
C7—C81.385 (2)C15—H150.984 (15)
C7—H70.970 (15)O3—H30.95 (2)
C8—H80.945 (16)
O2—C1—O1124.58 (13)O1—C9—C10112.44 (12)
O2—C1—C2124.72 (13)O1—C9—H9A104.2 (8)
O1—C1—C2110.66 (11)C10—C9—H9A109.2 (8)
O3—C2—C1106.85 (11)O1—C9—H9B108.6 (9)
O3—C2—C3113.31 (12)C10—C9—H9B111.1 (8)
C1—C2—C3106.78 (11)H9A—C9—H9B111.1 (12)
O3—C2—H2112.4 (8)C15—C10—C11118.90 (14)
C1—C2—H2107.5 (8)C15—C10—C9122.29 (13)
C3—C2—H2109.6 (8)C11—C10—C9118.72 (13)
C8—C3—C4119.58 (14)C12—C11—C10120.71 (15)
C8—C3—C2120.71 (13)C12—C11—H11120.3 (9)
C4—C3—C2119.52 (12)C10—C11—H11119.0 (9)
C5—C4—C3120.14 (14)C11—C12—C13120.25 (15)
C5—C4—H4119.3 (9)C11—C12—H12120.8 (9)
C3—C4—H4120.6 (9)C13—C12—H12119.0 (9)
C6—C5—C4120.04 (15)C12—C13—C14119.52 (15)
C6—C5—H5120.5 (9)C12—C13—H13121.6 (10)
C4—C5—H5119.5 (9)C14—C13—H13118.8 (10)
C7—C6—C5119.91 (15)C13—C14—C15120.56 (16)
C7—C6—H6120.3 (10)C13—C14—H14120.5 (9)
C5—C6—H6119.8 (10)C15—C14—H14118.9 (9)
C6—C7—C8120.36 (15)C14—C15—C10120.05 (14)
C6—C7—H7120.5 (9)C14—C15—H15120.6 (9)
C8—C7—H7119.2 (9)C10—C15—H15119.3 (8)
C7—C8—C3119.97 (14)C1—O1—C9116.43 (11)
C7—C8—H8120.1 (9)C2—O3—H3109.7 (14)
C3—C8—H8119.9 (9)
O2—C1—C2—O320.15 (19)C2—C3—C8—C7175.46 (13)
O1—C1—C2—O3162.16 (11)O1—C9—C10—C1527.5 (2)
O2—C1—C2—C3101.39 (15)O1—C9—C10—C11156.07 (12)
O1—C1—C2—C376.30 (14)C15—C10—C11—C121.2 (2)
O3—C2—C3—C8142.87 (13)C9—C10—C11—C12175.39 (14)
C1—C2—C3—C899.78 (15)C10—C11—C12—C130.5 (2)
O3—C2—C3—C442.13 (17)C11—C12—C13—C140.6 (2)
C1—C2—C3—C475.22 (16)C12—C13—C14—C151.0 (2)
C8—C3—C4—C50.5 (2)C13—C14—C15—C100.3 (2)
C2—C3—C4—C5175.59 (13)C11—C10—C15—C140.8 (2)
C3—C4—C5—C60.5 (2)C9—C10—C15—C14175.64 (14)
C4—C5—C6—C70.4 (2)O2—C1—O1—C94.6 (2)
C5—C6—C7—C80.4 (2)C2—C1—O1—C9173.07 (11)
C6—C7—C8—C30.4 (2)C10—C9—O1—C180.69 (16)
C4—C3—C8—C70.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.94 (2)2.08 (2)2.8711 (15)141.2 (18)
O3—H3···O3i0.94 (2)2.17 (2)2.9522 (6)140.1 (19)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the EPSRC and Avecia Ltd for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds