metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloro­bis­­(tri­phenyl­phosphine oxide-κO)­nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bDepartamento de Física, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and cDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodolfu@telesat.com.co

(Received 28 October 2004; accepted 10 November 2004; online 20 November 2004)

The title nickel(II) complex, [NiCl2(C18H15OP)2], was prepared in order to determine the coordination of the Ni atom. The Ni atom lies on a twofold axis and is four-coordinated by two Cl atoms and two O atoms in a distorted tetrahedral coordination geometry. The Ni—Cl and Ni—O distances are 2.2151 (6) and 1.9662 (16) Å, respectively. The title compound is compared with the four-coordinated copper(II) analog; the two systems are isostructural.

Comment

In the period 1950–1960, there was a suggestion, based on the valence-bond theory, that paramagnetic nickel(II) complexes should be planar (Ballhausen & Liehr, 1959[Ballhausen, C. J. & Liehr, A. D. (1959). J. Am. Chem. Soc. 81, 538-542.]). This suggestion was difficult to verify due to the rather rare occurrence of tetrahedrally coordinated nickel(II) ions. Later, during the 1960s, some [(C6H5)3PO]2NiX2, complexes (X = Cl, Br, I) were prepared (Cotton & Goodgame, 1960[Cotton, A. & Goodgame, D. M. L. (1960). J. Am. Chem. Soc. 82, 5771-5776.]). Their electronic spectra, IR spectra and magnetic moments were recorded and analyzed in order to demonstrate that the nickel ion, in each case, was tetrahedrally coordinated (Cotton & Goodgame, 1960[Cotton, A. & Goodgame, D. M. L. (1960). J. Am. Chem. Soc. 82, 5771-5776.]). Unfortunately, the purity of the [(C6H5)3PO]2NiCl2 complex system was questioned and doubt of a tetrahedral array persisted. In order to elucidate the coordination of the nickel(II) ion in the [(C6H5)3PO]2NiCl2 system, its crystal structure determination was undertaken.[link]

[Scheme 1]

A perspective view of the title mol­ecule, (I[link]), showing the atomic numbering scheme is given in Fig. 1[link]. The NiII ion has C2 site symmetry; C2 is parallel to the c axis. The analogous di­chloro­bis­(tri­phenyl­phosphine oxide)copper(II) system, (II) (Bertrand & Kalyanaraman, 1971[Bertrand, J. A. & Kalyanaraman, A. R. (1971). Inorg. Chim. Acta, 5, 341-345.]), was taken as a reference and its internal parameters were compared to the parameters of the title complex. Within the tetrahedral geometry around the central Ni atom, complex (II) shows Cu—Cl and Cu—O bond lengths of 2.170 (2) and 1.958 (4) Å, respectively, while (I[link]) shows Ni—Cl and Ni—O bond lengths of 2.2151 (6) and 1.9662 (16) Å, respectively. The Cl—Cu—Cl and O—Cu—O bond angles in (II) are 102.2 (1) and 93.0 (1)°, while in (I[link]) the Cl—Ni—Cl and O—Ni—O bond angles are 116.17 (3) and 95.91 (10)°, respectively. The two systems are isostructural. The tri­phenyl­phosphine portion of the complex does not show any unusual features and the other bond lengths and angles of these systems are within expected ranges.

[Figure 1]
Figure 1
An ORTEP-3 plot (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) of the title compound, with the atomic labeling scheme. Displacement ellipsoids are plotted at the 50% probability level. H atoms are shown as spheres of arbitrary radii. [Symmetry code: (i) ½ − x, ½ − y, z.]

Experimental

Reagents and solvents for the synthesis were purchased from the Aldrich Chemical Co. and were used without additional purification. Crystals of (I[link]) were obtained following the synthesis previously reported by Cotton & Goodgame (1960[Cotton, A. & Goodgame, D. M. L. (1960). J. Am. Chem. Soc. 82, 5771-5776.]). The product of this synthesis was recrystallized by slow evaporation of an aceto­nitrile solution at room temperature, in contact with oxy­gen. The pale-blue crystals had a melting point of 463 (1) K.

Crystal data
  • [NiCl2(C18H15OP)2]

  • Mr = 686.15

  • Orthorhombic, Fdd2

  • a = 20.6356 (3) Å

  • b = 32.5388 (6) Å

  • c = 9.7240 (1) Å

  • V = 6529.25 (17) Å3

  • Z = 8

  • Dx = 1.396 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3709 reflections

  • θ = 1.0–27.5°

  • μ = 0.89 mm−1

  • T = 123 (2) K

  • Prism, pale blue

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.802, Tmax = 0.868

  • 7169 measured reflections

  • 3686 independent reflections

  • 3468 reflections with I > 2σ(I)

  • Rint = 0.021

  • θmax = 27.5°

  • h = −26 → 26

  • k = −42 → 42

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 1.07

  • 3686 reflections

  • 195 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0304P)2 + 7.7683P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00057 (6)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1705 Friedel pairs

  • Flack parameter = 0.001 (1)

All H atoms were placed at geometrically idealized positions and were treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 2000); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Dichlorobis(triphenylphosphine oxide-κO)nickel(II) top
Crystal data top
[NiCl2(C18H15OP)2]Dx = 1.396 Mg m3
Mr = 686.15Melting point: 463(1) K
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 3709 reflections
a = 20.6356 (3) Åθ = 1.0–27.5°
b = 32.5388 (6) ŵ = 0.89 mm1
c = 9.7240 (1) ÅT = 123 K
V = 6529.25 (17) Å3Prism, pale_blue
Z = 80.35 × 0.30 × 0.15 mm
F(000) = 2832
Data collection top
Nonius KappaCCD
diffractometer
3686 independent reflections
Radiation source: fine-focus sealed tube3468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(DENZO; Otwinowski & Minor, 1997)
h = 2626
Tmin = 0.802, Tmax = 0.868k = 4242
7169 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0304P)2 + 7.7683P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.45 e Å3
3686 reflectionsΔρmin = 0.29 e Å3
195 parametersExtinction correction: SHELXL97
0 restraintsExtinction coefficient: 0.00057 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (1)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.25000.25000.00000.01108 (9)
P0.16831 (3)0.178349 (16)0.18060 (7)0.01842 (12)
Cl0.32802 (3)0.22015 (2)0.12042 (7)0.03064 (14)
O10.21631 (7)0.21054 (5)0.13540 (17)0.0254 (3)
C10.17605 (10)0.13228 (7)0.0797 (2)0.0212 (4)
C20.12395 (11)0.10513 (7)0.0611 (3)0.0269 (5)
H20.08370.11030.10520.032*
C30.13114 (12)0.07063 (7)0.0219 (3)0.0316 (5)
H30.09590.05220.03420.038*
C40.18974 (12)0.06317 (7)0.0865 (2)0.0298 (5)
H40.19440.03990.14470.036*
C50.24159 (12)0.08943 (8)0.0666 (2)0.0293 (5)
H50.28190.08380.10970.035*
C60.23510 (10)0.12386 (7)0.0153 (2)0.0247 (5)
H60.27090.14180.02790.030*
C70.08511 (10)0.19434 (6)0.1652 (2)0.0199 (4)
C80.04882 (11)0.20515 (7)0.2806 (2)0.0246 (5)
H80.06770.20400.36960.030*
C90.01545 (10)0.21768 (7)0.2646 (3)0.0290 (5)
H90.04020.22510.34310.035*
C100.04314 (10)0.21945 (7)0.1362 (3)0.0269 (5)
H100.08700.22780.12670.032*
C110.00720 (10)0.20909 (7)0.0201 (2)0.0262 (5)
H110.02640.21050.06850.031*
C120.05715 (11)0.19661 (7)0.0343 (2)0.0239 (5)
H120.08190.18970.04470.029*
C130.18248 (10)0.16712 (7)0.3592 (2)0.0221 (4)
C140.15370 (12)0.13430 (7)0.4272 (3)0.0304 (5)
H140.12730.11540.37800.036*
C150.16364 (14)0.12914 (9)0.5678 (3)0.0394 (6)
H150.14410.10660.61420.047*
C160.20120 (16)0.15620 (9)0.6391 (3)0.0447 (7)
H160.20680.15280.73550.054*
C170.23141 (18)0.18867 (9)0.5724 (3)0.0477 (8)
H170.25820.20710.62260.057*
C180.22245 (14)0.19416 (8)0.4323 (3)0.0361 (6)
H180.24340.21620.38610.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.00926 (14)0.01456 (16)0.00942 (15)0.00033 (14)0.0000.000
P0.0187 (2)0.0189 (3)0.0177 (3)0.0013 (2)0.0003 (2)0.0005 (2)
Cl0.0214 (2)0.0456 (3)0.0249 (3)0.0083 (2)0.0051 (2)0.0055 (2)
O10.0229 (7)0.0261 (8)0.0272 (8)0.0050 (7)0.0003 (7)0.0044 (7)
C10.0232 (10)0.0235 (10)0.0168 (10)0.0023 (9)0.0013 (8)0.0015 (9)
C20.0220 (10)0.0282 (12)0.0306 (12)0.0009 (9)0.0037 (9)0.0056 (10)
C30.0309 (11)0.0286 (12)0.0354 (14)0.0012 (10)0.0123 (10)0.0086 (11)
C40.0425 (13)0.0263 (12)0.0205 (12)0.0100 (10)0.0046 (10)0.0052 (9)
C50.0361 (12)0.0308 (13)0.0210 (11)0.0102 (10)0.0065 (10)0.0032 (10)
C60.0248 (11)0.0272 (11)0.0221 (12)0.0016 (8)0.0016 (10)0.0029 (10)
C70.0212 (10)0.0175 (10)0.0210 (11)0.0013 (8)0.0022 (8)0.0001 (8)
C80.0240 (11)0.0290 (12)0.0208 (12)0.0011 (9)0.0021 (8)0.0011 (9)
C90.0219 (11)0.0363 (13)0.0286 (13)0.0001 (9)0.0065 (10)0.0039 (11)
C100.0200 (10)0.0294 (12)0.0312 (12)0.0003 (9)0.0004 (9)0.0004 (10)
C110.0254 (11)0.0287 (12)0.0245 (12)0.0003 (9)0.0047 (9)0.0001 (9)
C120.0254 (11)0.0253 (11)0.0209 (11)0.0024 (9)0.0026 (8)0.0016 (9)
C130.0231 (10)0.0225 (11)0.0205 (11)0.0006 (9)0.0008 (9)0.0000 (8)
C140.0372 (13)0.0260 (12)0.0280 (12)0.0017 (10)0.0016 (11)0.0033 (10)
C150.0572 (18)0.0311 (14)0.0298 (14)0.0028 (12)0.0059 (13)0.0122 (11)
C160.0708 (19)0.0422 (16)0.0212 (12)0.0152 (14)0.0080 (14)0.0024 (12)
C170.069 (2)0.0421 (17)0.0315 (15)0.0025 (15)0.0210 (15)0.0056 (13)
C180.0475 (15)0.0296 (13)0.0311 (13)0.0093 (12)0.0115 (12)0.0016 (11)
Geometric parameters (Å, º) top
Ni—O1i1.9661 (15)C8—C91.396 (3)
Ni—O11.9661 (15)C8—H80.9500
Ni—Cli2.2152 (5)C9—C101.374 (4)
Ni—Cl2.2152 (5)C9—H90.9500
P—O11.5072 (15)C10—C111.392 (3)
P—C131.799 (2)C10—H100.9500
P—C11.799 (2)C11—C121.396 (3)
P—C71.800 (2)C11—H110.9500
C1—C61.397 (3)C12—H120.9500
C1—C21.403 (3)C13—C141.389 (3)
C2—C31.390 (3)C13—C181.400 (3)
C2—H20.9500C14—C151.392 (4)
C3—C41.384 (4)C14—H140.9500
C3—H30.9500C15—C161.363 (4)
C4—C51.383 (4)C15—H150.9500
C4—H40.9500C16—C171.388 (4)
C5—C61.381 (3)C16—H160.9500
C5—H50.9500C17—C181.386 (4)
C6—H60.9500C17—H170.9500
C7—C81.394 (3)C18—H180.9500
C7—C121.399 (3)
O1i—Ni—O195.92 (10)C7—C8—C9119.6 (2)
O1i—Ni—Cli108.95 (5)C7—C8—H8120.2
O1—Ni—Cli112.54 (5)C9—C8—H8120.2
O1i—Ni—Cl112.54 (5)C10—C9—C8120.6 (2)
O1—Ni—Cl108.95 (5)C10—C9—H9119.7
Cli—Ni—Cl116.17 (3)C8—C9—H9119.7
O1—P—C13108.42 (10)C9—C10—C11120.3 (2)
O1—P—C1111.20 (10)C9—C10—H10119.8
C13—P—C1110.06 (10)C11—C10—H10119.8
O1—P—C7113.68 (9)C10—C11—C12119.8 (2)
C13—P—C7107.11 (10)C10—C11—H11120.1
C1—P—C7106.27 (10)C12—C11—H11120.1
P—O1—Ni151.84 (10)C11—C12—C7119.9 (2)
C6—C1—C2119.1 (2)C11—C12—H12120.1
C6—C1—P119.05 (17)C7—C12—H12120.1
C2—C1—P121.80 (17)C14—C13—C18119.6 (2)
C3—C2—C1120.1 (2)C14—C13—P123.11 (18)
C3—C2—H2120.0C18—C13—P117.28 (18)
C1—C2—H2120.0C13—C14—C15119.8 (2)
C4—C3—C2119.9 (2)C13—C14—H14120.1
C4—C3—H3120.1C15—C14—H14120.1
C2—C3—H3120.1C16—C15—C14120.4 (3)
C5—C4—C3120.3 (2)C16—C15—H15119.8
C5—C4—H4119.9C14—C15—H15119.8
C3—C4—H4119.9C15—C16—C17120.6 (3)
C6—C5—C4120.5 (2)C15—C16—H16119.7
C6—C5—H5119.8C17—C16—H16119.7
C4—C5—H5119.8C18—C17—C16119.8 (3)
C5—C6—C1120.1 (2)C18—C17—H17120.1
C5—C6—H6119.9C16—C17—H17120.1
C1—C6—H6119.9C17—C18—C13119.8 (3)
C8—C7—C12119.81 (19)C17—C18—H18120.1
C8—C7—P121.21 (16)C13—C18—H18120.1
C12—C7—P118.96 (16)
C13—P—O1—Ni171.8 (2)C13—P—C7—C12166.62 (17)
C1—P—O1—Ni67.1 (2)C1—P—C7—C1249.0 (2)
C7—P—O1—Ni52.8 (2)C12—C7—C8—C90.8 (3)
O1i—Ni—O1—P148.4 (3)P—C7—C8—C9179.55 (17)
Cli—Ni—O1—P35.1 (2)C7—C8—C9—C100.0 (4)
Cl—Ni—O1—P95.3 (2)C8—C9—C10—C110.6 (4)
O1—P—C1—C624.3 (2)C9—C10—C11—C120.4 (4)
C13—P—C1—C695.91 (19)C10—C11—C12—C70.4 (3)
C7—P—C1—C6148.45 (18)C8—C7—C12—C111.0 (3)
O1—P—C1—C2154.12 (18)P—C7—C12—C11179.76 (17)
C13—P—C1—C285.7 (2)O1—P—C13—C14169.46 (19)
C7—P—C1—C229.9 (2)C1—P—C13—C1447.6 (2)
C6—C1—C2—C30.8 (3)C7—P—C13—C1467.5 (2)
P—C1—C2—C3177.60 (18)O1—P—C13—C1813.3 (2)
C1—C2—C3—C40.2 (3)C1—P—C13—C18135.08 (19)
C2—C3—C4—C51.3 (4)C7—P—C13—C18109.8 (2)
C3—C4—C5—C61.5 (4)C18—C13—C14—C151.5 (4)
C4—C5—C6—C10.4 (3)P—C13—C14—C15175.8 (2)
C2—C1—C6—C50.7 (3)C13—C14—C15—C160.3 (4)
P—C1—C6—C5177.74 (18)C14—C15—C16—C171.6 (5)
O1—P—C7—C8105.11 (19)C15—C16—C17—C181.2 (5)
C13—P—C7—C814.6 (2)C16—C17—C18—C130.6 (5)
C1—P—C7—C8132.25 (18)C14—C13—C18—C171.9 (4)
O1—P—C7—C1273.65 (19)P—C13—C18—C17175.5 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

RMF acknowledges Universidad del Valle, Colombia, for partial support of this work.

References

First citationBallhausen, C. J. & Liehr, A. D. (1959). J. Am. Chem. Soc. 81, 538–542.  CrossRef CAS Web of Science Google Scholar
First citationBertrand, J. A. & Kalyanaraman, A. R. (1971). Inorg. Chim. Acta, 5, 341–345.  CSD CrossRef CAS Google Scholar
First citationCotton, A. & Goodgame, D. M. L. (1960). J. Am. Chem. Soc. 82, 5771–5776.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds