metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chloro-bis­­[(N-tert-butyl­imido)­chlorobis­(pyridine-κN)­titanium(IV)] perdeutero­benzene disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: philip.mountford@chem.ox.ac.uk

(Received 2 November 2004; accepted 8 November 2004; online 20 November 2004)

The title compound, [Ti2(C4H9N)2Cl2(C5H5N)4]·2C6D6, posses­ses a dinuclear structure featuring two six-coordinate pseudo-octahedral titanium(IV) centres with bridging Cl atoms. The complex is located on a crystallographic inversion centre.

Comment

Over the last 15 years, the chemistry of titanium–imido complexes has received considerable attention (Wigley, 1994[Wigley, D. E. (1994). Prog. Inorg. Chem. 42, 239-482.]). It has been shown that these complexes can be utilized in a wide variety of stoichiometric and sometimes catalytic coupling reactions with unsaturated substrates (Gade & Mountford, 2001[Gade, L. H. & Mountford, P. (2001). Coord. Chem. Rev. 216-217, 65-97.], and references therein). A general entry point to new titanium–imido chemistry is gained via the readily prepared synthons [Ti(NR)Cl2(py)3] (R = tBu or aryl) (Mountford, 1997[Mountford, P. (1997). Chem. Commun. pp. 2127-2134.]). During the course of our studies, we reported that prolonged exposure of [Ti(NtBu)Cl2(py)3] to vacuum results in the loss of the trans pyridine ligand (Blake et al., 1997[Blake, A. J., Collier, P. E., Dunn, S. C., Li, W., Mountford, P. & Shishkin, O. V. (1997). J. Chem. Soc. Dalton Trans. pp. 1549-1558.]). We report here the solid-state structure of [Ti2(μ-Cl)2(NtBu)2Cl2(py)4] crystallized as its perdeuterobenzene disolvate, (I[link]).[link]

[Scheme 1]

Molecules of (I[link]) adopt a dinuclear structure in the solid state, possessing crystallographically imposed Ci molecular symmetry. The solid-state structure is entirely consistent with the previously reported solution 1H and 13C NMR data (Blake et al., 1997[Blake, A. J., Collier, P. E., Dunn, S. C., Li, W., Mountford, P. & Shishkin, O. V. (1997). J. Chem. Soc. Dalton Trans. pp. 1549-1558.]). The two pseudo-octahedral six-coordinate titanium(IV) centres are bridged by two Cl atoms. The bridging Cl—Ti bond lengths [Ti1—Cl2 = 2.4600 (4) Å and Ti1—Cl2A = 2.7438 (4) Å] are longer than the terminal Ti—Cl bond length [Ti1—Cl1 = 2.3898 (4) Å]. The bridging Cl—Ti bond distance of the Cl atom trans to the imido group is considerably longer than the bridging Ti—Cl bond distance of the Cl atom cis to the imido group [difference between Ti1—Cl2 and Ti1—Cl2i = 0.2838 (6) Å; symmetry code as in Table 1[link]]. This is a reflection of the strong trans influence exercised by the imido group. The near linearity of the Ti=NtBu linkage [Ti1=N1—C1 = 170.9 (2)°] is consistent with the imido ligand acting as a four-electron donor to the titanium centre (Wigley, 1994[Wigley, D. E. (1994). Prog. Inorg. Chem. 42, 239-482.]).

The structure of (I[link]) is closely related to that of the corres­ponding titanium–imido species [Ti2(μ-Cl)2(N-2-PhC6H4)2Cl2(py)4] and [Ti2(μ-Cl)2(N-2-tBuC6H4)2Cl2(py)4], synthesized by Nielson and co-workers (Nielson et al., 2001[Nielson, A. J., Glenny, M. W. & Rickard, C. E. F. (2001). J. Chem. Soc. Dalton Trans. pp. 232-239.]), and the bond lengths and angles around Ti2(μ-Cl)2 are similar in all three compounds.

[Figure 1]
Figure 1
View of the molecular structure of (I[link]). The displacement parameters are drawn at the 20% probability level and H atoms have been omitted for clarity. The solvent of crystallization has been omitted and the minor orientation of the disordered tert-butyl group is not shown. Atoms carrying the suffix A are related to their counterparts by the symmetry code (1 − x, 1 − y, 1 − z).

Experimental

The title compound was prepared according to the previously described procedure (Blake et al., 1997[Blake, A. J., Collier, P. E., Dunn, S. C., Li, W., Mountford, P. & Shishkin, O. V. (1997). J. Chem. Soc. Dalton Trans. pp. 1549-1558.]) and authenticated by comparison of its solution 1H NMR spectrum with that previously reported. Crystallization from C6D6 afforded crystals of (I[link]) as air-sensitive yellow blocks.

Crystal data
  • [Ti2(C4H9N)2Cl2(C5H5N)4]·2C6D6

  • Mr = 864.58

  • Triclinic, [P\overline 1]

  • a = 8.0662 (2) Å

  • b = 11.0937 (2) Å

  • c = 12.7589 (3) Å

  • α = 101.6259 (9)°

  • β = 90.1675 (10)°

  • γ = 103.4005 (11)°

  • V = 1086.37 (4) Å3

  • Z = 1

  • Dx = 1.321 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 18502 reflections

  • θ = 5–28°

  • μ = 0.65 mm−1

  • T = 150 K

  • Prism, pale orange

  • 0.30 × 0.12 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.82, Tmax = 0.95

  • 18502 measured reflections

  • 4933 independent reflections

  • 3925 reflections with I > 0

  • Rint = 0.028

  • θmax = 27.4°

  • h = −10 → 10

  • k = −14 → 14

  • l = −16 → 16

Refinement
  • Refinement on F

  • R = 0.030

  • wR = 0.037

  • S = 1.03

  • 3925 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Weighting scheme: see text

  • (Δ/σ)max = 0.019

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ti1—Cl1 2.3898 (4)
Ti1—Cl2 2.7438 (4)
Ti1—Cl2i 2.4600 (4)
Ti1—N1 1.6921 (12)
Ti1—N2 2.2355 (12)
Ti1—N3 2.2316 (12)
N1—C1 1.442 (4)
N1—C51 1.435 (19)
C1—C2 1.533 (5)
C1—C3 1.523 (4)
C1—C4 1.531 (5)
C51—C52 1.532 (15)
C51—C53 1.544 (14)
C51—C54 1.549 (14)
N2—C5 1.3387 (19)
N2—C9 1.343 (2)
C5—C6 1.384 (2)
C6—C7 1.380 (3)
C7—C8 1.381 (3)
C8—C9 1.386 (2)
N3—C10 1.345 (2)
N3—C14 1.3416 (19)
C10—C11 1.384 (2)
C11—C12 1.383 (3)
C12—C13 1.374 (3)
C13—C14 1.387 (2)
C15—C16 1.379 (3)
C15—C20 1.386 (3)
C16—C17 1.384 (3)
C17—C18 1.387 (3)
C18—C19 1.384 (3)
C19—C20 1.381 (3)
Cl1—Ti1—Cl2 84.062 (14)
Cl1—Ti1—Cl2i 161.860 (17)
Cl2—Ti1—Cl2i 77.891 (13)
Cl1—Ti1—N1 99.89 (4)
Cl2—Ti1—N1 176.05 (4)
Cl2i—Ti1—N1 98.15 (4)
Cl1—Ti1—N2 88.47 (3)
Cl2—Ti1—N2 84.25 (3)
Cl2i—Ti1—N2 87.92 (3)
N1—Ti1—N2 95.69 (5)
Cl1—Ti1—N3 90.60 (3)
Cl2—Ti1—N3 84.89 (3)
Cl2i—Ti1—N3 89.63 (3)
N1—Ti1—N3 95.13 (5)
N2—Ti1—N3 169.14 (4)
Ti1—Cl2—Ti1i 102.109 (13)
Ti1—N1—C1 170.9 (2)
Ti1—N1—C51 177.3 (6)
N1—C1—C2 107.1 (3)
N1—C1—C3 110.4 (3)
C2—C1—C3 109.5 (3)
N1—C1—C4 110.5 (3)
C2—C1—C4 109.7 (3)
C3—C1—C4 109.6 (3)
N1—C51—C52 107.5 (10)
N1—C51—C53 109.7 (10)
N1—C51—C54 109.4 (10)
C52—C51—C53 110.3 (10)
C52—C51—C54 109.9 (10)
C53—C51—C54 110.1 (10)
Ti1—N2—C5 118.15 (10)
Ti1—N2—C9 124.02 (11)
C5—N2—C9 117.82 (13)
N2—C5—C6 123.11 (14)
C5—C6—C7 118.72 (15)
C6—C7—C8 118.77 (15)
C7—C8—C9 119.22 (16)
N2—C9—C8 122.36 (16)
Ti1—N3—C10 120.12 (10)
Ti1—N3—C14 122.11 (10)
C10—N3—C14 117.52 (13)
N3—C10—C11 122.96 (15)
C10—C11—C12 118.93 (16)
C11—C12—C13 118.57 (15)
C12—C13—C14 119.46 (15)
N3—C14—C13 122.53 (15)
C16—C15—C20 119.88 (17)
C15—C16—C17 120.09 (17)
C16—C17—C18 120.11 (17)
C17—C18—C19 119.68 (18)
C18—C19—C20 120.12 (17)
C15—C20—C19 120.12 (16)
Symmetry code: (i) 1-x,1-y,1-z.

All H atoms were positioned geometrically after each cycle of refinement. A three-term Chebychev polynomial weighting scheme was applied: w = {1 − [ΔF/2σ(F)]2}2/[1.08T0(x) + 0.471T1(x) + 0.742T2(x)], where x = Fcalc/Fmax (Prince, 1983[Prince, E. (1983). Acta Cryst. A39, 407-410.]; Watkin, 1994[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO; data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO; data reduction: DENZO (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Di-µ-chloro-bis[(N-tert-butylimido)chlorobis(pyridine-κN)titanium(IV)] benzene disolvate top
Crystal data top
[Ti2(C4H9N)2Cl2(C5H5N)4]·2C6D6Z = 1
Mr = 864.58F(000) = 444
Triclinic, P1Dx = 1.321 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0662 (2) ÅCell parameters from 18502 reflections
b = 11.0937 (2) Åθ = 5–28°
c = 12.7589 (3) ŵ = 0.65 mm1
α = 101.6259 (9)°T = 150 K
β = 90.1675 (10)°Prism, pale orange
γ = 103.4005 (11)°0.30 × 0.12 × 0.08 mm
V = 1086.37 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
3925 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.4°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1996)
h = 1010
Tmin = 0.82, Tmax = 0.95k = 1414
18502 measured reflectionsl = 1616
4933 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters not refined
wR(F2) = 0.037 Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1983): [weight] = 1/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)],
where Ai are the Chebychev coefficients listed below and x = F /Fmax. Method = Robust Weighting (Prince, 1983): W = [weight][1-(δF/6σF)2]2,
where Ai are 1.08, 0.471 and 0.742
S = 1.03(Δ/σ)max = 0.019
3925 reflectionsΔρmax = 0.24 e Å3
252 parametersΔρmin = 0.42 e Å3
18 restraints
Special details top

Refinement. Geometric similarity restraints were applied to the C—C bond lengths (su 0.02 Å) and to the N—C—C anf C—C—C angles (su 2 °) of the disordered tert-butyl group C1—C54

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.43947 (3)0.34292 (2)0.38142 (2)0.0233
Cl10.17225 (5)0.19292 (3)0.37618 (3)0.0339
Cl20.32610 (4)0.46699 (3)0.56528 (3)0.0255
N10.52165 (15)0.27465 (11)0.26924 (9)0.0254
C10.5693 (5)0.1994 (4)0.1735 (3)0.03070.809 (4)
C20.4143 (3)0.0898 (2)0.1323 (2)0.05250.809 (4)
C30.7195 (3)0.1464 (3)0.19845 (19)0.04770.809 (4)
C40.6164 (3)0.2788 (2)0.08804 (18)0.04460.809 (4)
C510.5840 (19)0.2164 (14)0.1713 (14)0.029 (5)*0.191 (4)
C520.7583 (14)0.3004 (11)0.1564 (9)0.055 (3)*0.191 (4)
C530.4583 (13)0.2062 (10)0.0767 (8)0.049 (3)*0.191 (4)
C540.6034 (13)0.0830 (9)0.1798 (8)0.042 (2)*0.191 (4)
N20.30669 (16)0.45794 (12)0.30055 (10)0.0268
C50.38806 (19)0.51368 (14)0.22522 (12)0.0296
C60.3185 (2)0.58732 (16)0.17030 (14)0.0358
C70.1568 (2)0.60320 (18)0.19304 (15)0.0410
C80.0706 (2)0.5450 (2)0.26971 (16)0.0449
C90.1494 (2)0.47387 (17)0.32227 (13)0.0356
N30.55548 (16)0.24758 (11)0.49062 (10)0.0263
C100.7165 (2)0.23462 (16)0.47862 (13)0.0334
C110.7896 (2)0.16493 (18)0.53581 (15)0.0398
C120.6941 (2)0.10617 (16)0.60917 (14)0.0384
C130.5309 (2)0.12131 (16)0.62389 (13)0.0362
C140.4651 (2)0.19185 (14)0.56331 (12)0.0311
C150.8876 (2)0.85413 (18)0.23135 (14)0.0402
C160.9838 (2)0.91397 (17)0.15920 (17)0.0438
C170.9803 (3)0.85268 (18)0.05314 (16)0.0464
C180.8794 (3)0.73109 (18)0.01894 (15)0.0442
C190.7829 (2)0.67129 (17)0.09149 (16)0.0423
C200.7871 (2)0.73249 (18)0.19742 (15)0.0414
H210.44250.03520.06560.0577*0.8087
H220.38370.03820.18830.0577*0.8087
H230.31550.12460.11620.0577*0.8087
H310.75100.09450.13130.0639*0.8087
H320.81920.21790.22810.0639*0.8087
H330.68710.09200.25240.0639*0.8087
H410.64910.22530.02220.0577*0.8087
H420.71470.35210.11620.0577*0.8087
H430.51620.31100.06990.0577*0.8087
H5210.80540.26230.08870.0661*0.1913
H5220.83810.30680.21850.0661*0.1913
H5230.74520.38680.15250.0661*0.1913
H5310.50220.16570.00860.0588*0.1913
H5320.44740.29290.07160.0588*0.1913
H5330.34410.15360.08850.0588*0.1913
H5410.64680.04230.11160.0507*0.1913
H5420.68590.09070.24080.0507*0.1913
H5430.48990.02980.19240.0507*0.1913
H510.50470.50150.20780.0357*
H610.38410.62820.11520.0442*
H710.10300.65590.15470.0520*
H810.04720.55410.28710.0579*
H910.08700.43290.37840.0448*
H1010.78650.27730.42600.0415*
H1110.90960.15720.52430.0499*
H1210.74280.05380.65060.0478*
H1310.46000.08180.67780.0449*
H1410.34580.20150.57430.0383*
H1510.89030.89840.30800.0483*
H1611.05621.00180.18360.0520*
H1711.05060.89610.00110.0581*
H1810.87640.68690.05780.0537*
H1910.71010.58360.06720.0501*
H2010.71760.68890.24970.0502*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.02586 (13)0.02258 (13)0.02260 (13)0.00782 (9)0.00395 (9)0.00503 (9)
Cl10.03041 (18)0.02812 (18)0.0398 (2)0.00298 (14)0.00431 (14)0.00353 (14)
Cl20.02641 (16)0.02532 (16)0.02501 (16)0.00652 (12)0.00611 (12)0.00525 (12)
N10.0295 (6)0.0243 (6)0.0238 (6)0.0085 (5)0.0023 (5)0.0057 (5)
C10.0395 (17)0.0289 (14)0.0258 (14)0.0128 (10)0.0090 (9)0.0054 (10)
C20.0590 (15)0.0445 (13)0.0409 (12)0.0024 (11)0.0088 (11)0.0101 (10)
C30.0593 (16)0.0582 (15)0.0420 (12)0.0391 (13)0.0223 (11)0.0194 (11)
C40.0609 (14)0.0504 (13)0.0329 (11)0.0261 (11)0.0192 (10)0.0176 (9)
N20.0280 (6)0.0272 (6)0.0258 (6)0.0088 (5)0.0005 (5)0.0042 (5)
C50.0304 (7)0.0269 (7)0.0319 (7)0.0073 (6)0.0020 (6)0.0067 (6)
C60.0396 (9)0.0348 (8)0.0359 (8)0.0099 (7)0.0014 (7)0.0127 (7)
C70.0441 (9)0.0440 (9)0.0420 (9)0.0203 (8)0.0017 (7)0.0138 (7)
C80.0391 (9)0.0596 (11)0.0461 (10)0.0269 (9)0.0056 (8)0.0166 (9)
C90.0335 (8)0.0459 (9)0.0325 (8)0.0164 (7)0.0058 (6)0.0119 (7)
N30.0310 (6)0.0243 (6)0.0247 (6)0.0082 (5)0.0038 (5)0.0057 (5)
C100.0310 (7)0.0379 (8)0.0348 (8)0.0095 (6)0.0045 (6)0.0139 (7)
C110.0366 (8)0.0474 (10)0.0407 (9)0.0173 (7)0.0024 (7)0.0133 (8)
C120.0481 (10)0.0349 (8)0.0364 (8)0.0148 (7)0.0005 (7)0.0116 (7)
C130.0463 (9)0.0318 (8)0.0342 (8)0.0096 (7)0.0077 (7)0.0147 (6)
C140.0369 (8)0.0287 (7)0.0302 (7)0.0108 (6)0.0086 (6)0.0086 (6)
C150.0360 (8)0.0453 (9)0.0395 (9)0.0149 (7)0.0035 (7)0.0036 (7)
C160.0397 (9)0.0329 (8)0.0573 (11)0.0083 (7)0.0040 (8)0.0068 (8)
C170.0509 (10)0.0437 (10)0.0507 (11)0.0148 (8)0.0145 (9)0.0195 (8)
C180.0520 (11)0.0449 (10)0.0374 (9)0.0176 (8)0.0029 (8)0.0056 (7)
C190.0371 (9)0.0389 (9)0.0492 (10)0.0070 (7)0.0009 (7)0.0073 (8)
C200.0347 (8)0.0462 (10)0.0445 (10)0.0088 (7)0.0080 (7)0.0134 (8)
Geometric parameters (Å, º) top
Ti1—Cl12.3898 (4)C5—H511.000
Ti1—Cl22.7438 (4)C6—C71.380 (3)
Ti1—Cl2i2.4600 (4)C6—H611.000
Ti1—N11.6921 (12)C7—C81.381 (3)
Ti1—N22.2355 (12)C7—H711.000
Ti1—N32.2316 (12)C8—C91.386 (2)
N1—C11.442 (4)C8—H811.000
N1—C511.435 (19)C9—H911.000
C1—C21.533 (5)N3—C101.345 (2)
C1—C31.523 (4)N3—C141.3416 (19)
C1—C41.531 (5)C10—C111.384 (2)
C2—H211.000C10—H1011.000
C2—H221.000C11—C121.383 (3)
C2—H231.000C11—H1111.000
C2—H5331.216C12—C131.374 (3)
C3—H311.000C12—H1211.000
C3—H321.000C13—C141.387 (2)
C3—H331.000C13—H1311.000
C4—H411.000C14—H1411.000
C4—H421.000C15—C161.379 (3)
C4—H431.000C15—C201.386 (3)
C51—C521.532 (15)C15—H1511.000
C51—C531.544 (14)C16—C171.384 (3)
C51—C541.549 (14)C16—H1611.000
C52—H5211.000C17—C181.387 (3)
C52—H5221.000C17—H1711.000
C52—H5231.000C18—C191.384 (3)
C53—H5311.000C18—H1811.000
C53—H5321.000C19—C201.381 (3)
C53—H5331.000C19—H1911.000
C54—H5411.000C20—H2011.000
C54—H5421.000H23—H5330.542
C54—H5431.000H33—H5420.145
N2—C51.3387 (19)H42—H5230.554
N2—C91.343 (2)H43—H5320.547
C5—C61.384 (2)
Cl1—Ti1—Cl284.062 (14)C51—C54—H541109.468
Cl1—Ti1—Cl2i161.860 (17)C51—C54—H542109.463
Cl2—Ti1—Cl2i77.891 (13)C51—C54—H543109.468
Cl1—Ti1—N199.89 (4)H541—C54—H542109.477
Cl2—Ti1—N1176.05 (4)H541—C54—H543109.476
Cl2i—Ti1—N198.15 (4)H542—C54—H543109.476
Cl1—Ti1—N288.47 (3)Ti1—N2—C5118.15 (10)
Cl2—Ti1—N284.25 (3)Ti1—N2—C9124.02 (11)
Cl2i—Ti1—N287.92 (3)C5—N2—C9117.82 (13)
N1—Ti1—N295.69 (5)N2—C5—C6123.11 (14)
Cl1—Ti1—N390.60 (3)N2—C5—H51118.445
Cl2—Ti1—N384.89 (3)C6—C5—H51118.446
Cl2i—Ti1—N389.63 (3)C5—C6—C7118.72 (15)
N1—Ti1—N395.13 (5)C5—C6—H61120.641
N2—Ti1—N3169.14 (4)C7—C6—H61120.641
Ti1—Cl2—Ti1i102.109 (13)C6—C7—C8118.77 (15)
Ti1—N1—C1170.9 (2)C6—C7—H71120.617
Ti1—N1—C51177.3 (6)C8—C7—H71120.617
N1—C1—C2107.1 (3)C7—C8—C9119.22 (16)
N1—C1—C3110.4 (3)C7—C8—H81120.392
C2—C1—C3109.5 (3)C9—C8—H81120.392
N1—C1—C4110.5 (3)N2—C9—C8122.36 (16)
C2—C1—C4109.7 (3)N2—C9—H91118.821
C3—C1—C4109.6 (3)C8—C9—H91118.821
C1—C2—H21109.467Ti1—N3—C10120.12 (10)
C1—C2—H22109.466Ti1—N3—C14122.11 (10)
H21—C2—H22109.476C10—N3—C14117.52 (13)
C1—C2—H23109.467N3—C10—C11122.96 (15)
H21—C2—H23109.476N3—C10—H101118.519
H22—C2—H23109.476C11—C10—H101118.519
C1—C3—H31109.466C10—C11—C12118.93 (16)
C1—C3—H32109.470C10—C11—H111120.536
H31—C3—H32109.476C12—C11—H111120.536
C1—C3—H33109.464C11—C12—C13118.57 (15)
H31—C3—H33109.476C11—C12—H121120.715
H32—C3—H33109.476C13—C12—H121120.715
C1—C4—H41109.466C12—C13—C14119.46 (15)
C1—C4—H42109.469C12—C13—H131120.269
H41—C4—H42109.476C14—C13—H131120.268
C1—C4—H43109.465N3—C14—C13122.53 (15)
H41—C4—H43109.476N3—C14—H141118.735
H42—C4—H43109.476C13—C14—H141118.735
N1—C51—C52107.5 (10)C16—C15—C20119.88 (17)
N1—C51—C53109.7 (10)C16—C15—H151120.058
N1—C51—C54109.4 (10)C20—C15—H151120.058
C52—C51—C53110.3 (10)C15—C16—C17120.09 (17)
C52—C51—C54109.9 (10)C15—C16—H161119.954
C53—C51—C54110.1 (10)C17—C16—H161119.954
C51—C52—H521109.467C16—C17—C18120.11 (17)
C51—C52—H522109.462C16—C17—H171119.945
H521—C52—H522109.477C18—C17—H171119.945
C51—C52—H523109.468C17—C18—C19119.68 (18)
H521—C52—H523109.477C17—C18—H181120.162
H522—C52—H523109.477C19—C18—H181120.162
C51—C53—H531109.468C18—C19—C20120.12 (17)
C51—C53—H532109.467C18—C19—H191119.942
C51—C53—H533109.468C20—C19—H191119.942
H531—C53—H532109.475C15—C20—C19120.12 (16)
H531—C53—H533109.476C15—C20—H201119.939
H532—C53—H533109.474C19—C20—H201119.939
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Rhodes Trust and the EPSRC for support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlake, A. J., Collier, P. E., Dunn, S. C., Li, W., Mountford, P. & Shishkin, O. V. (1997). J. Chem. Soc. Dalton Trans. pp. 1549–1558.  CSD CrossRef Web of Science Google Scholar
First citationGade, L. H. & Mountford, P. (2001). Coord. Chem. Rev. 216–217, 65–97.  Web of Science CrossRef CAS Google Scholar
First citationMountford, P. (1997). Chem. Commun. pp. 2127–2134.  CrossRef Web of Science Google Scholar
First citationNielson, A. J., Glenny, M. W. & Rickard, C. E. F. (2001). J. Chem. Soc. Dalton Trans. pp. 232–239.  Web of Science CSD CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1983). Acta Cryst. A39, 407–410.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWigley, D. E. (1994). Prog. Inorg. Chem. 42, 239–482.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds