metal-organic compounds
Di-μ-chloro-bis[(N-tert-butylimido)chlorobis(pyridine-κN)titanium(IV)] perdeuterobenzene disolvate
aDepartment of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: philip.mountford@chem.ox.ac.uk
The title compound, [Ti2(C4H9N)2Cl2(C5H5N)4]·2C6D6, possesses a dinuclear structure featuring two six-coordinate pseudo-octahedral titanium(IV) centres with bridging Cl atoms. The complex is located on a crystallographic inversion centre.
Comment
Over the last 15 years, the chemistry of titanium–imido complexes has received considerable attention (Wigley, 1994). It has been shown that these complexes can be utilized in a wide variety of stoichiometric and sometimes catalytic coupling reactions with unsaturated substrates (Gade & Mountford, 2001, and references therein). A general entry point to new titanium–imido chemistry is gained via the readily prepared synthons [Ti(NR)Cl2(py)3] (R = tBu or aryl) (Mountford, 1997). During the course of our studies, we reported that prolonged exposure of [Ti(NtBu)Cl2(py)3] to vacuum results in the loss of the trans pyridine ligand (Blake et al., 1997). We report here the solid-state structure of [Ti2(μ-Cl)2(NtBu)2Cl2(py)4] crystallized as its perdeuterobenzene disolvate, (I).
Molecules of (I) adopt a dinuclear structure in the solid state, possessing crystallographically imposed Ci molecular symmetry. The solid-state structure is entirely consistent with the previously reported solution 1H and 13C NMR data (Blake et al., 1997). The two pseudo-octahedral six-coordinate titanium(IV) centres are bridged by two Cl atoms. The bridging Cl—Ti bond lengths [Ti1—Cl2 = 2.4600 (4) Å and Ti1—Cl2A = 2.7438 (4) Å] are longer than the terminal Ti—Cl bond length [Ti1—Cl1 = 2.3898 (4) Å]. The bridging Cl—Ti bond distance of the Cl atom trans to the imido group is considerably longer than the bridging Ti—Cl bond distance of the Cl atom cis to the imido group [difference between Ti1—Cl2 and Ti1—Cl2i = 0.2838 (6) Å; symmetry code as in Table 1]. This is a reflection of the strong trans influence exercised by the imido group. The near linearity of the Ti=NtBu linkage [Ti1=N1—C1 = 170.9 (2)°] is consistent with the imido ligand acting as a four-electron donor to the titanium centre (Wigley, 1994).
The structure of (I) is closely related to that of the corresponding titanium–imido species [Ti2(μ-Cl)2(N-2-PhC6H4)2Cl2(py)4] and [Ti2(μ-Cl)2(N-2-tBuC6H4)2Cl2(py)4], synthesized by Nielson and co-workers (Nielson et al., 2001), and the bond lengths and angles around Ti2(μ-Cl)2 are similar in all three compounds.
Experimental
The title compound was prepared according to the previously described procedure (Blake et al., 1997) and authenticated by comparison of its solution 1H NMR spectrum with that previously reported. Crystallization from C6D6 afforded crystals of (I) as air-sensitive yellow blocks.
Crystal data
|
Refinement
|
All H atoms were positioned geometrically after each cycle of w = {1 − [ΔF/2σ(F)]2}2/[1.08T0(x) + 0.471T1(x) + 0.742T2(x)], where x = Fcalc/Fmax (Prince, 1983; Watkin, 1994).
A three-term Chebychev polynomial weighting scheme was applied:Data collection: COLLECT (Nonius, 2000); cell DENZO; data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S160053680402865X/hg6108sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680402865X/hg6108Isup2.hkl
Data collection: COLLECT (Nonius, 2000); cell
DENZO; data reduction: DENZO (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.[Ti2(C4H9N)2Cl2(C5H5N)4]·2C6D6 | Z = 1 |
Mr = 864.58 | F(000) = 444 |
Triclinic, P1 | Dx = 1.321 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0662 (2) Å | Cell parameters from 18502 reflections |
b = 11.0937 (2) Å | θ = 5–28° |
c = 12.7589 (3) Å | µ = 0.65 mm−1 |
α = 101.6259 (9)° | T = 150 K |
β = 90.1675 (10)° | Prism, pale orange |
γ = 103.4005 (11)° | 0.30 × 0.12 × 0.08 mm |
V = 1086.37 (4) Å3 |
Nonius KappaCCD diffractometer | 3925 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 27.4°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1996) | h = −10→10 |
Tmin = 0.82, Tmax = 0.95 | k = −14→14 |
18502 measured reflections | l = −16→16 |
4933 independent reflections |
Refinement on F | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters not refined |
wR(F2) = 0.037 | Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1983): [weight] = 1/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)], where Ai are the Chebychev coefficients listed below and x = F /Fmax. Method = Robust Weighting (Prince, 1983): W = [weight][1-(δF/6σF)2]2, where Ai are 1.08, 0.471 and 0.742 |
S = 1.03 | (Δ/σ)max = 0.019 |
3925 reflections | Δρmax = 0.24 e Å−3 |
252 parameters | Δρmin = −0.42 e Å−3 |
18 restraints |
Refinement. Geometric similarity restraints were applied to the C—C bond lengths (su 0.02 Å) and to the N—C—C anf C—C—C angles (su 2 °) of the disordered tert-butyl group C1—C54 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ti1 | 0.43947 (3) | 0.34292 (2) | 0.38142 (2) | 0.0233 | |
Cl1 | 0.17225 (5) | 0.19292 (3) | 0.37618 (3) | 0.0339 | |
Cl2 | 0.32610 (4) | 0.46699 (3) | 0.56528 (3) | 0.0255 | |
N1 | 0.52165 (15) | 0.27465 (11) | 0.26924 (9) | 0.0254 | |
C1 | 0.5693 (5) | 0.1994 (4) | 0.1735 (3) | 0.0307 | 0.809 (4) |
C2 | 0.4143 (3) | 0.0898 (2) | 0.1323 (2) | 0.0525 | 0.809 (4) |
C3 | 0.7195 (3) | 0.1464 (3) | 0.19845 (19) | 0.0477 | 0.809 (4) |
C4 | 0.6164 (3) | 0.2788 (2) | 0.08804 (18) | 0.0446 | 0.809 (4) |
C51 | 0.5840 (19) | 0.2164 (14) | 0.1713 (14) | 0.029 (5)* | 0.191 (4) |
C52 | 0.7583 (14) | 0.3004 (11) | 0.1564 (9) | 0.055 (3)* | 0.191 (4) |
C53 | 0.4583 (13) | 0.2062 (10) | 0.0767 (8) | 0.049 (3)* | 0.191 (4) |
C54 | 0.6034 (13) | 0.0830 (9) | 0.1798 (8) | 0.042 (2)* | 0.191 (4) |
N2 | 0.30669 (16) | 0.45794 (12) | 0.30055 (10) | 0.0268 | |
C5 | 0.38806 (19) | 0.51368 (14) | 0.22522 (12) | 0.0296 | |
C6 | 0.3185 (2) | 0.58732 (16) | 0.17030 (14) | 0.0358 | |
C7 | 0.1568 (2) | 0.60320 (18) | 0.19304 (15) | 0.0410 | |
C8 | 0.0706 (2) | 0.5450 (2) | 0.26971 (16) | 0.0449 | |
C9 | 0.1494 (2) | 0.47387 (17) | 0.32227 (13) | 0.0356 | |
N3 | 0.55548 (16) | 0.24758 (11) | 0.49062 (10) | 0.0263 | |
C10 | 0.7165 (2) | 0.23462 (16) | 0.47862 (13) | 0.0334 | |
C11 | 0.7896 (2) | 0.16493 (18) | 0.53581 (15) | 0.0398 | |
C12 | 0.6941 (2) | 0.10617 (16) | 0.60917 (14) | 0.0384 | |
C13 | 0.5309 (2) | 0.12131 (16) | 0.62389 (13) | 0.0362 | |
C14 | 0.4651 (2) | 0.19185 (14) | 0.56331 (12) | 0.0311 | |
C15 | 0.8876 (2) | 0.85413 (18) | 0.23135 (14) | 0.0402 | |
C16 | 0.9838 (2) | 0.91397 (17) | 0.15920 (17) | 0.0438 | |
C17 | 0.9803 (3) | 0.85268 (18) | 0.05314 (16) | 0.0464 | |
C18 | 0.8794 (3) | 0.73109 (18) | 0.01894 (15) | 0.0442 | |
C19 | 0.7829 (2) | 0.67129 (17) | 0.09149 (16) | 0.0423 | |
C20 | 0.7871 (2) | 0.73249 (18) | 0.19742 (15) | 0.0414 | |
H21 | 0.4425 | 0.0352 | 0.0656 | 0.0577* | 0.8087 |
H22 | 0.3837 | 0.0382 | 0.1883 | 0.0577* | 0.8087 |
H23 | 0.3155 | 0.1246 | 0.1162 | 0.0577* | 0.8087 |
H31 | 0.7510 | 0.0945 | 0.1313 | 0.0639* | 0.8087 |
H32 | 0.8192 | 0.2179 | 0.2281 | 0.0639* | 0.8087 |
H33 | 0.6871 | 0.0920 | 0.2524 | 0.0639* | 0.8087 |
H41 | 0.6491 | 0.2253 | 0.0222 | 0.0577* | 0.8087 |
H42 | 0.7147 | 0.3521 | 0.1162 | 0.0577* | 0.8087 |
H43 | 0.5162 | 0.3110 | 0.0699 | 0.0577* | 0.8087 |
H521 | 0.8054 | 0.2623 | 0.0887 | 0.0661* | 0.1913 |
H522 | 0.8381 | 0.3068 | 0.2185 | 0.0661* | 0.1913 |
H523 | 0.7452 | 0.3868 | 0.1525 | 0.0661* | 0.1913 |
H531 | 0.5022 | 0.1657 | 0.0086 | 0.0588* | 0.1913 |
H532 | 0.4474 | 0.2929 | 0.0716 | 0.0588* | 0.1913 |
H533 | 0.3441 | 0.1536 | 0.0885 | 0.0588* | 0.1913 |
H541 | 0.6468 | 0.0423 | 0.1116 | 0.0507* | 0.1913 |
H542 | 0.6859 | 0.0907 | 0.2408 | 0.0507* | 0.1913 |
H543 | 0.4899 | 0.0298 | 0.1924 | 0.0507* | 0.1913 |
H51 | 0.5047 | 0.5015 | 0.2078 | 0.0357* | |
H61 | 0.3841 | 0.6282 | 0.1152 | 0.0442* | |
H71 | 0.1030 | 0.6559 | 0.1547 | 0.0520* | |
H81 | −0.0472 | 0.5541 | 0.2871 | 0.0579* | |
H91 | 0.0870 | 0.4329 | 0.3784 | 0.0448* | |
H101 | 0.7865 | 0.2773 | 0.4260 | 0.0415* | |
H111 | 0.9096 | 0.1572 | 0.5243 | 0.0499* | |
H121 | 0.7428 | 0.0538 | 0.6506 | 0.0478* | |
H131 | 0.4600 | 0.0818 | 0.6778 | 0.0449* | |
H141 | 0.3458 | 0.2015 | 0.5743 | 0.0383* | |
H151 | 0.8903 | 0.8984 | 0.3080 | 0.0483* | |
H161 | 1.0562 | 1.0018 | 0.1836 | 0.0520* | |
H171 | 1.0506 | 0.8961 | 0.0011 | 0.0581* | |
H181 | 0.8764 | 0.6869 | −0.0578 | 0.0537* | |
H191 | 0.7101 | 0.5836 | 0.0672 | 0.0501* | |
H201 | 0.7176 | 0.6889 | 0.2497 | 0.0502* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.02586 (13) | 0.02258 (13) | 0.02260 (13) | 0.00782 (9) | 0.00395 (9) | 0.00503 (9) |
Cl1 | 0.03041 (18) | 0.02812 (18) | 0.0398 (2) | 0.00298 (14) | 0.00431 (14) | 0.00353 (14) |
Cl2 | 0.02641 (16) | 0.02532 (16) | 0.02501 (16) | 0.00652 (12) | 0.00611 (12) | 0.00525 (12) |
N1 | 0.0295 (6) | 0.0243 (6) | 0.0238 (6) | 0.0085 (5) | 0.0023 (5) | 0.0057 (5) |
C1 | 0.0395 (17) | 0.0289 (14) | 0.0258 (14) | 0.0128 (10) | 0.0090 (9) | 0.0054 (10) |
C2 | 0.0590 (15) | 0.0445 (13) | 0.0409 (12) | 0.0024 (11) | 0.0088 (11) | −0.0101 (10) |
C3 | 0.0593 (16) | 0.0582 (15) | 0.0420 (12) | 0.0391 (13) | 0.0223 (11) | 0.0194 (11) |
C4 | 0.0609 (14) | 0.0504 (13) | 0.0329 (11) | 0.0261 (11) | 0.0192 (10) | 0.0176 (9) |
N2 | 0.0280 (6) | 0.0272 (6) | 0.0258 (6) | 0.0088 (5) | 0.0005 (5) | 0.0042 (5) |
C5 | 0.0304 (7) | 0.0269 (7) | 0.0319 (7) | 0.0073 (6) | 0.0020 (6) | 0.0067 (6) |
C6 | 0.0396 (9) | 0.0348 (8) | 0.0359 (8) | 0.0099 (7) | 0.0014 (7) | 0.0127 (7) |
C7 | 0.0441 (9) | 0.0440 (9) | 0.0420 (9) | 0.0203 (8) | −0.0017 (7) | 0.0138 (7) |
C8 | 0.0391 (9) | 0.0596 (11) | 0.0461 (10) | 0.0269 (9) | 0.0056 (8) | 0.0166 (9) |
C9 | 0.0335 (8) | 0.0459 (9) | 0.0325 (8) | 0.0164 (7) | 0.0058 (6) | 0.0119 (7) |
N3 | 0.0310 (6) | 0.0243 (6) | 0.0247 (6) | 0.0082 (5) | 0.0038 (5) | 0.0057 (5) |
C10 | 0.0310 (7) | 0.0379 (8) | 0.0348 (8) | 0.0095 (6) | 0.0045 (6) | 0.0139 (7) |
C11 | 0.0366 (8) | 0.0474 (10) | 0.0407 (9) | 0.0173 (7) | 0.0024 (7) | 0.0133 (8) |
C12 | 0.0481 (10) | 0.0349 (8) | 0.0364 (8) | 0.0148 (7) | −0.0005 (7) | 0.0116 (7) |
C13 | 0.0463 (9) | 0.0318 (8) | 0.0342 (8) | 0.0096 (7) | 0.0077 (7) | 0.0147 (6) |
C14 | 0.0369 (8) | 0.0287 (7) | 0.0302 (7) | 0.0108 (6) | 0.0086 (6) | 0.0086 (6) |
C15 | 0.0360 (8) | 0.0453 (9) | 0.0395 (9) | 0.0149 (7) | 0.0035 (7) | 0.0036 (7) |
C16 | 0.0397 (9) | 0.0329 (8) | 0.0573 (11) | 0.0083 (7) | 0.0040 (8) | 0.0068 (8) |
C17 | 0.0509 (10) | 0.0437 (10) | 0.0507 (11) | 0.0148 (8) | 0.0145 (9) | 0.0195 (8) |
C18 | 0.0520 (11) | 0.0449 (10) | 0.0374 (9) | 0.0176 (8) | 0.0029 (8) | 0.0056 (7) |
C19 | 0.0371 (9) | 0.0389 (9) | 0.0492 (10) | 0.0070 (7) | 0.0009 (7) | 0.0073 (8) |
C20 | 0.0347 (8) | 0.0462 (10) | 0.0445 (10) | 0.0088 (7) | 0.0080 (7) | 0.0134 (8) |
Ti1—Cl1 | 2.3898 (4) | C5—H51 | 1.000 |
Ti1—Cl2 | 2.7438 (4) | C6—C7 | 1.380 (3) |
Ti1—Cl2i | 2.4600 (4) | C6—H61 | 1.000 |
Ti1—N1 | 1.6921 (12) | C7—C8 | 1.381 (3) |
Ti1—N2 | 2.2355 (12) | C7—H71 | 1.000 |
Ti1—N3 | 2.2316 (12) | C8—C9 | 1.386 (2) |
N1—C1 | 1.442 (4) | C8—H81 | 1.000 |
N1—C51 | 1.435 (19) | C9—H91 | 1.000 |
C1—C2 | 1.533 (5) | N3—C10 | 1.345 (2) |
C1—C3 | 1.523 (4) | N3—C14 | 1.3416 (19) |
C1—C4 | 1.531 (5) | C10—C11 | 1.384 (2) |
C2—H21 | 1.000 | C10—H101 | 1.000 |
C2—H22 | 1.000 | C11—C12 | 1.383 (3) |
C2—H23 | 1.000 | C11—H111 | 1.000 |
C2—H533 | 1.216 | C12—C13 | 1.374 (3) |
C3—H31 | 1.000 | C12—H121 | 1.000 |
C3—H32 | 1.000 | C13—C14 | 1.387 (2) |
C3—H33 | 1.000 | C13—H131 | 1.000 |
C4—H41 | 1.000 | C14—H141 | 1.000 |
C4—H42 | 1.000 | C15—C16 | 1.379 (3) |
C4—H43 | 1.000 | C15—C20 | 1.386 (3) |
C51—C52 | 1.532 (15) | C15—H151 | 1.000 |
C51—C53 | 1.544 (14) | C16—C17 | 1.384 (3) |
C51—C54 | 1.549 (14) | C16—H161 | 1.000 |
C52—H521 | 1.000 | C17—C18 | 1.387 (3) |
C52—H522 | 1.000 | C17—H171 | 1.000 |
C52—H523 | 1.000 | C18—C19 | 1.384 (3) |
C53—H531 | 1.000 | C18—H181 | 1.000 |
C53—H532 | 1.000 | C19—C20 | 1.381 (3) |
C53—H533 | 1.000 | C19—H191 | 1.000 |
C54—H541 | 1.000 | C20—H201 | 1.000 |
C54—H542 | 1.000 | H23—H533 | 0.542 |
C54—H543 | 1.000 | H33—H542 | 0.145 |
N2—C5 | 1.3387 (19) | H42—H523 | 0.554 |
N2—C9 | 1.343 (2) | H43—H532 | 0.547 |
C5—C6 | 1.384 (2) | ||
Cl1—Ti1—Cl2 | 84.062 (14) | C51—C54—H541 | 109.468 |
Cl1—Ti1—Cl2i | 161.860 (17) | C51—C54—H542 | 109.463 |
Cl2—Ti1—Cl2i | 77.891 (13) | C51—C54—H543 | 109.468 |
Cl1—Ti1—N1 | 99.89 (4) | H541—C54—H542 | 109.477 |
Cl2—Ti1—N1 | 176.05 (4) | H541—C54—H543 | 109.476 |
Cl2i—Ti1—N1 | 98.15 (4) | H542—C54—H543 | 109.476 |
Cl1—Ti1—N2 | 88.47 (3) | Ti1—N2—C5 | 118.15 (10) |
Cl2—Ti1—N2 | 84.25 (3) | Ti1—N2—C9 | 124.02 (11) |
Cl2i—Ti1—N2 | 87.92 (3) | C5—N2—C9 | 117.82 (13) |
N1—Ti1—N2 | 95.69 (5) | N2—C5—C6 | 123.11 (14) |
Cl1—Ti1—N3 | 90.60 (3) | N2—C5—H51 | 118.445 |
Cl2—Ti1—N3 | 84.89 (3) | C6—C5—H51 | 118.446 |
Cl2i—Ti1—N3 | 89.63 (3) | C5—C6—C7 | 118.72 (15) |
N1—Ti1—N3 | 95.13 (5) | C5—C6—H61 | 120.641 |
N2—Ti1—N3 | 169.14 (4) | C7—C6—H61 | 120.641 |
Ti1—Cl2—Ti1i | 102.109 (13) | C6—C7—C8 | 118.77 (15) |
Ti1—N1—C1 | 170.9 (2) | C6—C7—H71 | 120.617 |
Ti1—N1—C51 | 177.3 (6) | C8—C7—H71 | 120.617 |
N1—C1—C2 | 107.1 (3) | C7—C8—C9 | 119.22 (16) |
N1—C1—C3 | 110.4 (3) | C7—C8—H81 | 120.392 |
C2—C1—C3 | 109.5 (3) | C9—C8—H81 | 120.392 |
N1—C1—C4 | 110.5 (3) | N2—C9—C8 | 122.36 (16) |
C2—C1—C4 | 109.7 (3) | N2—C9—H91 | 118.821 |
C3—C1—C4 | 109.6 (3) | C8—C9—H91 | 118.821 |
C1—C2—H21 | 109.467 | Ti1—N3—C10 | 120.12 (10) |
C1—C2—H22 | 109.466 | Ti1—N3—C14 | 122.11 (10) |
H21—C2—H22 | 109.476 | C10—N3—C14 | 117.52 (13) |
C1—C2—H23 | 109.467 | N3—C10—C11 | 122.96 (15) |
H21—C2—H23 | 109.476 | N3—C10—H101 | 118.519 |
H22—C2—H23 | 109.476 | C11—C10—H101 | 118.519 |
C1—C3—H31 | 109.466 | C10—C11—C12 | 118.93 (16) |
C1—C3—H32 | 109.470 | C10—C11—H111 | 120.536 |
H31—C3—H32 | 109.476 | C12—C11—H111 | 120.536 |
C1—C3—H33 | 109.464 | C11—C12—C13 | 118.57 (15) |
H31—C3—H33 | 109.476 | C11—C12—H121 | 120.715 |
H32—C3—H33 | 109.476 | C13—C12—H121 | 120.715 |
C1—C4—H41 | 109.466 | C12—C13—C14 | 119.46 (15) |
C1—C4—H42 | 109.469 | C12—C13—H131 | 120.269 |
H41—C4—H42 | 109.476 | C14—C13—H131 | 120.268 |
C1—C4—H43 | 109.465 | N3—C14—C13 | 122.53 (15) |
H41—C4—H43 | 109.476 | N3—C14—H141 | 118.735 |
H42—C4—H43 | 109.476 | C13—C14—H141 | 118.735 |
N1—C51—C52 | 107.5 (10) | C16—C15—C20 | 119.88 (17) |
N1—C51—C53 | 109.7 (10) | C16—C15—H151 | 120.058 |
N1—C51—C54 | 109.4 (10) | C20—C15—H151 | 120.058 |
C52—C51—C53 | 110.3 (10) | C15—C16—C17 | 120.09 (17) |
C52—C51—C54 | 109.9 (10) | C15—C16—H161 | 119.954 |
C53—C51—C54 | 110.1 (10) | C17—C16—H161 | 119.954 |
C51—C52—H521 | 109.467 | C16—C17—C18 | 120.11 (17) |
C51—C52—H522 | 109.462 | C16—C17—H171 | 119.945 |
H521—C52—H522 | 109.477 | C18—C17—H171 | 119.945 |
C51—C52—H523 | 109.468 | C17—C18—C19 | 119.68 (18) |
H521—C52—H523 | 109.477 | C17—C18—H181 | 120.162 |
H522—C52—H523 | 109.477 | C19—C18—H181 | 120.162 |
C51—C53—H531 | 109.468 | C18—C19—C20 | 120.12 (17) |
C51—C53—H532 | 109.467 | C18—C19—H191 | 119.942 |
C51—C53—H533 | 109.468 | C20—C19—H191 | 119.942 |
H531—C53—H532 | 109.475 | C15—C20—C19 | 120.12 (16) |
H531—C53—H533 | 109.476 | C15—C20—H201 | 119.939 |
H532—C53—H533 | 109.474 | C19—C20—H201 | 119.939 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Rhodes Trust and the EPSRC for support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Blake, A. J., Collier, P. E., Dunn, S. C., Li, W., Mountford, P. & Shishkin, O. V. (1997). J. Chem. Soc. Dalton Trans. pp. 1549–1558. CSD CrossRef Web of Science Google Scholar
Gade, L. H. & Mountford, P. (2001). Coord. Chem. Rev. 216–217, 65–97. Web of Science CrossRef CAS Google Scholar
Mountford, P. (1997). Chem. Commun. pp. 2127–2134. CrossRef Web of Science Google Scholar
Nielson, A. J., Glenny, M. W. & Rickard, C. E. F. (2001). J. Chem. Soc. Dalton Trans. pp. 232–239. Web of Science CSD CrossRef Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1983). Acta Cryst. A39, 407–410. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Wigley, D. E. (1994). Prog. Inorg. Chem. 42, 239–482. CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.