organic compounds
3-Azido-3-deoxy-2,2′:5,6-di-O-isopropylidene-2-C-hydroxmethyl-D-gulono-1,4-lactone
aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: christopher.harding@seh.ox.ac.uk
The title azidolactone, C13H19O6N3, formed by SN2 displacement of the trifluoromethanesulfonate with sodium azide, is the first example of a branched β-sugar amino acid scaffold.
Comment
Gellman (Lai & Gellman, 2003; Hayen et al., 2004) and Seebach (Lelais & Seebach, 2003; Rueping et al., 2004) have pioneered studies on the exploitation of β-amino acids in their adoption of secondary structural features in short chains. Although sugar amino acids (SAA) have been extensively investigated as peptidomimetics and dipeptide isosteres (Schweizer, 2002; Chakraborty et al., 2004), there have been very few studies of β-SAAs (Jenkinson & Fleet, 2004; Johnson et al., 2004), even though some oxetane-derived β-SAAs exhibited novel helical structures (Barker et al., 2001). This paper reports the structure of the β-azidolactone, (4), which is a novel β-SAA scaffold containing a branched carbon chain.
D-Fructose may be readily converted into the diacetonide (2) (Hotchkiss et al., 2004); esterification of (2) with triflic anhydride gave the corresponding stable trifluoromethanesulfonate. Reaction of (3) with sodium azide in DMF gave an organic azide in good yield. The structure of this azide is fraught with uncertainties; the trifluoromethanesulfonate in (3) has two β-O atoms and the adjacent α-C atom is trisubstituted, so the efficiency of the SN2 reaction is surprising. There is considerable ambiguity in the stereochemistry of the product, since there may well be by the O atom; it is also possible that some rearrangement that maintained the same connectivity of CH atoms may have occurred. However, X-ray crystallographic analysis of the product of the reaction showed that the anticipated inverted azide, (4), had indeed been produced.
Experimental
The full preparative method is not available for publication as yet. The sample was crystallized from diethyl ether by inward diffusion of n-hexane to give lath-shaped colourless crystals.
Crystal data
|
Refinement
|
|
An initial data set was collected at 190 K. This gave reasonable Nmeasured = 2766, Rint = 0.02, Nref = 1748, Rw(2σ) = 0.081, R(2σ) = 0.034], though atoms O7, C9 and C10 had very elongated displacement ellipsoids. It was unclear whether the C6/O7/C9/C10 fragment should be modelled with large anisotropic displacement parameters (ADPs) or with `split atoms'. was continued with this fragment represented by `split atoms'. However, the ADPs could not be explained by a rational physical model. As with the unsplit model, the bond lengths deviated unacceptably from averages drawn by MOGUL (Bruno et al., 2004) from the Cambridge Structural Database (CSD; Version 5.25; Allen, 2002), even with the application of firm bond length similarity restraints.
[In order to resolve this issue, data were recollected at 120 K. It is the result of this ). Fig. 3, plotted with MCE (Hušák & Kratochvíl, 2003), shows the observed electron density perpendicular to the line connecting atoms O7a and O7b. The map is phased by all of the structure except these two atoms, which are included for illustrative purposes at the positions they refine to in the `split atom' model. There is a in electron density between the two sites, with no evident build-up of density at either site.
that is reported in the Even at this temperature, the ADPs of the problematic group remained large, though not as large as in the 190 K data set. Both the large ADP and the `split atom' refinements continued to give unacceptable bond lengths and ellipsoids (see Fig. 2One interpretation of these observations is that neither the split atom model nor the large ADP model really represents what is occurring in this structure. It is clearly something more complicated than simply having the envelope flap (O7/O7a) distributed over two sites on opposite sides of a plane through the other ring atoms. Of 29 structures in the CSD containing this moiety some clearly have the atom corresponding to O7 as the `flap', some have C6 as the flap, but there are also a number in which no four atoms form a convincing plane. It seems that, even in the solid state, there is a continuum between an O-flap and a C-flap geometry. The amount of material available was insufficient to enable low-temperature solid-state NMR measurements to be carried out.
For the large ADP model, all H atoms were seen in the difference Uiso(H) values were regularized by several cycles of using slack restraints, after which the was completed using `riding' constraints and all reflections with I > −3σ(I). Fig. 4 is a packing diagram showing an alternation of highly mobile and highly ordered groups lying in a plane at approximately c/2.
(even those on the highly anisotropic C9 and C10). Their positions andData collection: COLLECT (Nonius, 1997–2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536804029113/lh6302sup1.cif
contains datablocks global, 4. DOI:Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S1600536804029113/lh63024sup2.hkl
Data collection: COLLECT (Nonius, 1997–2001); cell
DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: User-defined structure solution (reference?); program(s) used to refine structure: CRYSTALS (Betteridge et al. 2003); molecular graphics: CAMERON (Watkin et al. 1996); software used to prepare material for publication: CRYSTALS.C13H19N3O6 | F(000) = 332 |
Mr = 313.31 | Dx = 1.326 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7755 (2) Å | Cell parameters from 1734 reflections |
b = 7.6452 (2) Å | θ = 5–27° |
c = 12.2232 (3) Å | µ = 0.11 mm−1 |
β = 106.9659 (11)° | T = 120 K |
V = 784.37 (3) Å3 | Plate, colourless |
Z = 2 | 0.30 × 0.20 × 0.10 mm |
Nonius KappaCCD diffractometer | 1655 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | h = −11→11 |
Tmin = 0.98, Tmax = 0.99 | k = −9→9 |
3320 measured reflections | l = −15→15 |
1869 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.045 | Method: SHELXL97 (Sheldrick, 1997); w = 1/[σ2(f) + (0.0522p)2 + 0.571p], where p = [max(F02,0) + 2Fc2]/3 |
wR(F2) = 0.109 | (Δ/σ)max = 0.000326 |
S = 0.93 | Δρmax = 0.65 e Å−3 |
1866 reflections | Δρmin = −0.42 e Å−3 |
200 parameters | Extinction correction: Larson 1970 Crystallographic Computing eq 22 |
1 restraint | Extinction coefficient: 300 (50) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8173 (3) | 0.1205 (4) | 0.8704 (2) | 0.0207 | |
C2 | 0.8728 (3) | 0.0356 (4) | 0.9895 (2) | 0.0197 | |
C3 | 0.7808 (3) | 0.1387 (4) | 1.0574 (2) | 0.0214 | |
C4 | 0.8684 (3) | 0.1553 (4) | 1.1835 (2) | 0.0253 | |
O5 | 0.8788 (3) | −0.0165 (3) | 1.22982 (16) | 0.0306 | |
C6 | 0.8328 (4) | −0.0098 (5) | 1.3330 (3) | 0.0349 | |
O7 | 0.7463 (5) | 0.1409 (5) | 1.3271 (3) | 0.0777 | |
C8 | 0.7788 (4) | 0.2612 (4) | 1.2524 (3) | 0.0345 | |
C9 | 0.9801 (6) | 0.0021 (9) | 1.4333 (3) | 0.0762 | |
C10 | 0.7390 (8) | −0.1702 (9) | 1.3373 (5) | 0.0891 | |
O11 | 0.7642 (2) | 0.3122 (3) | 1.00698 (16) | 0.0251 | |
C12 | 0.7805 (3) | 0.3076 (4) | 0.8996 (2) | 0.0234 | |
O13 | 0.7649 (3) | 0.4350 (3) | 0.84141 (18) | 0.0315 | |
N14 | 0.8584 (3) | −0.1555 (3) | 0.9887 (2) | 0.0219 | |
N15 | 0.7245 (3) | −0.2124 (4) | 0.9845 (2) | 0.0267 | |
N16 | 0.6106 (4) | −0.2828 (4) | 0.9831 (3) | 0.0454 | |
O17 | 0.6748 (2) | 0.0412 (3) | 0.80306 (15) | 0.0223 | |
C18 | 0.6968 (3) | −0.0131 (4) | 0.6948 (2) | 0.0246 | |
O19 | 0.8643 (2) | −0.0228 (3) | 0.71573 (16) | 0.0250 | |
C20 | 0.9322 (3) | 0.1103 (4) | 0.7966 (2) | 0.0252 | |
C21 | 0.6301 (4) | −0.1943 (5) | 0.6674 (3) | 0.0338 | |
C22 | 0.6235 (4) | 0.1233 (5) | 0.6046 (3) | 0.0408 | |
H21 | 0.9848 | 0.0640 | 1.0229 | 0.0240* | |
H31 | 0.6712 | 0.0884 | 1.0445 | 0.0251* | |
H41 | 0.9753 | 0.2039 | 1.1948 | 0.0304* | |
H81 | 0.8497 | 0.3528 | 1.2967 | 0.0438* | |
H82 | 0.6789 | 0.3123 | 1.2055 | 0.0432* | |
H91 | 0.9408 | 0.0093 | 1.5009 | 0.0912* | |
H92 | 1.0438 | −0.1057 | 1.4370 | 0.0913* | |
H93 | 1.0444 | 0.1073 | 1.4251 | 0.0920* | |
H101 | 0.7105 | −0.1659 | 1.4094 | 0.1170* | |
H102 | 0.8053 | −0.2750 | 1.3328 | 0.1173* | |
H103 | 0.6413 | −0.1563 | 1.2703 | 0.1167* | |
H201 | 1.0400 | 0.0778 | 0.8411 | 0.0321* | |
H202 | 0.9326 | 0.2218 | 0.7573 | 0.0317* | |
H211 | 0.6543 | −0.2349 | 0.5979 | 0.0399* | |
H212 | 0.6785 | −0.2742 | 0.7300 | 0.0403* | |
H213 | 0.5151 | −0.1924 | 0.6528 | 0.0409* | |
H221 | 0.6405 | 0.1021 | 0.5300 | 0.0487* | |
H222 | 0.6603 | 0.2431 | 0.6279 | 0.0489* | |
H223 | 0.5076 | 0.1206 | 0.5922 | 0.0491* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0206 (13) | 0.0191 (13) | 0.0222 (12) | −0.0012 (11) | 0.0061 (10) | −0.0002 (11) |
C2 | 0.0206 (13) | 0.0182 (13) | 0.0199 (12) | −0.0019 (11) | 0.0051 (10) | −0.0009 (10) |
C3 | 0.0215 (13) | 0.0186 (15) | 0.0256 (13) | 0.0009 (11) | 0.0090 (10) | −0.0002 (11) |
C4 | 0.0289 (15) | 0.0252 (16) | 0.0223 (12) | −0.0017 (12) | 0.0084 (11) | −0.0032 (12) |
O5 | 0.0445 (12) | 0.0282 (11) | 0.0235 (9) | 0.0034 (10) | 0.0166 (9) | 0.0017 (9) |
C6 | 0.0495 (19) | 0.0342 (17) | 0.0279 (14) | −0.0014 (17) | 0.0220 (13) | 0.0011 (14) |
O7 | 0.118 (3) | 0.069 (2) | 0.080 (2) | 0.051 (2) | 0.082 (2) | 0.0350 (19) |
C8 | 0.0481 (19) | 0.0326 (18) | 0.0262 (14) | 0.0028 (15) | 0.0161 (14) | −0.0044 (13) |
C9 | 0.086 (3) | 0.109 (5) | 0.0317 (18) | 0.019 (4) | 0.013 (2) | −0.001 (3) |
C10 | 0.120 (5) | 0.089 (5) | 0.080 (4) | −0.047 (4) | 0.064 (4) | −0.009 (3) |
O11 | 0.0307 (11) | 0.0208 (11) | 0.0253 (9) | 0.0038 (9) | 0.0106 (8) | −0.0001 (8) |
C12 | 0.0244 (14) | 0.0229 (15) | 0.0225 (12) | −0.0005 (12) | 0.0063 (10) | −0.0013 (12) |
O13 | 0.0395 (12) | 0.0238 (11) | 0.0315 (11) | 0.0066 (10) | 0.0106 (9) | 0.0059 (9) |
N14 | 0.0187 (12) | 0.0206 (12) | 0.0266 (11) | −0.0017 (10) | 0.0069 (9) | −0.0019 (10) |
N15 | 0.0279 (13) | 0.0217 (12) | 0.0320 (13) | 0.0018 (11) | 0.0109 (10) | −0.0010 (10) |
N16 | 0.0334 (15) | 0.0299 (16) | 0.078 (2) | −0.0116 (13) | 0.0236 (15) | −0.0071 (16) |
O17 | 0.0209 (9) | 0.0272 (11) | 0.0189 (8) | −0.0018 (8) | 0.0057 (7) | −0.0032 (8) |
C18 | 0.0245 (13) | 0.0301 (15) | 0.0186 (11) | 0.0025 (13) | 0.0053 (10) | −0.0021 (12) |
O19 | 0.0254 (10) | 0.0270 (11) | 0.0236 (9) | 0.0018 (9) | 0.0089 (7) | −0.0026 (8) |
C20 | 0.0287 (14) | 0.0239 (14) | 0.0259 (13) | −0.0041 (13) | 0.0125 (11) | −0.0043 (12) |
C21 | 0.0341 (16) | 0.0377 (19) | 0.0289 (14) | −0.0073 (15) | 0.0084 (12) | −0.0114 (14) |
C22 | 0.0436 (18) | 0.054 (2) | 0.0262 (14) | 0.0194 (18) | 0.0116 (13) | 0.0104 (15) |
C1—C2 | 1.538 (4) | C9—H93 | 1.004 |
C1—C12 | 1.531 (4) | C10—H101 | 0.984 |
C1—O17 | 1.417 (3) | C10—H102 | 1.001 |
C1—C20 | 1.539 (3) | C10—H103 | 1.004 |
C2—C3 | 1.533 (4) | O11—C12 | 1.362 (3) |
C2—N14 | 1.466 (4) | C12—O13 | 1.190 (4) |
C2—H21 | 0.973 | N14—N15 | 1.240 (3) |
C3—C4 | 1.514 (4) | N15—N16 | 1.131 (4) |
C3—O11 | 1.452 (3) | O17—C18 | 1.452 (3) |
C3—H31 | 1.005 | C18—O19 | 1.419 (3) |
C4—O5 | 1.423 (4) | C18—C21 | 1.504 (5) |
C4—C8 | 1.538 (4) | C18—C22 | 1.518 (4) |
C4—H41 | 0.981 | O19—C20 | 1.422 (3) |
O5—C6 | 1.433 (3) | C20—H201 | 0.976 |
C6—O7 | 1.370 (5) | C20—H202 | 0.979 |
C6—C9 | 1.503 (6) | C21—H211 | 0.984 |
C6—C10 | 1.486 (7) | C21—H212 | 0.974 |
O7—C8 | 1.384 (4) | C21—H213 | 0.973 |
C8—H81 | 0.987 | C22—H221 | 0.980 |
C8—H82 | 0.979 | C22—H222 | 0.985 |
C9—H91 | 0.985 | C22—H223 | 0.984 |
C9—H92 | 0.989 | ||
C2—C1—C12 | 101.8 (2) | C6—C9—H93 | 109.937 |
C2—C1—O17 | 110.6 (2) | H91—C9—H93 | 112.584 |
C12—C1—O17 | 109.0 (2) | H92—C9—H93 | 110.192 |
C2—C1—C20 | 116.9 (2) | C6—C10—H101 | 107.044 |
C12—C1—C20 | 113.8 (2) | C6—C10—H102 | 108.749 |
O17—C1—C20 | 104.8 (2) | H101—C10—H102 | 112.303 |
C1—C2—C3 | 102.9 (2) | C6—C10—H103 | 103.516 |
C1—C2—N14 | 114.3 (2) | H101—C10—H103 | 110.346 |
C3—C2—N14 | 117.3 (2) | H102—C10—H103 | 114.253 |
C1—C2—H21 | 107.763 | C3—O11—C12 | 111.1 (2) |
C3—C2—H21 | 106.585 | C1—C12—O11 | 109.7 (2) |
N14—C2—H21 | 107.444 | C1—C12—O13 | 128.4 (2) |
C2—C3—C4 | 113.8 (2) | O11—C12—O13 | 121.9 (3) |
C2—C3—O11 | 104.1 (2) | C2—N14—N15 | 115.4 (2) |
C4—C3—O11 | 108.3 (2) | N14—N15—N16 | 172.0 (3) |
C2—C3—H31 | 110.457 | C1—O17—C18 | 108.8 (2) |
C4—C3—H31 | 111.708 | O17—C18—O19 | 104.9 (2) |
O11—C3—H31 | 108.048 | O17—C18—C21 | 108.6 (2) |
C3—C4—O5 | 106.4 (2) | O19—C18—C21 | 107.9 (2) |
C3—C4—C8 | 114.4 (2) | O17—C18—C22 | 109.0 (2) |
O5—C4—C8 | 104.6 (2) | O19—C18—C22 | 111.4 (2) |
C3—C4—H41 | 110.832 | C21—C18—C22 | 114.6 (3) |
O5—C4—H41 | 110.245 | C18—O19—C20 | 106.8 (2) |
C8—C4—H41 | 110.109 | C1—C20—O19 | 103.3 (2) |
C4—O5—C6 | 108.4 (2) | C1—C20—H201 | 112.385 |
O5—C6—O7 | 106.2 (3) | O19—C20—H201 | 110.314 |
O5—C6—C9 | 108.9 (3) | C1—C20—H202 | 109.886 |
O7—C6—C9 | 108.9 (4) | O19—C20—H202 | 110.026 |
O5—C6—C10 | 107.6 (3) | H201—C20—H202 | 110.659 |
O7—C6—C10 | 113.0 (4) | C18—C21—H211 | 108.339 |
C9—C6—C10 | 112.0 (4) | C18—C21—H212 | 110.490 |
C6—O7—C8 | 112.1 (2) | H211—C21—H212 | 109.050 |
C4—C8—O7 | 104.4 (3) | C18—C21—H213 | 110.056 |
C4—C8—H81 | 109.437 | H211—C21—H213 | 108.699 |
O7—C8—H81 | 109.119 | H212—C21—H213 | 110.158 |
C4—C8—H82 | 113.777 | C18—C22—H221 | 114.558 |
O7—C8—H82 | 109.278 | C18—C22—H222 | 113.225 |
H81—C8—H82 | 110.606 | H221—C22—H222 | 107.285 |
C6—C9—H91 | 105.028 | C18—C22—H223 | 107.279 |
C6—C9—H92 | 109.043 | H221—C22—H223 | 106.580 |
H91—C9—H92 | 109.895 | H222—C22—H223 | 107.508 |
Acknowledgements
Financial support (to RS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Barker, S. F., Angus, D., Taillefumier, C., Probert, M. R., Watkin, D. J., Watterson, M. P., Claridge, T. D. W., Hungerford, N. L. & Fleet, G. W. J. (2001). Tetrahedron Lett. 42, 4247–4250. Web of Science CSD CrossRef CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. In the press. Google Scholar
Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187–207. Web of Science CrossRef CAS Google Scholar
Hayen, A., Schmitt, M. A., Ngassa, F. N., Thomasson, K. A. & Gellman, S. H. (2004). Angew. Chem. Int. Ed. 43, 505–510. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. In the press. Google Scholar
Hušák, M. & Kratochvíl, B. (2003). J. Appl. Cryst. 36, 1104. CrossRef IUCr Journals Google Scholar
Jenkinson, S. F. & Fleet, G. W. J. (2004). Tetrahedron Asymmetry, 15, 2667–2679. Web of Science CrossRef CAS Google Scholar
Johnson, S. W., Jenkinson, S. F., Angus, D., Taillefumier, C., Jones, J. H. & Fleet, G. W. J. (2004). Tetrahedron Asymmetry, 15, 2681–2686. Web of Science CrossRef CAS Google Scholar
Lai, J. R. & Gellman, S. H. (2003). Protein Sci. 12, 560–566. Web of Science CrossRef PubMed CAS Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Lelais, G. & Seebach, D. (2003). Helv. Chim. Acta, 86, 4152–4168. Web of Science CrossRef CAS Google Scholar
Nonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rueping, M., Mahajan, Y. R., Jaun, B. & Seebach, D. (2004). Chem. Eur. J. 10, 1607–1615. Web of Science CrossRef PubMed CAS Google Scholar
Schweizer, F. (2002). Angew. Chem. Int. Ed. 41, 230–253. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.