metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(tetra­phenyl­arsonium) tris­(2-thio­xo-1,3-di­thiole-4,5-di­thiol­ato)­stannate(IV) acetone solvate at 120 K

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 25 October 2004; accepted 27 October 2004; online 6 November 2004)

The title compound, (C24H20As)2[Sn(C3S5)3]·C3H6O, is a further example of a salt of the general form Q2[Sn(dmit)3] (dimit is 1,3-di­thiole-2-thione-4,5-di­thiol­ate), where Q, the onium counter-cation, is in this case [AsPh4]+. As in all such compounds, the coordination of the Sn atom is in the form of a distorted octahedron, with Sn—S distances in the range 2.5310 (10)–2.5585 (12) Å provided by three chelating dmit ligands with bite angles in the range 81.59 (3)–87.42 (3)°.

Comment

The title compound, (I[link]), is a solvated complex salt which can be formulated as [AsPh4]2[Sn(dmit)3]·Me2CO and is isostructural with similarly solvated [PPh4]2[Sn(dmit)3]·Me2CO, (II[link]) (de Assis et al., 1999[Assis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533-3544.]), but with better refinement of the solvent mol­ecule. Indeed, the acetone mol­ecule was eliminated from the refinement of the structure of (II[link]) by means of the SQUEEZE subroutine of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

The asymmetric unit of (I[link]) consists of two [AsPh4]+ cations, the complete dianion and an acetone mol­ecule. The anion is shown in Fig. 1[link] and selected bond lengths and angles within it are given in Table 1[link]. The two cations, each with near tetrahedral As, show very small differences. Bond lengths and angles in the cations, and within the dmit ligands, are as expected. The three chelating dmit ligands are bound to the Sn atom with differing degrees of asymmetry, with Sn—S bond lengths falling in the range 2.5310 (10)–2.5585 (12) Å and chelate bite angles of 81.59 (3)–87.42 (3)°, providing distorted octahedral coordination. This situation is entirely comparable with that found in other [Q]2[Sn(dmit)3] complexes, where Q is an onium counter-cation, such as those described by de Assis et al. (1999[Assis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533-3544.]). With the dmit plane defined as that containing the C=C bond and the attached S atoms and the individual ligands defined as L1 (S1–S5/C1–C3), L2 (S6–S10/C4–C6) and L3 (S11–S15/C7–C9), the displacements of the Sn atom from the mean planes of the ligands are 1.1470 (16), 1.5966 (13) and −0.0362 (14) Å, respectively. These displacements correlate closely with the dihedral angles between each of the ligand planes as defined above and the plane defined, ligand by ligand, by Sn1 and the two chelating S atoms which, in the same order of the ligands as before, are 36.67 (5), 53.32 (5) and 1.15 (5)°, respectively. Thus the variation in these displacements and the corresponding dihedral angles can be ascribed to variation in tilt of the ligands about the line joining the chelating S atoms. This form of ligand tilt is clearly implicated in the wide variation in the overall shape of the [Sn(dmit)3]2− dianion, ranging from T-shaped as in (I[link]) and (II[link]) to Y-shaped when other Q counter-cations are present in the structure (see e.g. de Assis et al., 1999[Assis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533-3544.]). The ligands also differ in the displacements from the ligand plane of their terminal thione S atoms and the C atoms to which these are attached, which fall in the ranges −0.53 (2)–0.329 (2) and −0.025 (4)–0.122 (4) Å, respectively. The completeness of the coordination (coordinative saturation) of the Sn atom precludes interanion metal–sulfur interactions, which are therefore entirely absent. The size of the counter-cations keeps the anions apart, with the result that interanion S⋯S contacts of any significance are also entirely absent. As would be expected, however, ππ and C—H⋯π interactions between the cations do occur, but these interactions are not discussed here.

[Figure 1]
Figure 1
The anion of (I[link]). Displacement ellipsoids are drawn at the 50% probability level.

Experimental

Compound (I[link]) was obtained from a mixture of solutions of [AsPh4]2[Zn(dmit)2] (1.00 mmol) (Wardell et al., 1997[Wardell, J. L., Chochan, Z. H., Howie, R. A., Wilkens, R., & Doidge-Harrison, S. M. S. V. (1997). Polyhedron, 16, 2689-2696.], 2000[Wardell, J. L., Harrison, W. T. A., Howie, R. A., Wardell, S. M. S. V., Comerlato, N. M., Costa, L. A. S., Silvino, A. C., Oliveira, A. I. & Silva, R. M. (2000). Polyhedron, 20, 415-421.]) in acetone (25 ml) and an­hydrous SnCl4 (0.1 ml, 0.223 g, 0.85 mmol) in MeOH (20 ml). After stirring for 1 h, the reaction mixture was filtered and the red precipitate of [AsPh4]2[Sn(dmit)3] was collected. Further product was isolated from the filtrate left overnight at 273 K after addition of methanol. Recrystallization of the total product, yield 80%, from Me2CO gave the solvate, [AsPh4]2[Sn(dmit)3]·Me2CO, m.p. 451–452 K. Analysis found: C 46.98, H 3.00%; calculated for C60H46As2OS15Sn: C 47.02, H 3.03%. IR (CsI, cm−1): ν 3057, 1710, 1438, 1482, 1438, 1413, 1082, 1054, 1033, 737, 687, 477, 464, 351, 318, 280, 254, 173, 161. Raman (cm−1): ν 3504, 1576, 1432, 1414, 1038, 1053, 1021, 1000, 522, 467, 348, 320, 238, 188, 173, 163.

Crystal data
  • (C24H20As)2[Sn(C3S5)3]·C3H6O

  • Mr = 1532.40

  • Triclinic, [P\overline 1]

  • a = 11.2238 (3) Å

  • b = 14.7826 (5) Å

  • c = 19.9333 (7) Å

  • α = 99.0800 (12)°

  • β = 99.966 (2)°

  • γ = 101.187 (2)°

  • V = 3132.15 (17) Å3

  • Z = 2

  • Dx = 1.625 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 20 626 reflections

  • θ = 2.9–27.5°

  • μ = 2.00 mm−1

  • T = 120 (2) K

  • Rod, red

  • 0.36 × 0.10 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.891, Tmax = 0.943

  • 43 056 measured reflections

  • 14 151 independent reflections

  • 8442 reflections with I > 2σ(I)

  • Rint = 0.074

  • θmax = 27.5°

  • h = −14 → 14

  • k = −19 → 19

  • l = −25 → 25

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.079

  • S = 0.93

  • 14151 reflections

  • 714 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0212P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—S12 2.5310 (10)
Sn1—S11 2.5320 (11)
Sn1—S1 2.5503 (10)
Sn1—S7 2.5517 (10)
Sn1—S2 2.5553 (10)
Sn1—S6 2.5585 (12)
S12—Sn1—S11 87.42 (3)
S12—Sn1—S1 173.46 (3)
S11—Sn1—S1 89.51 (3)
S12—Sn1—S7 96.99 (3)
S11—Sn1—S7 93.20 (4)
S1—Sn1—S7 88.95 (3)
S12—Sn1—S2 91.63 (3)
S11—Sn1—S2 96.46 (3)
S1—Sn1—S2 82.97 (3)
S7—Sn1—S2 167.34 (4)
S12—Sn1—S6 86.64 (3)
S11—Sn1—S6 171.55 (3)
S1—Sn1—S6 97.00 (4)
S7—Sn1—S6 81.59 (3)
S2—Sn1—S6 89.70 (3)

In the final stages of refinement H atoms were placed in calculated positions, with C—H = 0.95 and 0.98 Å for aryl and methyl H atoms, respectively, and refined with a riding model, with Uiso(H) = 1.2Ueq(C) for aryl H atoms and 1.5Ueq(C) for methyl H atoms.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Bis(tetraphenylarsonium) tris(2-thioxo-1,3-dithiole-4,5-dithiolato)stannate(IV) acetone solvate top
Crystal data top
(C24H20As)2[Sn(C3S5)3]·C3H6OZ = 2
Mr = 1532.40F(000) = 1540
Triclinic, P1Dx = 1.625 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2238 (3) ÅCell parameters from 20626 reflections
b = 14.7826 (5) Åθ = 2.9–27.5°
c = 19.9333 (7) ŵ = 2.00 mm1
α = 99.0800 (12)°T = 120 K
β = 99.966 (2)°Rod, red
γ = 101.187 (2)°0.36 × 0.10 × 0.03 mm
V = 3132.15 (17) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
14151 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode8442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ and ω scans to fill the Ewald sphereh = 1414
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 1919
Tmin = 0.891, Tmax = 0.943l = 2525
43056 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0212P)2]
where P = (Fo2 + 2Fc2)/3
14151 reflections(Δ/σ)max = 0.001
714 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

1.0346 (0.0052) x + 9.6427 (0.0044) y + 10.9656 (0.0074) z = 6.2634 (0.0015)

* -0.0095 (0.0013) S1 * 0.0198 (0.0013) S2 * -0.0057 (0.0032) C1 * -0.0139 (0.0033) C2 * 0.0199 (0.0012) S3 * -0.0107 (0.0012) S4 - 0.0252 (0.0043) C3 - 0.0533 (0.0023) S5 1.1470 (0.0016) Sn1

Rms deviation of fitted atoms = 0.0143

9.5094 (0.0026) x + 3.5555 (0.0052) y + 1.9069 (0.0087) z = 3.5553 (0.0030)

Angle to previous plane (with approximate e.s.d.) = 52.96 (0.04)

* 0.0514 (0.0011) S6 * 0.0391 (0.0011) S7 * -0.0821 (0.0030) C4 * -0.0901 (0.0029) C5 * 0.0314 (0.0011) S8 * 0.0503 (0.0011) S9 0.1219 (0.0039) C6 0.3287 (0.0020) S10 1.5966 (0.0013) Sn1

Rms deviation of fitted atoms = 0.0613

- 9.7786 (0.0018) x + 9.2006 (0.0041) y + 4.3916 (0.0077) z = 2.3615 (0.0036)

Angle to previous plane (with approximate e.s.d.) = 60.52 (0.02)

* -0.0093 (0.0011) S11 * 0.0082 (0.0011) S12 * -0.0019 (0.0028) C7 * 0.0040 (0.0027) C8 * 0.0116 (0.0010) S13 * -0.0126 (0.0010) S14 0.0237 (0.0036) C9 0.0557 (0.0019) S15 - 0.0362 (0.0014) Sn1

Rms deviation of fitted atoms = 0.0088

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Anisotropic displacement parameters refined for all non-H including those of the solvent acetone molecule. In the final stages H introduced in calculated positions and refined with a riding model. Rotational orientation of rigid body Me groups also refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.31660 (2)0.484116 (19)0.220202 (15)0.01932 (8)
S10.22146 (9)0.33307 (7)0.25654 (6)0.0258 (3)
S20.47220 (9)0.38963 (7)0.18582 (6)0.0241 (3)
C10.3590 (3)0.2966 (3)0.2760 (2)0.0215 (10)
C20.4597 (3)0.3184 (3)0.2466 (2)0.0223 (10)
S30.37496 (9)0.22662 (8)0.33834 (6)0.0305 (3)
S40.58592 (9)0.27134 (7)0.27632 (6)0.0281 (3)
C30.5232 (3)0.2111 (3)0.3339 (2)0.0270 (10)
S50.59587 (10)0.14739 (8)0.38049 (7)0.0389 (3)
S60.19519 (9)0.44182 (7)0.09420 (6)0.0257 (3)
S70.12576 (9)0.54656 (7)0.23877 (6)0.0256 (3)
C40.1407 (3)0.5454 (3)0.1029 (2)0.0240 (10)
C50.1125 (3)0.5869 (3)0.1616 (2)0.0228 (10)
S80.14237 (9)0.60875 (8)0.03591 (6)0.0288 (3)
S90.08514 (9)0.70003 (7)0.16099 (6)0.0286 (3)
C60.1066 (3)0.7081 (3)0.0766 (2)0.0276 (11)
S100.09939 (10)0.80286 (8)0.04425 (7)0.0362 (3)
S110.43187 (9)0.55017 (7)0.34460 (6)0.0231 (2)
S120.43487 (9)0.62976 (7)0.18853 (6)0.0232 (3)
C70.5226 (3)0.6537 (3)0.3316 (2)0.0198 (9)
C80.5233 (3)0.6841 (3)0.2705 (2)0.0201 (10)
S130.62314 (9)0.72711 (7)0.40456 (6)0.0260 (3)
S140.62818 (9)0.79085 (7)0.27672 (6)0.0225 (2)
C90.6866 (3)0.8149 (3)0.3648 (2)0.0219 (10)
S150.79269 (10)0.91093 (8)0.40699 (6)0.0335 (3)
As10.10599 (3)0.68939 (3)0.45402 (2)0.01758 (10)
C100.1910 (3)0.5913 (3)0.4662 (2)0.0162 (9)
C110.1458 (3)0.5016 (3)0.4263 (2)0.0207 (10)
H110.07120.48740.39190.025*
C120.2115 (3)0.4325 (3)0.4373 (2)0.0245 (10)
H120.18180.37080.41000.029*
C130.3197 (4)0.4532 (3)0.4876 (2)0.0261 (11)
H130.36310.40550.49550.031*
C140.3646 (3)0.5435 (3)0.5265 (2)0.0238 (10)
H140.43910.55770.56090.029*
C150.3018 (3)0.6127 (3)0.5156 (2)0.0210 (10)
H150.33370.67500.54170.025*
C160.2186 (3)0.7909 (3)0.4335 (2)0.0177 (9)
C170.2347 (3)0.8822 (3)0.4695 (2)0.0224 (10)
H170.18840.89570.50400.027*
C180.3201 (3)0.9534 (3)0.4542 (2)0.0271 (10)
H180.33211.01650.47790.033*
C190.3876 (3)0.9322 (3)0.4045 (2)0.0250 (10)
H190.44780.98070.39520.030*
C200.3683 (3)0.8420 (3)0.3685 (2)0.0271 (11)
H200.41370.82900.33350.032*
C210.2842 (3)0.7699 (3)0.3823 (2)0.0220 (10)
H210.27130.70730.35730.026*
C220.0522 (3)0.7332 (3)0.5365 (2)0.0189 (9)
C230.0309 (3)0.7916 (3)0.5315 (2)0.0243 (10)
H230.06220.80570.48790.029*
C240.0678 (4)0.8291 (3)0.5907 (3)0.0323 (11)
H240.12460.86900.58790.039*
C250.0216 (4)0.8081 (3)0.6538 (2)0.0322 (11)
H250.04540.83510.69440.039*
C260.0586 (4)0.7484 (3)0.6587 (2)0.0306 (11)
H260.08720.73250.70210.037*
C270.0973 (3)0.7118 (3)0.5998 (2)0.0221 (10)
H270.15440.67220.60290.027*
C280.0362 (3)0.6461 (3)0.3802 (2)0.0162 (9)
C290.0462 (3)0.6898 (3)0.3233 (2)0.0205 (10)
H290.01740.74150.32120.025*
C300.1498 (3)0.6573 (3)0.2697 (2)0.0266 (10)
H300.15820.68710.23080.032*
C310.2410 (3)0.5813 (3)0.2729 (2)0.0279 (11)
H310.31120.55810.23560.033*
C320.2308 (3)0.5389 (3)0.3297 (2)0.0246 (10)
H320.29440.48710.33140.030*
C330.1292 (3)0.5712 (3)0.3841 (2)0.0227 (10)
H330.12290.54250.42360.027*
As20.22529 (3)0.01399 (3)0.87463 (2)0.01908 (11)
C340.3772 (3)0.0369 (3)0.8490 (2)0.0206 (10)
C350.4079 (3)0.0055 (3)0.7892 (2)0.0232 (10)
H350.35350.06010.75990.028*
C360.5205 (3)0.0337 (3)0.7730 (2)0.0266 (11)
H360.54320.00560.73220.032*
C370.5987 (4)0.1132 (3)0.8160 (2)0.0293 (11)
H370.67530.13910.80470.035*
C380.5674 (3)0.1552 (3)0.8750 (2)0.0298 (11)
H380.62150.21020.90410.036*
C390.4555 (3)0.1166 (3)0.8918 (2)0.0248 (10)
H390.43320.14490.93260.030*
C400.2337 (3)0.0481 (3)0.9670 (2)0.0191 (9)
C410.1825 (3)0.1263 (3)0.9782 (2)0.0258 (10)
H410.13640.14510.94020.031*
C420.1997 (4)0.1764 (3)1.0452 (2)0.0332 (11)
H420.16350.22901.05350.040*
C430.2689 (4)0.1504 (3)1.1000 (2)0.0316 (11)
H430.28220.18591.14580.038*
C440.3193 (4)0.0720 (3)1.0878 (3)0.0341 (12)
H440.36690.05391.12560.041*
C450.3010 (3)0.0211 (3)1.0224 (2)0.0260 (10)
H450.33440.03311.01460.031*
C460.2145 (3)0.1450 (3)0.8706 (2)0.0185 (9)
C470.1008 (4)0.2095 (3)0.8511 (2)0.0259 (10)
H470.02640.18900.83840.031*
C480.0965 (4)0.3036 (3)0.8503 (2)0.0339 (11)
H480.01890.34800.83610.041*
C490.2026 (4)0.3335 (3)0.8697 (2)0.0351 (12)
H490.19830.39850.86900.042*
C500.3170 (4)0.2694 (3)0.8905 (2)0.0363 (12)
H500.39060.29060.90390.044*
C510.3234 (4)0.1752 (3)0.8916 (2)0.0291 (11)
H510.40100.13100.90650.035*
C520.0856 (3)0.0065 (3)0.8148 (2)0.0194 (9)
C530.0986 (3)0.0386 (3)0.7547 (2)0.0227 (10)
H530.17790.05090.74300.027*
C540.0039 (4)0.0532 (3)0.7110 (2)0.0304 (11)
H540.00490.07530.66950.037*
C550.1190 (4)0.0349 (3)0.7289 (2)0.0341 (12)
H550.18950.04450.69930.041*
C560.1322 (4)0.0031 (3)0.7889 (2)0.0349 (12)
H560.21160.00940.80050.042*
C570.0297 (3)0.0110 (3)0.8329 (2)0.0274 (11)
H570.03840.03240.87470.033*
O10.7306 (3)0.7250 (3)0.11497 (19)0.0523 (10)
C580.6757 (5)0.6490 (4)0.0771 (3)0.0495 (14)
C590.5588 (4)0.6405 (3)0.0192 (2)0.0462 (13)
H59A0.48760.59770.02820.069*
H59B0.57490.61580.02610.069*
H59C0.54050.70270.01920.069*
C600.7210 (4)0.5618 (3)0.0854 (3)0.0519 (14)
H60A0.80220.57890.11740.078*
H60B0.72880.52940.04010.078*
H60C0.66170.52020.10410.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01975 (15)0.01821 (17)0.02061 (19)0.00369 (11)0.00614 (12)0.00437 (14)
S10.0259 (6)0.0219 (6)0.0309 (8)0.0022 (4)0.0099 (5)0.0084 (5)
S20.0271 (6)0.0254 (6)0.0262 (7)0.0110 (5)0.0115 (5)0.0112 (5)
C10.033 (2)0.013 (2)0.018 (3)0.0033 (17)0.0047 (19)0.005 (2)
C20.024 (2)0.024 (3)0.019 (3)0.0057 (18)0.0017 (19)0.006 (2)
S30.0357 (6)0.0265 (7)0.0264 (8)0.0010 (5)0.0032 (5)0.0103 (6)
S40.0285 (6)0.0243 (7)0.0312 (8)0.0063 (5)0.0006 (5)0.0104 (6)
C30.034 (2)0.010 (2)0.028 (3)0.0072 (17)0.003 (2)0.001 (2)
S50.0419 (7)0.0257 (7)0.0405 (9)0.0021 (5)0.0117 (6)0.0157 (6)
S60.0314 (6)0.0212 (6)0.0238 (7)0.0082 (5)0.0033 (5)0.0018 (5)
S70.0244 (6)0.0264 (7)0.0277 (7)0.0074 (5)0.0092 (5)0.0042 (5)
C40.019 (2)0.023 (3)0.026 (3)0.0050 (17)0.0032 (19)0.004 (2)
C50.015 (2)0.019 (2)0.032 (3)0.0049 (17)0.0027 (19)0.002 (2)
S80.0322 (6)0.0283 (7)0.0269 (7)0.0097 (5)0.0035 (5)0.0081 (6)
S90.0274 (6)0.0271 (7)0.0344 (8)0.0099 (5)0.0096 (5)0.0068 (6)
C60.017 (2)0.022 (3)0.047 (3)0.0078 (17)0.008 (2)0.012 (2)
S100.0386 (7)0.0337 (7)0.0411 (9)0.0150 (5)0.0075 (6)0.0138 (6)
S110.0258 (6)0.0226 (6)0.0198 (7)0.0004 (4)0.0042 (5)0.0080 (5)
S120.0249 (6)0.0222 (6)0.0211 (7)0.0006 (4)0.0031 (5)0.0081 (5)
C70.019 (2)0.018 (2)0.020 (3)0.0025 (16)0.0027 (18)0.003 (2)
C80.017 (2)0.018 (2)0.027 (3)0.0047 (16)0.0049 (18)0.007 (2)
S130.0283 (6)0.0239 (6)0.0236 (7)0.0017 (5)0.0035 (5)0.0057 (5)
S140.0218 (5)0.0203 (6)0.0251 (7)0.0023 (4)0.0052 (5)0.0068 (5)
C90.020 (2)0.024 (2)0.024 (3)0.0067 (17)0.0081 (18)0.007 (2)
S150.0340 (6)0.0256 (7)0.0346 (8)0.0028 (5)0.0049 (5)0.0020 (6)
As10.0175 (2)0.0167 (2)0.0183 (3)0.00286 (16)0.00455 (18)0.0034 (2)
C100.020 (2)0.016 (2)0.014 (2)0.0032 (16)0.0066 (18)0.0049 (19)
C110.018 (2)0.025 (3)0.020 (3)0.0017 (18)0.0074 (18)0.006 (2)
C120.030 (2)0.017 (2)0.032 (3)0.0066 (19)0.017 (2)0.008 (2)
C130.028 (2)0.022 (3)0.039 (3)0.0116 (19)0.018 (2)0.020 (2)
C140.016 (2)0.036 (3)0.023 (3)0.0083 (19)0.0040 (18)0.013 (2)
C150.021 (2)0.024 (2)0.017 (3)0.0052 (18)0.0055 (18)0.000 (2)
C160.016 (2)0.016 (2)0.022 (3)0.0038 (16)0.0063 (18)0.004 (2)
C170.026 (2)0.022 (3)0.019 (3)0.0014 (18)0.0073 (19)0.005 (2)
C180.034 (3)0.015 (2)0.027 (3)0.0006 (19)0.001 (2)0.002 (2)
C190.021 (2)0.027 (3)0.026 (3)0.0012 (18)0.0038 (19)0.014 (2)
C200.022 (2)0.032 (3)0.034 (3)0.0091 (19)0.013 (2)0.013 (2)
C210.023 (2)0.023 (2)0.021 (3)0.0041 (18)0.0095 (19)0.004 (2)
C220.018 (2)0.018 (2)0.018 (3)0.0025 (17)0.0092 (18)0.002 (2)
C230.032 (2)0.020 (2)0.022 (3)0.0061 (19)0.010 (2)0.005 (2)
C240.034 (3)0.024 (3)0.037 (3)0.004 (2)0.013 (2)0.001 (2)
C250.035 (3)0.023 (3)0.034 (3)0.006 (2)0.017 (2)0.003 (2)
C260.033 (3)0.035 (3)0.019 (3)0.002 (2)0.006 (2)0.003 (2)
C270.019 (2)0.023 (2)0.022 (3)0.0010 (17)0.0049 (19)0.004 (2)
C280.0114 (19)0.021 (2)0.014 (2)0.0046 (16)0.0007 (16)0.0021 (19)
C290.017 (2)0.024 (2)0.023 (3)0.0098 (17)0.0051 (19)0.004 (2)
C300.025 (2)0.038 (3)0.022 (3)0.015 (2)0.009 (2)0.008 (2)
C310.015 (2)0.040 (3)0.023 (3)0.0054 (19)0.0006 (19)0.006 (2)
C320.019 (2)0.027 (3)0.027 (3)0.0020 (18)0.010 (2)0.002 (2)
C330.022 (2)0.025 (3)0.022 (3)0.0063 (18)0.0043 (19)0.004 (2)
As20.0164 (2)0.0180 (2)0.0227 (3)0.00394 (16)0.00378 (18)0.0039 (2)
C340.015 (2)0.017 (2)0.031 (3)0.0055 (17)0.0035 (19)0.010 (2)
C350.022 (2)0.020 (2)0.029 (3)0.0083 (18)0.0018 (19)0.008 (2)
C360.025 (2)0.026 (3)0.035 (3)0.0099 (19)0.012 (2)0.014 (2)
C370.021 (2)0.028 (3)0.045 (3)0.008 (2)0.009 (2)0.022 (3)
C380.018 (2)0.024 (3)0.043 (3)0.0007 (18)0.001 (2)0.008 (2)
C390.024 (2)0.023 (3)0.027 (3)0.0080 (18)0.005 (2)0.000 (2)
C400.016 (2)0.019 (2)0.019 (3)0.0014 (17)0.0023 (18)0.002 (2)
C410.032 (2)0.022 (3)0.023 (3)0.0106 (19)0.002 (2)0.002 (2)
C420.039 (3)0.023 (3)0.036 (3)0.011 (2)0.008 (2)0.003 (2)
C430.032 (3)0.034 (3)0.020 (3)0.004 (2)0.004 (2)0.007 (2)
C440.027 (2)0.042 (3)0.032 (3)0.004 (2)0.003 (2)0.013 (3)
C450.031 (2)0.027 (3)0.023 (3)0.0113 (19)0.008 (2)0.007 (2)
C460.025 (2)0.016 (2)0.018 (3)0.0069 (17)0.0092 (18)0.0044 (19)
C470.033 (2)0.027 (3)0.018 (3)0.0057 (19)0.004 (2)0.006 (2)
C480.045 (3)0.024 (3)0.026 (3)0.006 (2)0.005 (2)0.004 (2)
C490.059 (3)0.021 (3)0.031 (3)0.011 (2)0.020 (3)0.009 (2)
C500.048 (3)0.037 (3)0.038 (3)0.026 (2)0.022 (2)0.016 (3)
C510.025 (2)0.027 (3)0.039 (3)0.0106 (19)0.012 (2)0.008 (2)
C520.017 (2)0.016 (2)0.024 (3)0.0047 (16)0.0019 (18)0.003 (2)
C530.020 (2)0.021 (2)0.029 (3)0.0047 (17)0.0068 (19)0.009 (2)
C540.042 (3)0.019 (3)0.032 (3)0.012 (2)0.006 (2)0.008 (2)
C550.027 (3)0.043 (3)0.031 (3)0.018 (2)0.003 (2)0.005 (3)
C560.023 (2)0.054 (3)0.032 (3)0.016 (2)0.009 (2)0.012 (3)
C570.026 (2)0.040 (3)0.020 (3)0.013 (2)0.005 (2)0.008 (2)
O10.057 (2)0.049 (3)0.047 (3)0.0056 (18)0.0026 (19)0.016 (2)
C580.075 (4)0.054 (4)0.032 (4)0.025 (3)0.024 (3)0.020 (3)
C590.072 (4)0.039 (3)0.024 (3)0.015 (3)0.008 (3)0.005 (3)
C600.076 (4)0.062 (4)0.023 (3)0.031 (3)0.008 (3)0.010 (3)
Geometric parameters (Å, º) top
Sn1—S122.5310 (10)C28—C291.392 (5)
Sn1—S112.5320 (11)C29—C301.384 (5)
Sn1—S12.5503 (10)C29—H290.9500
Sn1—S72.5517 (10)C30—C311.383 (5)
Sn1—S22.5553 (10)C30—H300.9500
Sn1—S62.5585 (12)C31—C321.376 (5)
S1—C11.734 (4)C31—H310.9500
S2—C21.732 (4)C32—C331.379 (5)
C1—C21.369 (5)C32—H320.9500
C1—S31.746 (4)C33—H330.9500
C2—S41.750 (4)As2—C401.901 (4)
S3—C31.739 (4)As2—C521.903 (4)
S4—C31.722 (4)As2—C461.905 (4)
C3—S51.651 (4)As2—C341.913 (3)
S6—C41.752 (4)C34—C391.382 (5)
S7—C51.729 (4)C34—C351.386 (5)
C4—C51.349 (5)C35—C361.397 (5)
C4—S81.749 (4)C35—H350.9500
C5—S91.759 (4)C36—C371.382 (6)
S8—C61.715 (4)C36—H360.9500
S9—C61.760 (4)C37—C381.376 (6)
C6—S101.642 (4)C37—H370.9500
S11—C71.749 (4)C38—C391.393 (5)
S12—C81.737 (4)C38—H380.9500
C7—C81.363 (5)C39—H390.9500
C7—S131.740 (4)C40—C451.384 (5)
C8—S141.748 (4)C40—C411.392 (5)
S13—C91.726 (4)C41—C421.383 (6)
S14—C91.718 (4)C41—H410.9500
C9—S151.662 (4)C42—C431.378 (6)
As1—C281.901 (4)C42—H420.9500
As1—C101.908 (3)C43—C441.391 (5)
As1—C221.910 (4)C43—H430.9500
As1—C161.912 (3)C44—C451.360 (6)
C10—C111.383 (5)C44—H440.9500
C10—C151.393 (5)C45—H450.9500
C11—C121.394 (5)C46—C471.388 (5)
C11—H110.9500C46—C511.400 (5)
C12—C131.382 (5)C47—C481.379 (5)
C12—H120.9500C47—H470.9500
C13—C141.383 (5)C48—C491.365 (5)
C13—H130.9500C48—H480.9500
C14—C151.374 (5)C49—C501.392 (6)
C14—H140.9500C49—H490.9500
C15—H150.9500C50—C511.377 (5)
C16—C171.387 (5)C50—H500.9500
C16—C211.389 (5)C51—H510.9500
C17—C181.390 (5)C52—C531.376 (5)
C17—H170.9500C52—C571.390 (5)
C18—C191.381 (5)C53—C541.392 (5)
C18—H180.9500C53—H530.9500
C19—C201.367 (5)C54—C551.387 (5)
C19—H190.9500C54—H540.9500
C20—C211.376 (5)C55—C561.374 (6)
C20—H200.9500C55—H550.9500
C21—H210.9500C56—C571.391 (5)
C22—C271.384 (5)C56—H560.9500
C22—C231.390 (5)C57—H570.9500
C23—C241.386 (5)O1—C581.230 (6)
C23—H230.9500C58—C601.496 (6)
C24—C251.380 (6)C58—C591.561 (7)
C24—H240.9500C59—H59A0.9800
C25—C261.379 (5)C59—H59B0.9800
C25—H250.9500C59—H59C0.9800
C26—C271.388 (5)C60—H60A0.9800
C26—H260.9500C60—H60B0.9800
C27—H270.9500C60—H60C0.9800
C28—C331.388 (5)
S12—Sn1—S1187.42 (3)C26—C27—H27120.1
S12—Sn1—S1173.46 (3)C33—C28—C29120.8 (4)
S11—Sn1—S189.51 (3)C33—C28—As1119.4 (3)
S12—Sn1—S796.99 (3)C29—C28—As1119.8 (3)
S11—Sn1—S793.20 (4)C30—C29—C28119.3 (4)
S1—Sn1—S788.95 (3)C30—C29—H29120.4
S12—Sn1—S291.63 (3)C28—C29—H29120.4
S11—Sn1—S296.46 (3)C31—C30—C29119.9 (4)
S1—Sn1—S282.97 (3)C31—C30—H30120.1
S7—Sn1—S2167.34 (4)C29—C30—H30120.1
S12—Sn1—S686.64 (3)C32—C31—C30120.5 (4)
S11—Sn1—S6171.55 (3)C32—C31—H31119.8
S1—Sn1—S697.00 (4)C30—C31—H31119.8
S7—Sn1—S681.59 (3)C31—C32—C33120.6 (4)
S2—Sn1—S689.70 (3)C31—C32—H32119.7
C1—S1—Sn196.10 (12)C33—C32—H32119.7
C2—S2—Sn196.31 (13)C32—C33—C28119.0 (4)
C2—C1—S1125.5 (3)C32—C33—H33120.5
C2—C1—S3115.5 (3)C28—C33—H33120.5
S1—C1—S3119.1 (2)C40—As2—C52109.20 (16)
C1—C2—S2125.5 (3)C40—As2—C46110.43 (16)
C1—C2—S4115.4 (3)C52—As2—C46110.84 (16)
S2—C2—S4119.1 (2)C40—As2—C34107.38 (17)
C3—S3—C198.40 (18)C52—As2—C34111.38 (16)
C3—S4—C298.65 (18)C46—As2—C34107.55 (15)
S5—C3—S4124.1 (2)C39—C34—C35121.0 (4)
S5—C3—S3123.8 (2)C39—C34—As2118.2 (3)
S4—C3—S3112.1 (2)C35—C34—As2120.7 (3)
C4—S6—Sn192.15 (14)C34—C35—C36118.7 (4)
C5—S7—Sn192.63 (12)C34—C35—H35120.6
C5—C4—S8116.7 (3)C36—C35—H35120.6
C5—C4—S6124.5 (3)C37—C36—C35120.1 (4)
S8—C4—S6118.2 (2)C37—C36—H36119.9
C4—C5—S7125.3 (3)C35—C36—H36119.9
C4—C5—S9115.0 (3)C38—C37—C36120.9 (4)
S7—C5—S9118.9 (2)C38—C37—H37119.5
C6—S8—C498.5 (2)C36—C37—H37119.5
C5—S9—C697.98 (19)C37—C38—C39119.4 (4)
S10—C6—S8125.6 (3)C37—C38—H38120.3
S10—C6—S9122.6 (2)C39—C38—H38120.3
S8—C6—S9111.8 (2)C34—C39—C38119.8 (4)
C7—S11—Sn198.47 (14)C34—C39—H39120.1
C8—S12—Sn198.54 (13)C38—C39—H39120.1
C8—C7—S13115.8 (3)C45—C40—C41120.3 (4)
C8—C7—S11127.4 (3)C45—C40—As2119.8 (3)
S13—C7—S11116.8 (2)C41—C40—As2119.6 (3)
C7—C8—S12128.1 (3)C42—C41—C40119.1 (4)
C7—C8—S14115.0 (3)C42—C41—H41120.4
S12—C8—S14116.9 (2)C40—C41—H41120.4
C9—S13—C798.37 (19)C43—C42—C41120.4 (4)
C9—S14—C898.65 (19)C43—C42—H42119.8
S15—C9—S14124.1 (2)C41—C42—H42119.8
S15—C9—S13123.7 (3)C42—C43—C44119.6 (4)
S14—C9—S13112.2 (2)C42—C43—H43120.2
C28—As1—C10110.72 (16)C44—C43—H43120.2
C28—As1—C22108.08 (15)C45—C44—C43120.5 (4)
C10—As1—C22110.95 (16)C45—C44—H44119.7
C28—As1—C16109.94 (16)C43—C44—H44119.7
C10—As1—C16108.01 (14)C44—C45—C40120.0 (4)
C22—As1—C16109.13 (16)C44—C45—H45120.0
C11—C10—C15120.6 (3)C40—C45—H45120.0
C11—C10—As1121.3 (3)C47—C46—C51120.0 (4)
C15—C10—As1118.2 (3)C47—C46—As2121.3 (3)
C10—C11—C12118.9 (4)C51—C46—As2118.6 (3)
C10—C11—H11120.5C48—C47—C46119.6 (4)
C12—C11—H11120.5C48—C47—H47120.2
C13—C12—C11120.5 (4)C46—C47—H47120.2
C13—C12—H12119.8C49—C48—C47120.6 (4)
C11—C12—H12119.8C49—C48—H48119.7
C12—C13—C14120.0 (4)C47—C48—H48119.7
C12—C13—H13120.0C48—C49—C50120.4 (4)
C14—C13—H13120.0C48—C49—H49119.8
C15—C14—C13120.2 (4)C50—C49—H49119.8
C15—C14—H14119.9C51—C50—C49119.9 (4)
C13—C14—H14119.9C51—C50—H50120.0
C14—C15—C10119.8 (4)C49—C50—H50120.0
C14—C15—H15120.1C50—C51—C46119.5 (4)
C10—C15—H15120.1C50—C51—H51120.3
C17—C16—C21121.5 (3)C46—C51—H51120.3
C17—C16—As1120.6 (3)C53—C52—C57120.4 (3)
C21—C16—As1117.9 (3)C53—C52—As2120.6 (3)
C16—C17—C18118.6 (4)C57—C52—As2119.0 (3)
C16—C17—H17120.7C52—C53—C54120.4 (3)
C18—C17—H17120.7C52—C53—H53119.8
C19—C18—C17119.9 (4)C54—C53—H53119.8
C19—C18—H18120.1C55—C54—C53119.0 (4)
C17—C18—H18120.1C55—C54—H54120.5
C20—C19—C18120.5 (4)C53—C54—H54120.5
C20—C19—H19119.7C56—C55—C54120.7 (4)
C18—C19—H19119.7C56—C55—H55119.6
C19—C20—C21121.0 (4)C54—C55—H55119.6
C19—C20—H20119.5C55—C56—C57120.3 (4)
C21—C20—H20119.5C55—C56—H56119.9
C20—C21—C16118.4 (4)C57—C56—H56119.9
C20—C21—H21120.8C52—C57—C56119.2 (4)
C16—C21—H21120.8C52—C57—H57120.4
C27—C22—C23120.5 (4)C56—C57—H57120.4
C27—C22—As1122.1 (3)O1—C58—C60120.2 (5)
C23—C22—As1117.3 (3)O1—C58—C59121.6 (4)
C24—C23—C22119.5 (4)C60—C58—C59118.2 (5)
C24—C23—H23120.3C58—C59—H59A109.5
C22—C23—H23120.3C58—C59—H59B109.5
C25—C24—C23119.7 (4)H59A—C59—H59B109.5
C25—C24—H24120.2C58—C59—H59C109.5
C23—C24—H24120.2H59A—C59—H59C109.5
C26—C25—C24121.1 (4)H59B—C59—H59C109.5
C26—C25—H25119.5C58—C60—H60A109.5
C24—C25—H25119.5C58—C60—H60B109.5
C25—C26—C27119.4 (4)H60A—C60—H60B109.5
C25—C26—H26120.3C58—C60—H60C109.5
C27—C26—H26120.3H60A—C60—H60C109.5
C22—C27—C26119.8 (4)H60B—C60—H60C109.5
C22—C27—H27120.1
 

Acknowledgements

The use of the EPSRC X-ray crystallographic service at Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. We thank CAPES, CNPq and FUJB, Brazil, for financial support.

References

First citationAssis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533–3544.  Web of Science CSD CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Chochan, Z. H., Howie, R. A., Wilkens, R., & Doidge-Harrison, S. M. S. V. (1997). Polyhedron, 16, 2689–2696.  CSD CrossRef Web of Science Google Scholar
First citationWardell, J. L., Harrison, W. T. A., Howie, R. A., Wardell, S. M. S. V., Comerlato, N. M., Costa, L. A. S., Silvino, A. C., Oliveira, A. I. & Silva, R. M. (2000). Polyhedron, 20, 415–421.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds