organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Bis­(benzoyl­sulfanyl)-1,3-di­thiol-2-one

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: j.skakle@abdn.ac.uk

(Received 2 November 2004; accepted 4 November 2004; online 13 November 2004)

The title compound [systematic name: S,S′-2-oxo-1,3-di­thiol-4,5-diyl bis(thiobenzoate)], C17H10O3S4, obtained from 4,5-bis­(benzoyl­sulfanyl)-1,3-di­thiole-2-thione and mercury(II) acetate in acetic acid/chloro­form, exists as isolated mol­ecules with no significant intermolecular S⋯S, S⋯O or O⋯O interactions.

Comment

The title compound, 4,5-bis­(benzoyl­sulfanyl)-1,3-di­thiol-2-one, (I[link]), and the zincate salts [Q]2[Zn(dmio)2] (Q is the onium cation and dmio is 2-oxo-1,3-dithiole-4,5-dithiolate) are very useful stable sources of the dmio dianion and have found extended use as precursors of both organic dmio compounds and metal–dmio complexes. Additionally, dmio compounds, such as the title compound, are good sources of tetrathiafulvalenes on reaction with phosphites (Svenstrup & Becher, 1995[Svenstrup, N. & Becher, J. (1995). Synthesis, pp. 215-235.]).[link]

[Scheme 1]

While the crystal structure of a Zn(dmio)2 salt has been reported (Candiota et al., 2003[Candiota, R. O., Comerlato, N. M., Howie, R. A. & Wardell, J. L. (2003). Acta Cryst. E59, m599-m601.]), no previous study of the structure of (I[link]) has been reported.

Bond lengths and angles within the five-membered dmio ring in (I[link]) are within the ranges found for other dmio compounds, such as [Q][Sn(dmio)3] and [Q][Zn(dmio)2] (Candiota et al., 2003[Candiota, R. O., Comerlato, N. M., Howie, R. A. & Wardell, J. L. (2003). Acta Cryst. E59, m599-m601.]; Chohan et al., 2003[Chohan, Z. H., Comerlato, N. M., Howie, R. A., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. E59, m1006-m1009.]; Aupers et al., 2002[Aupers, J. H., Chohan, Z. H., Comerlato, N. M., Howie, R. A., Silvino, A. C., Wardell, J. L. & Wardell, S. M. S. V. (2002). Polyhedron, 21, 2107-2116.]; de Assis et al., 1999[Assis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533-3544.]).

The dmio ring, together with the attached carbonyl O atom, is essentially planar, with S1 showing the largest deviation [0.0158 (6) Å] from the mean plane. The two phenyl rings are inclined at angles of 78.60 (4) (C11–C16) and 6.94 (8)° (C21–C26) to the dmio ring. Molecules of (I[link]) show no strong association with each other, the closest intermolecular S⋯S, S⋯O and O⋯O separations being 3.6561 (5), 3.4524 (12) and 3.1479 (17) Å, respectively, all just outside the van der Waals radii sum for the appropriate atoms; van der Waals radii for S and O are taken as 1.80 and 1.52 Å, respectively (PLATON; Spek, 2004[Spek, A. L. (2004). PLATON. April 2004 version. University of Utrecht, The Netherlands.]).

The structure of the analogous 4,5-bis­(benzoyl­sulfanyl)-1,3-di­thiole-2-thione compound, (II), has been reported at both 120 (Cox & Doidge-Harrison, 1996[Cox, P. J. & Doidge-Harrison, S. M. S. V. (1996). Acta Cryst. C52, 720-722.]) and 288 K (Solans et al., 1987[Solans, X., Font-Bardia, M., Font-Altaba, M., Vicente, R. & Segum, A. (1987). Acta Cryst. C43, 1415-1417.]). There are weak C—H⋯O and S⋯S intermolecular interactions in (II).

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary radii.
[Figure 2]
Figure 2
The unit cell contents of (I[link]), projected on to the (101) plane.

Experimental

The title compound was prepared using a modification of a published method (Hartke et al., 1980[Hartke, K., Kissel, T., Quante, J. & Matusch, R. (1980). Chem. Ber. 113, 1898-1906.]). A solution of mercury(II) acetate (4.78 g, 15.0 mmol) in glacial acetic acid (120 ml) was added with vigorous agitation to a solution of 4,5-bis­(benzoyl­sulfanyl)-1,3-di­thiole-2-thione [(II); 6.09 g, 15.0 mmol] (Steimecke, 1979[Steimecke, G. (1979). Phosphorus Sulfur, 7, 49-55.]) in chloro­form (120 ml). After refluxing for 5 h, the reaction mixture was filtered, and the filtrate was successively washed with water, saturated aqueous sodium bicarbonate solution and more water, dried over MgSO4 and evaporated to leave a yellow solid, which was recrystallized from chloro­form/methanol (yield 54%, m.p. 388–389 K). IR (CsI, cm−1): 3083 (ν C—H), 1701, 1697, 1668, 1621 (ν C=O), 1467 (ν C=C), 896 (ν C—S).

Crystal data
  • C17H10O3S4

  • Mr = 390.49

  • Monoclinic, C2/c

  • a = 35.6460 (6) Å

  • b = 5.20360 (10) Å

  • c = 19.1402 (3) Å

  • β = 116.0945 (8)°

  • V = 3188.39 (10) Å3

  • Z = 8

  • Dx = 1.627 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4041 reflections

  • θ = 2.7–27.5°

  • μ = 0.61 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.60 × 0.30 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer with rotating-anode source

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.787, Tmax = 0.883

  • 25 707 measured reflections

  • 3656 independent reflections

  • 3191 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 27.5°

  • h = −46 → 46

  • k = −6 → 6

  • l = −24 → 24

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.06

  • 3656 reflections

  • 217 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.031P)2 + 3.4602P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯S3 0.95 2.59 3.0392 (15) 109
C26—H26⋯S4 0.95 2.58 3.0146 (14) 108

All H atoms were first identified in a difference map and then placed in geometrical positions and refined using a riding model with C–H distances of 0.95 Å. Analysis of molecular interactions was carried out using PLATON (Spek, 2004[Spek, A. L. (2004). PLATON. April 2004 version. University of Utrecht, The Netherlands.]).

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

4,5-Bis(benzoylsulfanyl)-1,3-dithiol-2-one top
Crystal data top
C17H10O3S4F(000) = 1600
Mr = 390.49Dx = 1.627 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4041 reflections
a = 35.6460 (6) Åθ = 2.7–27.5°
b = 5.2036 (1) ŵ = 0.61 mm1
c = 19.1402 (3) ÅT = 120 K
β = 116.0945 (8)°Block, colourless
V = 3188.39 (10) Å30.60 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker-Nonius FR591 rotating anode
diffractometer
3656 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
φ and ω scansh = 4646
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.787, Tmax = 0.883l = 2424
25707 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.031P)2 + 3.4602P]
where P = (Fo2 + 2Fc2)/3
3656 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H atoms were located from the difference map then refined using a riding model and the appropriate AFIX commands in SHELXL.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.103610 (11)0.37285 (7)0.31289 (2)0.01562 (9)
S20.170596 (10)0.02062 (6)0.36723 (2)0.01379 (9)
C10.10785 (4)0.1736 (3)0.38918 (8)0.0128 (3)
C20.13792 (4)0.0093 (3)0.41389 (7)0.0117 (3)
S30.072238 (10)0.22872 (7)0.42787 (2)0.01456 (9)
S40.141682 (10)0.21377 (6)0.489622 (19)0.01325 (8)
C50.14634 (4)0.2398 (3)0.30231 (8)0.0144 (3)
O10.15830 (3)0.3129 (2)0.25555 (6)0.0210 (2)
C30.03248 (4)0.0064 (3)0.37048 (8)0.0156 (3)
O30.03936 (3)0.1632 (2)0.33152 (7)0.0258 (3)
C110.00718 (4)0.0137 (3)0.37810 (8)0.0148 (3)
C120.03761 (5)0.1718 (3)0.34099 (9)0.0197 (3)
H120.03280.30350.31150.024*
C130.07498 (5)0.1644 (3)0.34707 (9)0.0217 (3)
H130.09570.29190.32200.026*
C140.08222 (4)0.0285 (3)0.38965 (8)0.0181 (3)
H140.10780.03310.39370.022*
C150.05214 (5)0.2143 (3)0.42622 (10)0.0241 (3)
H150.05710.34650.45530.029*
C160.01465 (5)0.2077 (3)0.42043 (10)0.0231 (3)
H160.00590.33590.44540.028*
C40.18540 (4)0.4181 (3)0.50620 (8)0.0138 (3)
O40.20356 (3)0.4106 (2)0.46565 (6)0.0222 (2)
C210.19594 (4)0.6008 (3)0.57182 (8)0.0125 (3)
C220.22677 (4)0.7850 (3)0.58349 (8)0.0142 (3)
H220.24060.78670.55080.017*
C230.23726 (4)0.9649 (3)0.64249 (8)0.0157 (3)
H230.25831.08880.65050.019*
C240.21686 (4)0.9640 (3)0.69012 (8)0.0154 (3)
H240.22351.09000.72970.019*
C250.18678 (4)0.7790 (3)0.67965 (8)0.0150 (3)
H250.17330.77690.71280.018*
C260.17627 (4)0.5969 (3)0.62096 (8)0.0144 (3)
H260.15580.47010.61420.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01629 (17)0.01632 (18)0.01618 (17)0.00254 (13)0.00890 (14)0.00503 (13)
S20.01553 (17)0.01420 (17)0.01608 (17)0.00109 (12)0.01102 (13)0.00182 (12)
C10.0123 (6)0.0145 (6)0.0136 (6)0.0017 (5)0.0074 (5)0.0004 (5)
C20.0122 (6)0.0127 (6)0.0116 (6)0.0021 (5)0.0065 (5)0.0016 (5)
S30.01304 (16)0.01559 (17)0.01811 (17)0.00110 (12)0.00967 (14)0.00230 (13)
S40.01409 (16)0.01429 (17)0.01468 (17)0.00234 (12)0.00937 (13)0.00326 (12)
C50.0162 (6)0.0135 (7)0.0145 (7)0.0023 (5)0.0075 (6)0.0011 (5)
O10.0259 (6)0.0229 (5)0.0204 (5)0.0003 (4)0.0159 (5)0.0048 (4)
C30.0144 (6)0.0167 (7)0.0155 (7)0.0003 (5)0.0064 (5)0.0003 (5)
O30.0187 (5)0.0303 (6)0.0316 (6)0.0044 (5)0.0140 (5)0.0144 (5)
C110.0127 (6)0.0169 (7)0.0153 (7)0.0014 (5)0.0066 (5)0.0015 (5)
C120.0186 (7)0.0222 (7)0.0207 (7)0.0025 (6)0.0106 (6)0.0053 (6)
C130.0175 (7)0.0258 (8)0.0225 (8)0.0068 (6)0.0095 (6)0.0052 (6)
C140.0127 (6)0.0251 (8)0.0180 (7)0.0011 (6)0.0082 (5)0.0023 (6)
C150.0200 (7)0.0257 (8)0.0309 (9)0.0013 (6)0.0151 (7)0.0088 (7)
C160.0164 (7)0.0220 (8)0.0331 (9)0.0049 (6)0.0130 (7)0.0099 (7)
C40.0141 (6)0.0132 (6)0.0151 (6)0.0005 (5)0.0073 (5)0.0006 (5)
O40.0251 (5)0.0246 (6)0.0258 (6)0.0091 (4)0.0193 (5)0.0088 (5)
C210.0128 (6)0.0119 (6)0.0128 (6)0.0020 (5)0.0056 (5)0.0010 (5)
C220.0127 (6)0.0157 (7)0.0154 (7)0.0011 (5)0.0072 (5)0.0014 (5)
C230.0124 (6)0.0159 (7)0.0168 (7)0.0020 (5)0.0045 (5)0.0003 (5)
C240.0148 (6)0.0144 (7)0.0140 (6)0.0018 (5)0.0035 (5)0.0016 (5)
C250.0148 (6)0.0180 (7)0.0134 (6)0.0021 (5)0.0073 (5)0.0003 (5)
C260.0134 (6)0.0141 (7)0.0164 (7)0.0011 (5)0.0073 (5)0.0005 (5)
Geometric parameters (Å, º) top
S1—C11.7424 (14)C14—C151.383 (2)
S1—C51.7640 (14)C14—H140.9500
S2—C21.7529 (13)C15—C161.389 (2)
S2—C51.7839 (14)C15—H150.9500
C1—C21.3539 (19)C16—H160.9500
C1—S31.7518 (13)C4—O41.2102 (17)
C2—S41.7551 (13)C4—C211.4856 (19)
S3—C31.8281 (14)C21—C261.3988 (18)
S4—C41.7960 (14)C21—C221.4003 (19)
C5—O11.2098 (17)C22—C231.386 (2)
C3—O31.2013 (18)C22—H220.9500
C3—C111.4872 (19)C23—C241.394 (2)
C11—C161.391 (2)C23—H230.9500
C11—C121.391 (2)C24—C251.389 (2)
C12—C131.388 (2)C24—H240.9500
C12—H120.9500C25—C261.3891 (19)
C13—C141.387 (2)C25—H250.9500
C13—H130.9500C26—H260.9500
C1—S1—C595.83 (6)C14—C15—C16120.08 (14)
C2—S2—C595.87 (6)C14—C15—H15120.0
C2—C1—S1118.33 (10)C16—C15—H15120.0
C2—C1—S3125.24 (10)C15—C16—C11120.10 (14)
S1—C1—S3116.43 (8)C15—C16—H16120.0
C1—C2—S2116.56 (10)C11—C16—H16120.0
C1—C2—S4118.41 (10)O4—C4—C21123.74 (12)
S2—C2—S4125.03 (8)O4—C4—S4122.32 (11)
C1—S3—C398.68 (6)C21—C4—S4113.90 (9)
C2—S4—C4104.47 (6)C26—C21—C22119.54 (12)
O1—C5—S1124.37 (11)C26—C21—C4122.96 (12)
O1—C5—S2122.25 (11)C22—C21—C4117.49 (12)
S1—C5—S2113.37 (7)C23—C22—C21120.26 (13)
O3—C3—C11124.83 (13)C23—C22—H22119.9
O3—C3—S3120.76 (11)C21—C22—H22119.9
C11—C3—S3114.40 (10)C22—C23—C24119.96 (13)
C16—C11—C12119.66 (13)C22—C23—H23120.0
C16—C11—C3122.80 (13)C24—C23—H23120.0
C12—C11—C3117.54 (13)C25—C24—C23119.99 (13)
C13—C12—C11119.97 (14)C25—C24—H24120.0
C13—C12—H12120.0C23—C24—H24120.0
C11—C12—H12120.0C24—C25—C26120.41 (13)
C14—C13—C12120.19 (14)C24—C25—H25119.8
C14—C13—H13119.9C26—C25—H25119.8
C12—C13—H13119.9C25—C26—C21119.81 (13)
C15—C14—C13119.99 (13)C25—C26—H26120.1
C15—C14—H14120.0C21—C26—H26120.1
C13—C14—H14120.0
C5—S1—C1—C21.96 (12)C16—C11—C12—C130.7 (2)
C5—S1—C1—S3177.98 (8)C3—C11—C12—C13179.09 (14)
S1—C1—C2—S21.50 (15)C11—C12—C13—C140.4 (2)
S3—C1—C2—S2178.44 (8)C12—C13—C14—C150.0 (2)
S1—C1—C2—S4178.93 (7)C13—C14—C15—C160.1 (2)
S3—C1—C2—S41.13 (17)C14—C15—C16—C110.3 (3)
C5—S2—C2—C10.19 (12)C12—C11—C16—C150.7 (2)
C5—S2—C2—S4179.73 (9)C3—C11—C16—C15179.17 (15)
C2—C1—S3—C385.59 (13)C2—S4—C4—O45.12 (14)
S1—C1—S3—C394.47 (9)C2—S4—C4—C21176.91 (10)
C1—C2—S4—C4178.56 (11)O4—C4—C21—C26176.12 (14)
S2—C2—S4—C40.97 (10)S4—C4—C21—C265.94 (17)
C1—S1—C5—O1178.99 (13)O4—C4—C21—C224.5 (2)
C1—S1—C5—S21.71 (9)S4—C4—C21—C22173.46 (10)
C2—S2—C5—O1179.58 (12)C26—C21—C22—C231.0 (2)
C2—S2—C5—S11.11 (9)C4—C21—C22—C23178.37 (12)
C1—S3—C3—O310.74 (14)C21—C22—C23—C240.5 (2)
C1—S3—C3—C11170.29 (10)C22—C23—C24—C251.6 (2)
O3—C3—C11—C16176.25 (15)C23—C24—C25—C261.2 (2)
S3—C3—C11—C164.83 (19)C24—C25—C26—C210.4 (2)
O3—C3—C11—C123.9 (2)C22—C21—C26—C251.5 (2)
S3—C3—C11—C12175.00 (11)C4—C21—C26—C25177.93 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···S30.952.593.0392 (15)109
C26—H26···S40.952.583.0146 (14)108
 

Acknowledgements

We thank the EPSRC's X-ray Crystallographic Service, University of Southampton, for the collection of the data. The Brazil-based authors thank CNPq, CAPES and FUJB for support.

References

First citationAssis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533–3544.  Web of Science CSD CrossRef Google Scholar
First citationAupers, J. H., Chohan, Z. H., Comerlato, N. M., Howie, R. A., Silvino, A. C., Wardell, J. L. & Wardell, S. M. S. V. (2002). Polyhedron, 21, 2107–2116.  Web of Science CSD CrossRef CAS Google Scholar
First citationCandiota, R. O., Comerlato, N. M., Howie, R. A. & Wardell, J. L. (2003). Acta Cryst. E59, m599–m601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H., Comerlato, N. M., Howie, R. A., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. E59, m1006–m1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCox, P. J. & Doidge-Harrison, S. M. S. V. (1996). Acta Cryst. C52, 720–722.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHartke, K., Kissel, T., Quante, J. & Matusch, R. (1980). Chem. Ber. 113, 1898–1906.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSolans, X., Font-Bardia, M., Font-Altaba, M., Vicente, R. & Segum, A. (1987). Acta Cryst. C43, 1415–1417.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2004). PLATON. April 2004 version. University of Utrecht, The Netherlands.  Google Scholar
First citationSteimecke, G. (1979). Phosphorus Sulfur, 7, 49–55.  CrossRef CAS Google Scholar
First citationSvenstrup, N. & Becher, J. (1995). Synthesis, pp. 215–235.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds