organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridinium nitrate at 290 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 15 November 2004; accepted 19 November 2004; online 27 November 2004)

A previous structural study [Serewicz et al. (1965[Serewicz, A. J., Robertson, B. K. & Meyers, E. A. (1965). J. Phys. Chem. 69, 1915-1921.]). J. Phys. Chem. 69, 1915–1921] of pyridinium nitrate, C5H6N+·NO3, has been repeated at 290 K.

Comment

The crystal structure of pyridinium nitrate, (I[link]), as determined by Serewicz et al. (1965[Serewicz, A. J., Robertson, B. K. & Meyers, E. A. (1965). J. Phys. Chem. 69, 1915-1921.]), implied the existence of a strong hydrogen bond between the pyridinium and nitrate ions, but the precision of the data (measured at room temperature by the Weissenberg method) was insufficient to locate H atoms directly. We have redetermined this structure at two temperatures in the course of screening for materials suitable for neutron-diffraction and charge-density studies of hydrogen bonds. The 290 K structure (Fig. 1[link] and Table 1[link]) is reported here. The results reported by Serewicz et al. (1965[Serewicz, A. J., Robertson, B. K. & Meyers, E. A. (1965). J. Phys. Chem. 69, 1915-1921.]) are essentially confirmed, though the unit cell is slightly larger than reported previously (without s.u. values): a = 3.905, b = 12.286, c = 13.470 Å, β = 90.5° and V = 646 Å3.[link]

[Scheme 1]

For the low-temperature results and the general discussion, see Batsanov (2004[Batsanov, A. S. (2004). Acta Cryst. E60, o2426-o2428.]).

[Figure 1]
Figure 1
The molecular structure of (I[link]) at 290 K. Displacement ellipsoids are drawn at the 50% probability level. The dashed and dotted lines indicate strong and weak hydrogen bonds, respectively.

Experimental

The crystals of (I[link]) were grown by slow evaporation, at room temperature, of an aqueous solution of equimolar amounts of pyridine and nitric acid.

Crystal data
  • C5H6N+·NO3

  • Mr = 142.12

  • Monoclinic, P21/c

  • a = 3.9015 (6) Å

  • b = 12.324 (2) Å

  • c = 13.503 (2) Å

  • β = 90.57 (1)°

  • V = 649.2 (2) Å3

  • Z = 4

  • Dx = 1.454 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1107 reflections

  • θ = 2.2–22.4°

  • μ = 0.12 mm−1

  • T = 290 (2) K

  • Plate, colourless

  • 0.42 × 0.37 × 0.03 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • ω scans

  • Absorption correction: none

  • 5258 measured reflections

  • 1154 independent reflections

  • 735 reflections with I > 2σ(I)

  • Rint = 0.073

  • θmax = 25.0°

  • h = −4 → 4

  • k = −14 → 14

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.04

  • 1154 reflections

  • 95 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.086P)2 + 0.0078P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—C2 1.328 (4)
N1—C6 1.338 (4)
C2—C3 1.352 (4)
C3—C4 1.343 (4)
C4—C5 1.337 (4)
C5—C6 1.337 (4)
O1—N2 1.251 (2)
O2—N2 1.217 (3)
O3—N2 1.225 (3)
C2—N1—C6 121.0 (2)
N1—C2—C3 119.8 (2)
C4—C3—C2 119.1 (2)
C5—C4—C3 120.6 (2)
C6—C5—C4 120.0 (2)
C5—C6—N1 119.5 (2)
O2—N2—O3 122.1 (2)
O2—N2—O1 119.5 (2)
O3—N2—O1 118.4 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.94 (4) 1.86 (4) 2.787 (3) 171 (3)
N1—H1⋯O3 0.94 (4) 2.45 (4) 3.149 (3) 131 (3)
C2—H2⋯O3 0.93 2.78 3.307 (4) 117
C2—H2⋯O2i 0.93 2.56 3.177 (3) 124
C3—H3⋯O2ii 0.93 2.67 3.324 (3) 128
C4—H4⋯O3iii 0.93 2.70 3.330 (3) 126
C5—H5⋯O3iii 0.93 2.77 3.365 (4) 123
C6—H6⋯O1iv 0.93 2.38 3.196 (3) 146
C6—H6⋯O2iv 0.93 2.68 3.456 (3) 141
Symmetry codes: (i) [-x,y-{\script{1\over 2}},{\script{3\over 2}}-z]; (ii) [1-x,y-{\script{1\over 2}},{\script{3\over 2}}-z]; (iii) [1+x,{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (iv) -x,1-y,1-z.

All H atoms were located in a difference Fourier map. Atom H1 was refined in isotropic approximation [N—H = 0.94 (4) Å], other H atoms were treated as riding in idealized positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625) & SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Version 6.28A. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625) & SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

pyridinium nitrate top
Crystal data top
C5H6N+·NO3F(000) = 296
Mr = 142.12Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1107 reflections
a = 3.9015 (6) Åθ = 2.2–22.4°
b = 12.324 (2) ŵ = 0.12 mm1
c = 13.503 (2) ÅT = 290 K
β = 90.57 (1)°Plate, colourless
V = 649.2 (2) Å30.42 × 0.37 × 0.03 mm
Z = 4
Data collection top
ProteumM APEX CCD area-detector
diffractometer
735 reflections with I > 2σ(I)
Radiation source: 60 W microfocus Bede Microsource with glass polycapillary opticsRint = 0.073
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
Detector resolution: 8 pixels mm-1h = 44
ω scansk = 1414
5258 measured reflectionsl = 1616
1154 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.086P)2 + 0.0078P]
where P = (Fo2 + 2Fc2)/3
1154 reflections(Δ/σ)max = 0.003
95 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.13 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 4 sets of ω scans, each set at different φ and/or 2θ angles and each scan (15 s exposure) covering 0.3° in ω. Crystal to detector distance 4.95 cm. Crystal decay was monitored by repeating the first 50 frames at the end of the data collection and comparing the intensities of 31 duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. H(1) atom (N-bonded) was refined in isotropic approximation (All H-atom parameters refined), other H atoms treated as riding (H-atom parameters constrained).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3970 (5)0.31105 (19)0.5473 (2)0.0746 (7)
H10.260 (9)0.365 (3)0.577 (3)0.123 (11)*
C20.4746 (7)0.2227 (3)0.59912 (17)0.0723 (8)
H20.42030.21880.66590.087*
C30.6325 (7)0.1385 (2)0.5545 (2)0.0721 (8)
H30.68820.07630.59020.086*
C40.7081 (6)0.1458 (2)0.4579 (2)0.0696 (7)
H40.81410.08790.42640.084*
C50.6317 (7)0.2356 (2)0.40669 (18)0.0739 (8)
H50.68910.24050.34020.089*
C60.4739 (7)0.3184 (2)0.4512 (2)0.0713 (8)
H60.41750.38050.41560.086*
O10.0061 (6)0.48422 (14)0.61596 (12)0.0860 (7)
O20.1119 (6)0.5580 (2)0.75437 (14)0.1064 (8)
O30.1348 (6)0.4033 (2)0.75035 (14)0.1090 (8)
N20.0100 (6)0.48242 (17)0.70861 (15)0.0665 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0566 (13)0.0572 (13)0.110 (2)0.0043 (10)0.0108 (12)0.0313 (14)
C20.0796 (18)0.089 (2)0.0482 (14)0.0210 (15)0.0028 (12)0.0044 (13)
C30.0750 (18)0.0580 (16)0.0828 (19)0.0013 (13)0.0170 (14)0.0139 (13)
C40.0602 (16)0.0644 (17)0.0842 (18)0.0078 (12)0.0030 (13)0.0192 (13)
C50.0761 (18)0.095 (2)0.0507 (14)0.0087 (15)0.0043 (12)0.0001 (13)
C60.0641 (16)0.0586 (16)0.091 (2)0.0029 (12)0.0099 (14)0.0235 (13)
O10.1372 (18)0.0713 (12)0.0496 (10)0.0160 (11)0.0042 (9)0.0017 (7)
O20.129 (2)0.1131 (16)0.0774 (13)0.0207 (14)0.0102 (12)0.0367 (11)
O30.130 (2)0.1229 (18)0.0742 (13)0.0350 (14)0.0169 (12)0.0369 (12)
N20.0795 (15)0.0677 (14)0.0524 (12)0.0064 (11)0.0099 (10)0.0057 (10)
Geometric parameters (Å, º) top
N1—C21.328 (4)C4—H40.9300
N1—C61.338 (4)C5—C61.337 (4)
N1—H10.94 (4)C5—H50.9300
C2—C31.352 (4)C6—H60.9300
C2—H20.9300O1—N21.251 (2)
C3—C41.343 (4)O2—N21.217 (3)
C3—H30.9300O3—N21.225 (3)
C4—C51.337 (4)
C2—N1—C6121.0 (2)C3—C4—H4119.7
C2—N1—H1119 (2)C6—C5—C4120.0 (2)
C6—N1—H1120 (2)C6—C5—H5120.0
N1—C2—C3119.8 (2)C4—C5—H5120.0
N1—C2—H2120.1C5—C6—N1119.5 (2)
C3—C2—H2120.1C5—C6—H6120.3
C4—C3—C2119.1 (2)N1—C6—H6120.2
C4—C3—H3120.4O2—N2—O3122.1 (2)
C2—C3—H3120.5O2—N2—O1119.5 (2)
C5—C4—C3120.6 (2)O3—N2—O1118.4 (2)
C5—C4—H4119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.94 (4)1.86 (4)2.787 (3)171 (3)
N1—H1···O30.94 (4)2.45 (4)3.149 (3)131 (3)
C2—H2···O30.932.783.307 (4)117
C2—H2···O2i0.932.563.177 (3)124
C3—H3···O2ii0.932.673.324 (3)128
C4—H4···O3iii0.932.703.330 (3)126
C5—H5···O3iii0.932.773.365 (4)123
C6—H6···O1iv0.932.383.196 (3)146
C6—H6···O2iv0.932.683.456 (3)141
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z1/2; (iv) x, y+1, z+1.
 

Acknowledgements

The author thanks Dr I. F. Perepichka for providing single crystals of (I[link]).

References

First citationBatsanov, A. S. (2004). Acta Cryst. E60, o2426–o2428.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART (Version 5.625) & SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Version 6.28A. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSerewicz, A. J., Robertson, B. K. & Meyers, E. A. (1965). J. Phys. Chem. 69, 1915–1921.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds