organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridinium nitrate at 120 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 15 November 2004; accepted 19 November 2004; online 27 November 2004)

The structural unit of pyridinium nitrate, C5H6N+·NO3, is a pyridinium–nitrate ion pair, held together by a strong N—H⋯O hydrogen bond.

Comment

The present paper reports the low-temperature study of the title compound, (I[link]). For the introduction and the room-temperature results, see the preceeding paper (Batsanov, 2004[Batsanov, A. S. (2004). Acta Cryst. E60, o2424-o2425.]).[link]

[Scheme 1]

Cooling of (I[link]) from 290 to 120 K resulted in an approximately 4% decrease of the unit-cell volume, which was shown (by fast determinations at 160, 200 and 250 K) to be practically linear in this range. It is noteworthy that, whilst at room temperature β > 90°, on cooling it decreases, passing through 90° at 250 K. Therefore, in the present report, the non-standard cell setting with β < 90° is used, for compatibility with the room-temperature data (Serewicz et al., 1965[Serewicz, A. J., Robertson, B. K. & Meyers, E. A. (1965). J. Phys. Chem. 69, 1915-1921.]; Batsanov, 2004[Batsanov, A. S. (2004). Acta Cryst. E60, o2424-o2425.]).

The structure at 120 K (Fig. 1[link]) is similar to that at room temperature (see Table 1[link]), with the anisotropic displacement parameters approximately three times lower [Ueq of non-H atoms averaging 0.08 (1) Å2 at 290 K versus 0.027 (5) Å2 at 120 K]. The asymmetric unit comprises one pyridinium cation and one nitrate anion, the ionic nature of which is proven by the location of H atoms. Both ions are planar, and the dihedral angle between them increases from 13.7 (1)° at 290 K to 21.1 (1)° at 120 K. This change can be best approximated as a rotation of the anion around atom O1, which is hydrogen bonded to the cation (Table 2[link]). The deviations of the nitrate anion atoms from the pyridine ring plane illustrate this point, viz. O1 −0.302 (4), O2 0.081 (6), O3 0.174 (5) and N2 −0.006 (5) Å at 290 K versus O1 −0.265 (4), O2 0.274 (5), O3 0.496 (4) and N2 0.173 (4) Å at 120 K.

The ion pair is held together by a strong (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]) and nearly linear N1—H1⋯O1 hydrogen bond (Table 2[link]). The N1⋯O1 distance decreases from 2.787 (3) Å at 290 K to 2.699 (2) Å at 120 K; cf. 2.730 (3) Å in the structure of PyH+·MeSO3 at 173 K (Bolte et al., 2001[Bolte, M., Griesinger, C. & Sakhaii, P. (2001). Acta Cryst. E57, o458-o460.]) and 2.664 (4)–2.698 (4) Å in PyH+·F3CCO2, (II), at 183 K (Palmore & McBride-Wieser, 1997[Palmore, G. T. R. & McBride-Wieser, M. T. (1997). Acta Cryst. C53, 1904-1907.]). In (I[link]), the ion pair is further stabilized by a weak (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond. Oxford University Press.]) hydrogen bond (C2—H2⋯O3) involving the ortho H atom, thus producing a seven-membered ring. This motif can be described by the graph set R22(7), according to Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) and Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1557.]). The same motif is realised in the structure of (II), where the C(ortho)—H⋯O bonds are substantially stronger: the C⋯O distances range from 3.175 (4) to 3.214 (4) Å versus 3.229 (3) Å in (I[link]), and the H⋯O distances (for the C—H bond lengths corrected to 1.08 Å) from 2.28 (3) to 2.42 (4) Å versus 2.55 (3) Å in (I[link]). The weaker bonding in (I[link]) can be easily explained, as atom H2 participates in a bifurcated hydrogen bond, with O3 of the same ion pair and with O2 of an adjacent ion pair. The latter bond is evidently the stronger, with the C⋯O distance shorter by 0.15 Å. No such competition is possible in (II), which contains no O atoms not involved in intra-pair hydrogen bonds.

In fact, all H atoms in (I[link]) participate in inter-pair C—H⋯O contacts which are shorter than the sum of van der Waals radii (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), correspond to the stabilizing part of the potential curve (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond. Oxford University Press.]) and can be interpreted as weak hydrogen bonds (Table 2[link]).

Due to protonation of N1, the C2—N1—C6 angle in (I[link]) is widened in comparison with the neutral pyridine mol­ecule [116.6 (2)°; Mootz & Wusson, 1981[Mootz, D. & Wusson, H.-G. (1981). J. Chem. Phys. 75, 1517-1522.]] and coincides with those in PyH+·MeSO3 and (II).

[Figure 1]
Figure 1
The molecular structure of (I[link]) at 120 K. Displacement ellipsoids are drawn at the 50% probability level. The dashed and dotted lines indicate strong and weak hydrogen bonds, respectively.

Experimental

The crystals of (I[link]) were grown by slow evaporation, at room temperature, of an aqueous solution of equimolar amounts of pyridine and nitric acid.

Crystal data
  • C5H6N+·NO3

  • Mr = 142.12

  • Monoclinic, P21/c

  • a = 3.7756 (9) Å

  • b = 12.336 (3) Å

  • c = 13.353 (3) Å

  • β = 88.60 (1)°

  • V = 621.8 (4) Å3

  • Z = 4

  • Dx = 1.521 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 851 reflections

  • θ = 10.4–24.9°

  • μ = 0.13 mm−1

  • T = 120 (1) K

  • Plate, colourless

  • 0.42 × 0.37 × 0.03 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: none

  • 3711 measured reflections

  • 1408 independent reflections

  • 1006 reflections with I > 2σ(I)

  • Rint = 0.065

  • θmax = 27.5°

  • h = −4 → 4

  • k = −10 → 15

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.04

  • 1408 reflections

  • 115 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.045P)2 + 0.4158P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—C2 1.339 (3)
N1—C6 1.343 (3)
C2—C3 1.373 (3)
C3—C4 1.389 (3)
C4—C5 1.383 (3)
C5—C6 1.370 (3)
O1—N2 1.272 (2)
O2—N2 1.237 (2)
O3—N2 1.245 (2)
C2—N1—C6 122.2 (2)
N1—C2—C3 120.3 (2)
C2—C3—C4 118.7 (2)
C5—C4—C3 119.8 (2)
C6—C5—C4 119.5 (2)
N1—C6—C5 119.6 (2)
O2—N2—O3 121.32 (18)
O2—N2—O1 119.44 (18)
O3—N2—O1 119.24 (17)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.97 (3) 1.74 (3) 2.699 (2) 171 (3)
N1—H1⋯O3 0.97 (3) 2.47 (3) 3.160 (3) 128 (2)
C2—H2⋯O3 0.93 (2) 2.63 (2) 3.229 (3) 122.4 (18)
C2—H2⋯O2i 0.93 (2) 2.50 (2) 3.076 (3) 119.9 (18)
C3—H3⋯O2ii 0.96 (2) 2.62 (2) 3.272 (3) 125.3 (17)
C4—H4⋯O3iii 0.94 (2) 2.65 (2) 3.244 (3) 121.5 (16)
C5—H5⋯O3iii 0.97 (2) 2.61 (2) 3.240 (3) 122.8 (18)
C6—H6⋯O1iv 0.97 (2) 2.38 (2) 3.215 (3) 143.1 (19)
C6—H6⋯O2iv 0.97 (2) 2.60 (2) 3.384 (3) 137.8 (18)
Symmetry codes: (i) [-x,y-{\script{1\over 2}},{\script{3\over 2}}-z]; (ii) [1-x,y-{\script{1\over 2}},{\script{3\over 2}}-z]; (iii) [1+x,{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (iv) -x,1-y,1-z.

All H atoms were refined in an isotropic approximation without constraints.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

pyridinium nitrate top
Crystal data top
C5H6N+·NO3F(000) = 296
Mr = 142.12Dx = 1.521 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 851 reflections
a = 3.7756 (9) Åθ = 10.4–24.9°
b = 12.336 (3) ŵ = 0.13 mm1
c = 13.353 (3) ÅT = 120 K
β = 88.60 (1)°Plate, colourless
V = 621.8 (4) Å30.42 × 0.37 × 0.03 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1006 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
Detector resolution: 8 pixels mm-1h = 44
ω scansk = 1015
3711 measured reflectionsl = 1717
1408 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.128All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4158P]
where P = (Fo2 + 2Fc2)/3
1408 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Experimental. The data collection nominally covered over a hemisphere of reciprocal space, by a combination of 3 sets of ω scans; each set at different φ and/or 2θ angles and each scan (5 sec/frame exposure) covering 0.3° in ω. Crystal to detector distance 4.42 cm. Crystals are stable in dry air but deteriorate in atmospheric air.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3911 (5)0.31297 (14)0.54178 (14)0.0221 (4)
H10.269 (8)0.374 (2)0.573 (2)0.055 (9)*
C20.4522 (5)0.22606 (18)0.59896 (16)0.0235 (5)
H20.371 (6)0.2287 (19)0.6656 (18)0.024 (6)*
C30.6197 (6)0.13673 (18)0.55879 (16)0.0245 (5)
H30.659 (6)0.074 (2)0.6001 (18)0.028 (6)*
C40.7247 (5)0.13889 (18)0.45835 (17)0.0239 (5)
H40.827 (6)0.0772 (18)0.4280 (16)0.018 (5)*
C50.6606 (6)0.23012 (18)0.40145 (17)0.0248 (5)
H50.733 (6)0.2309 (19)0.3315 (19)0.030 (6)*
C60.4892 (5)0.31687 (19)0.44450 (16)0.0247 (5)
H60.437 (6)0.3826 (19)0.4075 (18)0.028 (6)*
O10.0001 (4)0.48032 (13)0.61332 (11)0.0286 (4)
O20.1078 (5)0.56343 (14)0.75376 (12)0.0361 (4)
O30.1735 (4)0.41066 (14)0.75319 (12)0.0346 (4)
N20.0216 (5)0.48502 (14)0.70817 (13)0.0232 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0182 (8)0.0201 (9)0.0281 (10)0.0005 (7)0.0019 (7)0.0046 (8)
C20.0223 (10)0.0284 (11)0.0198 (10)0.0039 (9)0.0014 (8)0.0014 (9)
C30.0223 (11)0.0233 (11)0.0281 (11)0.0006 (9)0.0050 (8)0.0032 (9)
C40.0174 (10)0.0228 (11)0.0314 (12)0.0005 (8)0.0009 (8)0.0057 (9)
C50.0194 (10)0.0333 (12)0.0219 (10)0.0020 (9)0.0006 (8)0.0020 (9)
C60.0216 (10)0.0262 (12)0.0264 (11)0.0020 (9)0.0032 (9)0.0038 (9)
O10.0367 (9)0.0300 (9)0.0193 (7)0.0086 (7)0.0016 (6)0.0021 (7)
O20.0441 (10)0.0357 (9)0.0285 (9)0.0109 (8)0.0002 (7)0.0114 (7)
O30.0380 (9)0.0379 (10)0.0279 (9)0.0104 (8)0.0005 (7)0.0102 (7)
N20.0231 (9)0.0254 (10)0.0212 (9)0.0017 (8)0.0007 (7)0.0001 (8)
Geometric parameters (Å, º) top
N1—C21.339 (3)C4—H40.94 (2)
N1—C61.343 (3)C5—C61.370 (3)
N1—H10.97 (3)C5—H50.97 (2)
C2—C31.373 (3)C6—H60.97 (2)
C2—H20.93 (2)O1—N21.272 (2)
C3—C41.389 (3)O2—N21.237 (2)
C3—H30.96 (2)O3—N21.245 (2)
C4—C51.383 (3)
C2—N1—C6122.2 (2)C3—C4—H4120.3 (13)
C2—N1—H1117.5 (17)C6—C5—C4119.5 (2)
C6—N1—H1120.3 (17)C6—C5—H5121.1 (15)
N1—C2—C3120.3 (2)C4—C5—H5119.4 (15)
N1—C2—H2117.2 (14)N1—C6—C5119.6 (2)
C3—C2—H2122.5 (14)N1—C6—H6117.8 (14)
C2—C3—C4118.7 (2)C5—C6—H6122.5 (14)
C2—C3—H3119.8 (14)O2—N2—O3121.32 (18)
C4—C3—H3121.6 (14)O2—N2—O1119.44 (18)
C5—C4—C3119.8 (2)O3—N2—O1119.24 (17)
C5—C4—H4119.8 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.97 (3)1.74 (3)2.699 (2)171 (3)
N1—H1···O30.97 (3)2.47 (3)3.160 (3)128 (2)
C2—H2···O30.93 (2)2.63 (2)3.229 (3)122.4 (18)
C2—H2···O2i0.93 (2)2.50 (2)3.076 (3)119.9 (18)
C3—H3···O2ii0.96 (2)2.62 (2)3.272 (3)125.3 (17)
C4—H4···O3iii0.94 (2)2.65 (2)3.244 (3)121.5 (16)
C5—H5···O3iii0.97 (2)2.61 (2)3.240 (3)122.8 (18)
C6—H6···O1iv0.97 (2)2.38 (2)3.215 (3)143.1 (19)
C6—H6···O2iv0.97 (2)2.60 (2)3.384 (3)137.8 (18)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z1/2; (iv) x, y+1, z+1.
 

Acknowledgements

The author thanks Dr I. F. Perepichka for providing single crystals of (I[link]).

References

First citationBatsanov, A. S. (2004). Acta Cryst. E60, o2424–o2425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1557.  CrossRef CAS Web of Science Google Scholar
First citationBolte, M., Griesinger, C. & Sakhaii, P. (2001). Acta Cryst. E57, o458–o460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond. Oxford University Press.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMootz, D. & Wusson, H.-G. (1981). J. Chem. Phys. 75, 1517–1522.  CSD CrossRef CAS Web of Science Google Scholar
First citationPalmore, G. T. R. & McBride-Wieser, M. T. (1997). Acta Cryst. C53, 1904–1907.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSerewicz, A. J., Robertson, B. K. & Meyers, E. A. (1965). J. Phys. Chem. 69, 1915–1921.  CrossRef CAS Web of Science Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds