metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(tetra-n-butyl­ammonium) tetra­kis­­[chloro(μ3-sulfido)copper(I)]­tungstate(VI): a second polymorph

aDepartment of Chemistry, Faculty of Science, Aza­rbaijan University of Tarbiat Moallem, Tabriz, Iran, and bSchool of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 22 November 2004; accepted 23 November 2004; online 27 November 2004)

The title compound, (C16H36N)2[WS4(CuCl)4], has been obtained in a second polymorphic form. The anion, in which four of the six S⋯S edges of the central WS4 tetrahedron are bridged by CuCl neutral molecular units to give a planar pentanuclear WCu4 framework, is disordered on a crystallographic fourfold rotation axis, requiring equal occupancy of two sets of four positions for the S atoms. Copper has distorted trigonal planar coordination, involving two μ3-S atoms and a terminal Cl atom. The two independent cations lie on positions of symmetry [\overline 4].

Comment

We recently reported the structure of a second tetragonal polymorph of (NnBu4)2[MoS4(CuCl)4] in space group P4/n (Brooks et al., 2004[Brooks, N. R., Clegg, W., Hossaini Sadr, M., Esm-Hosseini, M. & Yavari, R. (2004). Acta Cryst. E60, m204-m206.]); the first polymorph, in space group I[\overline 4], had very similar cell parameters (Sécheresse et al., 1991[Sécheresse, F., Bernès, S., Robert, F. & Jeannin, Y. (1991). J. Chem. Soc. Dalton Trans. pp. 2875-2881.]). The title tungsten analogue, (I[link]), was also prepared as a precursor for the synthesis of complexes with the WS4Cu4 core and a range of terminal ligands (Hossaini Sadr et al., 2004[Hossaini Sadr, M., Clegg, W. & Bijhanzade, H. R. (2004). Polyhedron, 23, 637-641.]) and it is found to be isostructural with the second polymorph of the molybdenum complex. There are no significant differences between the two structures, and a full discussion was given in the previous report.[link]

[Scheme 1]

Sécheresse et al. (1991[Sécheresse, F., Bernès, S., Robert, F. & Jeannin, Y. (1991). J. Chem. Soc. Dalton Trans. pp. 2875-2881.]) reported that the compound was isostructural with the molybdenum analogue in its body-centred tetragonal form, though only the cell parameters and space group are given and the Cambridge Structural Database entry (refcode SORLIU; Version 5.25; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) contains no atomic coordinates or other information indicating that the crystal structure has been fully determined. Two other salts of the same anion have been reported: in the tetra­phenyl­phospho­nium salt (Clegg et al., 1987[Clegg, W., Scattergood, C. D. & Garner, C. D. (1987). Acta Cryst. C43, 786-787.]), the anion forms dimers through pairs of chloro bridges between Cu atoms, and in the tetra-n-propyl­ammonium salt (Sécheresse et al., 1991[Sécheresse, F., Bernès, S., Robert, F. & Jeannin, Y. (1991). J. Chem. Soc. Dalton Trans. pp. 2875-2881.]), further bridges are formed, linking the anions into a polymeric chain. A combination of terminal and bridging halogen atoms has been found in some other [MS4(CuX)n]2− complexes (Nicholson et al., 1983[Nicholson, J. R., Flood, A. C., Garner, C. D. & Clegg, W. (1983). Chem. Commun. pp. 1179-1180.]), and the interplay is clearly subtle.

[Figure 1]
Figure 1
The structure of the anion, with atom labels for the asymmetric unit and 50% probability displacement ellipsoids. Only one component of the disorder is shown for the S atoms.
[Figure 2]
Figure 2
The anion with both disorder components, viewed along the crystallographic fourfold rotation axis. The second disorder component is shown with dashed ellipsoids and bonds; four of the W—S bonds are obscured by the four that are visible.

Experimental

A mixture of (NH4)2[WS4] (0.35 g, 1.0 mmol), solid (NBu4)Br (0.65 g, 2.0 mmol) and CuCl (0.40 g, 4.0 mmol) in dry acetone (120 ml) was stirred vigorously in air at ambient temperature for 14 h. The resulting solution was filtered and the filtrate was concentrated to about 20 ml. The product was precipitated from the solution by addition of diethyl ether (4 × 25 ml) and removal of the supernatant solution each time. The orange–red precipitate was washed with diethyl ether (3 × 20 ml) and dried in vacuo. A saturated acetone solution of the complex was rendered slightly turbid by addition of n-pentane and air-stable orange crystals suitable for X-ray diffraction were collected after 48 h. The crystals were washed with diethyl ether several times. IR (KBr, cm−1): (W—S) 441 (s).

Crystal data
  • (C16H36N)2[WCu4Cl4S4]

  • Mr = 1192.97

  • Tetragonal, P4/n

  • a = 13.3652 (5) Å

  • c = 13.668 (2) Å

  • V = 2441.5 (4) Å3

  • Z = 2

  • Dx = 1.623 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 54 reflections

  • θ = 2.5–25.0°

  • μ = 4.47 mm−1

  • T = 150 (2) K

  • Plate, purple

  • 0.44 × 0.38 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.147, Tmax = 0.637

  • 42475 measured reflections

  • 2804 independent reflections

  • 2441 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 27.5°

  • h = −17 → 17

  • k = −17 → 17

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.11

  • 2804 reflections

  • 119 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0199P)2 + 2.9221P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

W—S 2.2435 (13)
W—S′ 2.2555 (13)
Cu—Cl 2.1586 (7)
Cu—S 2.2302 (13)
Cu—Si 2.2296 (14)
Cu—S′ 2.2882 (13)
Cu—S′i 2.2961 (13)
S—W—Sii 109.61 (8)
S—W—S′iii 108.63 (5)
S—W—S′i 108.86 (5)
S′—W—S′ii 112.23 (7)
Cl—Cu—S 124.08 (4)
Cl—Cu—Si 124.19 (4)
Cl—Cu—S′ 127.81 (4)
Cl—Cu—S′i 128.00 (4)
Si—Cu—S′ 107.96 (5)
S—Cu—S′i 107.89 (5)
W—S—Cu 72.34 (4)
W—S—Cuiii 72.35 (4)
Cu—S—Cuiii 113.64 (6)
W—S′—Cu 71.05 (4)
W—S′—Cuiii 70.91 (4)
Cu—S′—Cuiii 109.02 (6)
N1—C1—C2—C3 −174.12 (19)
C1—C2—C3—C4 −172.5 (2)
N2—C5—C6—C7 −173.2 (2)
C5—C6—C7—C8 74.5 (3)
Symmetry codes: (i) [{\script{1\over 2}}-y,x,z]; (ii) [{\script{1\over 2}}-x,{\script{1\over 2}}-y,z]; (iii) [y,{\script{1\over 2}}-x,z].

The space group P4/n was determined unambiguously from the systematic absences and confirmed by successful refinement; there is pseudo-body-centring, reflections with h + k + l = 2n + 1 having an average intensity approximately half that for reflections with h + k + l = 2n. Atom W lies on a crystallographic fourfold rotation axis (4 or C4), while the two N atoms lie at improper fourfold rotation sites ([\overline 4] or S4); thus, the asymmetric unit of the structure consists of one-quarter of the anion and two separate quarters of cations. The coordinates of the isostructural molybdenum complex were taken as starting parameters for refinement. As in the previous structure, the S atoms are disordered equally over two independent sets of equivalent positions, generating eight positions around the central W atom; each anion contains two S atoms from one set (S) and two from the other (S′). H atoms were placed geometrically (C—H = 0.98–0.99 Å) and refined with a riding model; Uiso(H) values were constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom. The final difference map contains one peak greater than 1 e Å−3, which lies 0.88 Å from the W atom.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: EvalCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EvalCCD; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.<

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Bis(tetra-n-butylammonium) tetrakis[chloro(µ3-sulfido)copper(I)]tungstate(VI) top
Crystal data top
(C16H36N)2[WCu4Cl4S4]Dx = 1.623 Mg m3
Mr = 1192.97Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 54 reflections
a = 13.3652 (5) Åθ = 2.5–25.0°
c = 13.668 (2) ŵ = 4.47 mm1
V = 2441.5 (4) Å3T = 150 K
Z = 2Plate, purple
F(000) = 12000.44 × 0.38 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2804 independent reflections
Radiation source: sealed tube2441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 27.5°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1717
Tmin = 0.147, Tmax = 0.637k = 1717
42475 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0199P)2 + 2.9221P]
where P = (Fo2 + 2Fc2)/3
2804 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 0.59 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W0.25000.25000.267886 (14)0.02507 (7)
Cu0.06514 (2)0.31948 (3)0.26253 (2)0.03166 (9)
Cl0.08556 (5)0.37638 (6)0.25110 (4)0.03595 (15)
S0.19336 (9)0.37493 (11)0.17328 (11)0.0348 (3)0.50
S'0.19179 (9)0.37743 (10)0.35989 (10)0.0308 (3)0.50
N10.75000.25000.00000.0245 (8)
C10.83182 (18)0.28797 (18)0.06785 (18)0.0269 (5)
H1A0.84860.23360.11420.032*
H1B0.80390.34390.10670.032*
C20.92826 (19)0.32369 (19)0.02113 (19)0.0305 (5)
H2A0.96290.26700.01080.037*
H2B0.91360.37490.02920.037*
C30.9947 (2)0.3684 (2)0.1013 (2)0.0414 (7)
H3A1.00020.31980.15580.050*
H3B0.96250.42960.12710.050*
C41.0987 (2)0.3942 (3)0.0655 (3)0.0564 (9)
H4A1.09390.44150.01090.085*
H4B1.13700.42480.11890.085*
H4C1.13270.33320.04360.085*
N20.75000.25000.50000.0260 (8)
C50.82832 (19)0.29542 (19)0.56795 (18)0.0290 (5)
H5A0.79410.34200.61320.035*
H5B0.85750.24100.60790.035*
C60.9133 (2)0.3515 (2)0.5185 (2)0.0410 (7)
H6A0.88680.41200.48580.049*
H6B0.94440.30830.46810.049*
C70.9923 (2)0.3818 (2)0.5947 (2)0.0440 (7)
H7A1.03610.43380.56590.053*
H7B0.95790.41190.65170.053*
C81.0565 (2)0.2961 (3)0.6297 (3)0.0515 (8)
H8A1.01420.24560.66120.077*
H8B1.10580.32100.67690.077*
H8C1.09120.26600.57380.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W0.02701 (8)0.02701 (8)0.02119 (11)0.0000.0000.000
Cu0.02669 (16)0.03787 (18)0.03043 (19)0.00129 (12)0.00094 (12)0.00159 (13)
Cl0.0223 (3)0.0601 (4)0.0255 (3)0.0057 (3)0.0008 (2)0.0018 (3)
S0.0265 (6)0.0466 (8)0.0312 (7)0.0018 (6)0.0029 (5)0.0142 (6)
S'0.0300 (6)0.0342 (7)0.0282 (7)0.0015 (5)0.0020 (5)0.0081 (5)
N10.0257 (12)0.0257 (12)0.022 (2)0.0000.0000.000
C10.0313 (13)0.0255 (12)0.0237 (12)0.0002 (10)0.0058 (10)0.0007 (9)
C20.0307 (13)0.0293 (13)0.0315 (13)0.0016 (10)0.0059 (11)0.0007 (10)
C30.0411 (16)0.0377 (15)0.0455 (17)0.0035 (12)0.0152 (13)0.0033 (13)
C40.0389 (17)0.0444 (18)0.086 (3)0.0099 (14)0.0175 (17)0.0001 (17)
N20.0264 (12)0.0264 (12)0.025 (2)0.0000.0000.000
C50.0323 (13)0.0295 (13)0.0253 (12)0.0034 (10)0.0044 (10)0.0005 (10)
C60.0394 (16)0.0470 (17)0.0365 (15)0.0120 (13)0.0088 (12)0.0086 (13)
C70.0456 (17)0.0401 (16)0.0462 (18)0.0150 (13)0.0113 (14)0.0040 (13)
C80.0447 (17)0.060 (2)0.050 (2)0.0091 (15)0.0096 (14)0.0067 (16)
Geometric parameters (Å, º) top
W—Cu2.6404 (3)C2—H2A0.990
W—Cui2.6404 (3)C2—H2B0.990
W—Cuii2.6404 (3)C2—C31.532 (4)
W—Cuiii2.6404 (3)C3—H3A0.990
W—S2.2435 (13)C3—H3B0.990
W—Si2.2435 (13)C3—C41.514 (4)
W—Siii2.2435 (13)C4—H4A0.980
W—Sii2.2435 (13)C4—H4B0.980
W—S'2.2555 (13)C4—H4C0.980
W—S'ii2.2555 (13)N2—C51.525 (2)
W—S'i2.2555 (13)N2—C5iv1.525 (2)
W—S'iii2.2555 (13)N2—C5vii1.525 (2)
Cu—Cl2.1586 (7)N2—C5viii1.525 (2)
Cu—S2.2302 (13)C5—H5A0.990
Cu—Si2.2296 (14)C5—H5B0.990
Cu—S'2.2882 (13)C5—C61.519 (4)
Cu—S'i2.2961 (13)C6—H6A0.990
S—Cuii2.2296 (14)C6—H6B0.990
S'—Cuii2.2962 (13)C6—C71.537 (4)
N1—C11.521 (2)C7—H7A0.990
N1—C1iv1.521 (2)C7—H7B0.990
N1—C1v1.521 (2)C7—C81.510 (4)
N1—C1vi1.521 (2)C8—H8A0.980
C1—H1A0.990C8—H8B0.980
C1—H1B0.990C8—H8C0.980
C1—C21.516 (4)
S—W—Siii109.61 (8)C2—C3—H3A109.0
Si—W—Sii109.61 (8)C2—C3—H3B109.0
S—W—S'ii108.63 (5)C2—C3—C4113.0 (3)
Siii—W—S'ii108.86 (5)H3A—C3—H3B107.8
Si—W—S'108.63 (5)H3A—C3—C4109.0
Sii—W—S'108.86 (5)H3B—C3—C4109.0
S—W—S'i108.86 (5)C3—C4—H4A109.5
Siii—W—S'i108.63 (5)C3—C4—H4B109.5
Si—W—S'iii108.86 (5)C3—C4—H4C109.5
Sii—W—S'iii108.63 (5)H4A—C4—H4B109.5
S'ii—W—S'i112.23 (7)H4A—C4—H4C109.5
S'—W—S'iii112.23 (7)H4B—C4—H4C109.5
Cl—Cu—S124.08 (4)C5—N2—C5iv104.99 (19)
Cl—Cu—Si124.19 (4)C5—N2—C5vii111.76 (10)
Cl—Cu—S'127.81 (4)C5iv—N2—C5vii111.76 (10)
Cl—Cu—S'i128.00 (4)C5—N2—C5viii111.76 (10)
Si—Cu—S'107.96 (5)C5iv—N2—C5viii111.76 (10)
S—Cu—S'i107.89 (5)C5vii—N2—C5viii104.99 (19)
W—S—Cu72.34 (4)N2—C5—H5A108.3
W—S—Cuii72.35 (4)N2—C5—H5B108.3
Cu—S—Cuii113.64 (6)N2—C5—C6116.0 (2)
W—S'—Cu71.05 (4)H5A—C5—H5B107.4
W—S'—Cuii70.91 (4)H5A—C5—C6108.3
Cu—S'—Cuii109.02 (6)H5B—C5—C6108.3
C1iv—N1—C1v111.83 (10)C5—C6—H6A109.7
C1iv—N1—C1vi111.83 (10)C5—C6—H6B109.7
C1v—N1—C1vi104.86 (19)C5—C6—C7110.0 (2)
C1—N1—C1iv104.86 (19)H6A—C6—H6B108.2
C1—N1—C1v111.83 (10)H6A—C6—C7109.7
C1—N1—C1vi111.83 (10)H6B—C6—C7109.7
N1—C1—H1A108.0C6—C7—H7A108.8
N1—C1—H1B108.0C6—C7—H7B108.8
N1—C1—C2117.36 (19)C6—C7—C8113.9 (3)
H1A—C1—H1B107.2H7A—C7—H7B107.7
H1A—C1—C2108.0H7A—C7—C8108.8
H1B—C1—C2108.0H7B—C7—C8108.8
C1—C2—H2A110.0C7—C8—H8A109.5
C1—C2—H2B110.0C7—C8—H8B109.5
C1—C2—C3108.3 (2)C7—C8—H8C109.5
H2A—C2—H2B108.4H8A—C8—H8B109.5
H2A—C2—C3110.0H8A—C8—H8C109.5
H2B—C2—C3110.0H8B—C8—H8C109.5
C1iv—N1—C1—C2175.3 (2)C5iv—N2—C5—C6176.7 (3)
C1v—N1—C1—C263.3 (3)C5vii—N2—C5—C662.0 (3)
C1vi—N1—C1—C254.0 (3)C5viii—N2—C5—C655.4 (3)
N1—C1—C2—C3174.12 (19)N2—C5—C6—C7173.2 (2)
C1—C2—C3—C4172.5 (2)C5—C6—C7—C874.5 (3)
Symmetry codes: (i) y+1/2, x, z; (ii) y, x+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+3/2, y+1/2, z; (v) y+1, x1/2, z; (vi) y+1/2, x+1, z; (vii) y+1/2, x+1, z+1; (viii) y+1, x1/2, z+1.
 

Acknowledgements

We thank the EPSRC (UK) and the Research Office of Aza­rbaijan University for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrooks, N. R., Clegg, W., Hossaini Sadr, M., Esm-Hosseini, M. & Yavari, R. (2004). Acta Cryst. E60, m204–m206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClegg, W., Scattergood, C. D. & Garner, C. D. (1987). Acta Cryst. C43, 786–787.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHossaini Sadr, M., Clegg, W. & Bijhanzade, H. R. (2004). Polyhedron, 23, 637–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicholson, J. R., Flood, A. C., Garner, C. D. & Clegg, W. (1983). Chem. Commun. pp. 1179–1180.  CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSécheresse, F., Bernès, S., Robert, F. & Jeannin, Y. (1991). J. Chem. Soc. Dalton Trans. pp. 2875–2881.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds