organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,5S,8R)-1,8-Di­hy­droxy-6-oxa-3-aza­bi­cyclo­[3.2.1]­octan-2-one

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk

(Received 4 November 2004; accepted 9 November 2004; online 13 November 2004)

The crystal structure of the title bicyclic lactam, C6H9NO4, has firmly established the stereochemistry of the branched δ-sugar amino acid scaffold.

Comment

Sugar amino acids (SAA) have been extensively investigated as peptidomimetics (Chakraborty et al., 2004[Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187-207.]). δ-Tetra­hydro­furan (THF) SAA have been shown to be dipeptide isosteres (Grotenberg et al., 2004[Grotenberg, G. M., Timmer, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444-3446.]; van Well et al., 2003[Well, R. M. van, Marinelli, L., Altona, C., Erkelens, K., Siegal, G., van Raaij, M., Llamas-Saiz, A. L., Kessler, H., Novellino, E., Lavecchia, A., van Boom, J. H. & Overhand, M. (2003). J. Am. Chem. Soc. 125, 10822-10829.]); in particular, those THF SAA which have the carboxyl­ic acid and amino methyl components cis to each other, as in (1[link]) (see scheme), almost invariably induce β-turn-like structures in their homooligomers (Smith et al., 1998[Smith, M. D., Claridge, T. D. W., Tranter, G. E., Sansom, M. S. P. & Fleet, G. W. J. (1998). Chem. Commun. pp. 2041-2042.], 2003[Smith, M. D. Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647-3655.]).[link]

[Scheme 1]

Most such THF SAA have been derived from carbohydrates and all examples previously have contained a linear carbon chain. The branched THF SAA scaffold (2[link]), prepared from a branched sugar lactone (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. Accepted. (DOI: 10.1016/j.tetlet.2004.10.086).]), spontaneously underwent an intramolecular cyclization to form the crystalline bicyclic lactam (3[link]) (Figs. 1[link] and 2[link], and Table 1[link]). A number of stereochemical and structural uncertainties in the synthesis of (2[link]) are removed by the X-ray crystallographic analysis of (3[link]).

[Figure 1]
Figure 1
The molecular structure of (3[link]), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
[Figure 2]
Figure 2
Packing diagram of (3[link]), viewed down the a axis.

Experimental

The bicyclic compound was dissolved in methanol in a flask and then crystallized as the solvent slowly evaporated to give colourless plate-like crystals. A suitable piece was cut from a larger crystal.

Crystal data
  • C6H9NO4

  • Mr = 159.14

  • Orthorhombic, P212121

  • a = 5.9624 (1) Å

  • b = 10.5889 (2) Å

  • c = 10.7089 (2) Å

  • V = 676.11 (2) Å3

  • Z = 4

  • Dx = 1.563 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1160 reflections

  • θ = 5–30°

  • μ = 0.13 mm−1

  • T = 190 K

  • Block cut from plate, colourless

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.96, Tmax = 0.97

  • 1981 measured reflections

  • 1158 independent reflections

  • 1158 reflections with no I/σ(I) cutoff

  • Rint = 0.007

  • θmax = 30.0°

  • h = −8 → 8

  • k = −14 → 14

  • l = −14 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.03

  • 1158 reflections

  • 119 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(F*) + 0.035p2 + 0.136p] where p = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.15 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.])

  • Extinction coefficient: 160 (40)

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.5387 (17)
C1—C5 1.5292 (17)
C1—C8 1.5330 (16)
C1—O11 1.4028 (14)
C2—C3 1.5263 (18)
C2—O10 1.4080 (15)
C3—O4 1.4383 (17)
C3—C6 1.5125 (19)
O4—C5 1.4374 (16)
C6—N7 1.4651 (17)
N7—C8 1.3363 (16)
C8—O9 1.2348 (15)
C2—C1—C5 100.65 (10)
C2—C1—C8 107.94 (9)
C5—C1—C8 110.19 (10)
C2—C1—O11 115.93 (10)
C5—C1—O11 109.32 (9)
C8—C1—O11 112.17 (10)
C1—C2—C3 98.03 (9)
C1—C2—O10 114.20 (10)
C3—C2—O10 111.84 (10)
C2—C3—O4 103.70 (10)
C2—C3—C6 110.98 (10)
O4—C3—C6 109.68 (11)
C3—O4—C5 109.17 (10)
C1—C5—O4 105.12 (10)
C3—C6—N7 110.52 (10)
C6—N7—C8 125.51 (10)
C1—C8—N7 116.23 (10)
C1—C8—O9 121.38 (11)
N7—C8—O9 122.35 (11)

As the data were collected with molybdenum radiation, there were no measurable anomalous differences, as a consequence of which it was admissible to merge Friedel pairs of reflections. The H atoms were all seen in a difference map but those attached to carbon were placed geometrically. Their positions and Uiso were regularized using slack restraints. The refinement was completed using riding constraints for the H atoms bonded to carbon, and retaining the slack restraints for the other H atoms.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al. 1996); software used to prepare material for publication: CRYSTALS.

(1R,5S,8R)-1,8-Dihydroxy-6-oxa-3-azabicyclo[3.2.1]octan-2-one top
Crystal data top
C6H9NO4F(000) = 336
Mr = 159.14Dx = 1.563 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1160 reflections
a = 5.9624 (1) Åθ = 5–30°
b = 10.5889 (2) ŵ = 0.13 mm1
c = 10.7089 (2) ÅT = 190 K
V = 676.11 (2) Å3Plate, colourless
Z = 40.50 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1158 reflections with no I/σ(I) cutoff
Graphite monochromatorRint = 0.007
ω scansθmax = 30.0°, θmin = 5.2°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1996)
h = 88
Tmin = 0.96, Tmax = 0.97k = 1414
1981 measured reflectionsl = 1415
1158 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 Method: SHELXL97 (Sheldrick, 1997); w = 1/[σ2(F*) + 0.035p2 + 0.136p]
where p = 0.333max(Fo2,0) + (1-0.333)/Fc2
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.27 e Å3
1158 reflectionsΔρmin = 0.15 e Å3
119 parametersExtinction correction: Larson (1970). Crystallographic Computing eq 22
22 restraintsExtinction coefficient: 160 (40)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46908 (19)0.57839 (11)0.38206 (11)0.0155
C20.3993 (2)0.53163 (12)0.51244 (11)0.0189
C30.1674 (2)0.48138 (12)0.47830 (12)0.0222
O40.07521 (16)0.57859 (10)0.39976 (11)0.0281
C50.2554 (2)0.64695 (12)0.34158 (13)0.0214
C60.1851 (2)0.35936 (13)0.40555 (13)0.0251
N70.35777 (19)0.36957 (10)0.30873 (10)0.0225
C80.5087 (2)0.46236 (11)0.29935 (11)0.0177
O90.66711 (17)0.45784 (10)0.22519 (9)0.0280
O100.53826 (18)0.43619 (9)0.56141 (9)0.0264
O110.65015 (14)0.66291 (8)0.37860 (9)0.0214
H210.389 (2)0.6029 (13)0.5712 (13)0.0227*
H310.068 (2)0.4703 (14)0.5491 (13)0.0261*
H510.258 (3)0.7354 (13)0.3728 (13)0.0251*
H520.237 (3)0.6469 (13)0.2507 (12)0.0251*
H610.221 (3)0.2901 (13)0.4609 (14)0.0304*
H620.039 (2)0.3439 (15)0.3661 (14)0.0304*
H90.77320.61780.38380.0500*
H110.59290.46730.62530.0500*
H10.36440.30880.25540.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0115 (4)0.0152 (4)0.0197 (5)0.0004 (4)0.0014 (4)0.0014 (4)
C20.0194 (5)0.0198 (5)0.0177 (5)0.0005 (5)0.0002 (4)0.0013 (4)
C30.0167 (5)0.0264 (6)0.0234 (5)0.0017 (5)0.0041 (5)0.0011 (5)
O40.0121 (4)0.0292 (5)0.0430 (6)0.0011 (4)0.0002 (4)0.0057 (4)
C50.0134 (5)0.0204 (5)0.0305 (6)0.0018 (5)0.0026 (5)0.0033 (5)
C60.0210 (6)0.0235 (6)0.0308 (7)0.0081 (5)0.0017 (5)0.0002 (5)
N70.0228 (5)0.0201 (5)0.0245 (5)0.0026 (4)0.0013 (5)0.0066 (4)
C80.0166 (5)0.0205 (5)0.0160 (5)0.0019 (5)0.0015 (4)0.0005 (4)
O90.0227 (4)0.0349 (5)0.0263 (4)0.0006 (4)0.0083 (4)0.0029 (4)
O100.0319 (5)0.0240 (4)0.0233 (4)0.0012 (4)0.0098 (4)0.0033 (4)
O110.0124 (4)0.0167 (4)0.0352 (5)0.0020 (3)0.0031 (4)0.0042 (4)
Geometric parameters (Å, º) top
C1—C21.5387 (17)C5—H510.994 (13)
C1—C51.5292 (17)C5—H520.979 (13)
C1—C81.5330 (16)C6—N71.4651 (17)
C1—O111.4028 (14)C6—H610.967 (13)
C2—C31.5263 (18)C6—H620.979 (14)
C2—O101.4080 (15)N7—C81.3363 (16)
C2—H210.985 (13)N7—H10.861
C3—O41.4383 (17)C8—O91.2348 (15)
C3—C61.5125 (19)O10—H110.826
C3—H310.969 (13)O11—H90.877
O4—C51.4374 (16)
C2—C1—C5100.65 (10)C1—C5—H51109.7 (9)
C2—C1—C8107.94 (9)O4—C5—H51109.9 (9)
C5—C1—C8110.19 (10)C1—C5—H52111.9 (9)
C2—C1—O11115.93 (10)O4—C5—H52110.4 (9)
C5—C1—O11109.32 (9)H51—C5—H52109.7 (11)
C8—C1—O11112.17 (10)C3—C6—N7110.52 (10)
C1—C2—C398.03 (9)C3—C6—H61110.3 (9)
C1—C2—O10114.20 (10)N7—C6—H61109.6 (9)
C3—C2—O10111.84 (10)C3—C6—H62107.6 (9)
C1—C2—H21110.5 (8)N7—C6—H62109.3 (9)
C3—C2—H21111.3 (9)H61—C6—H62109.5 (12)
O10—C2—H21110.4 (8)C6—N7—C8125.51 (10)
C2—C3—O4103.70 (10)C6—N7—H1116.531
C2—C3—C6110.98 (10)C8—N7—H1117.916
O4—C3—C6109.68 (11)C1—C8—N7116.23 (10)
C2—C3—H31114.0 (9)C1—C8—O9121.38 (11)
O4—C3—H31108.2 (9)N7—C8—O9122.35 (11)
C6—C3—H31110.0 (9)C2—O10—H11104.724
C3—O4—C5109.17 (10)C1—O11—H9107.130
C1—C5—O4105.12 (10)
 

Footnotes

Current address: Visiting Scientist at the Department of Chemical, Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England

Acknowledgements

Financial support (to MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187–207.  Web of Science CrossRef CAS Google Scholar
First citationGrotenberg, G. M., Timmer, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444–3446.  Web of Science CSD CrossRef PubMed Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. Accepted. (DOI: 10.1016/j.tetlet.2004.10.086).  Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSmith, M. D. Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647–3655.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSmith, M. D., Claridge, T. D. W., Tranter, G. E., Sansom, M. S. P. & Fleet, G. W. J. (1998). Chem. Commun. pp. 2041–2042.  Web of Science CrossRef Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWell, R. M. van, Marinelli, L., Altona, C., Erkelens, K., Siegal, G., van Raaij, M., Llamas-Saiz, A. L., Kessler, H., Novellino, E., Lavecchia, A., van Boom, J. H. & Overhand, M. (2003). J. Am. Chem. Soc. 125, 10822–10829.  Web of Science CSD CrossRef PubMed Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds