organic compounds
(1R,5S,8R)-1,8-Dihydroxy-6-oxa-3-azabicyclo[3.2.1]octan-2-one
aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk
The 6H9NO4, has firmly established the stereochemistry of the branched δ-sugar amino acid scaffold.
of the title bicyclic lactam, CComment
Sugar amino acids (SAA) have been extensively investigated as peptidomimetics (Chakraborty et al., 2004). δ-Tetrahydrofuran (THF) SAA have been shown to be dipeptide isosteres (Grotenberg et al., 2004; van Well et al., 2003); in particular, those THF SAA which have the carboxylic acid and amino methyl components cis to each other, as in (1) (see scheme), almost invariably induce β-turn-like structures in their homooligomers (Smith et al., 1998, 2003).
Most such THF SAA have been derived from ), prepared from a branched sugar lactone (Hotchkiss et al., 2004), spontaneously underwent an intramolecular to form the crystalline bicyclic lactam (3) (Figs. 1 and 2, and Table 1). A number of stereochemical and structural uncertainties in the synthesis of (2) are removed by the X-ray crystallographic analysis of (3).
and all examples previously have contained a linear carbon chain. The branched THF SAA scaffold (2Experimental
The bicyclic compound was dissolved in methanol in a flask and then crystallized as the solvent slowly evaporated to give colourless plate-like crystals. A suitable piece was cut from a larger crystal.
Crystal data
|
Refinement
|
|
As the data were collected with molybdenum radiation, there were no measurable anomalous differences, as a consequence of which it was admissible to merge Friedel pairs of reflections. The H atoms were all seen in a difference map but those attached to carbon were placed geometrically. Their positions and Uiso were regularized using slack restraints. The was completed using riding constraints for the H atoms bonded to carbon, and retaining the slack restraints for the other H atoms.
Data collection: COLLECT (Nonius, 1997); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536804028983/tk6196sup1.cif
contains datablocks global, 3. DOI:Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S1600536804028983/tk61963sup2.hkl
Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al. 1996); software used to prepare material for publication: CRYSTALS.C6H9NO4 | F(000) = 336 |
Mr = 159.14 | Dx = 1.563 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1160 reflections |
a = 5.9624 (1) Å | θ = 5–30° |
b = 10.5889 (2) Å | µ = 0.13 mm−1 |
c = 10.7089 (2) Å | T = 190 K |
V = 676.11 (2) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.30 × 0.20 mm |
Nonius KappaCCD diffractometer | 1158 reflections with no I/σ(I) cutoff |
Graphite monochromator | Rint = 0.007 |
ω scans | θmax = 30.0°, θmin = 5.2° |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1996) | h = −8→8 |
Tmin = 0.96, Tmax = 0.97 | k = −14→14 |
1981 measured reflections | l = −14→15 |
1158 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.028 | Method: SHELXL97 (Sheldrick, 1997); w = 1/[σ2(F*) + 0.035p2 + 0.136p] where p = 0.333max(Fo2,0) + (1-0.333)/Fc2 |
wR(F2) = 0.069 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.27 e Å−3 |
1158 reflections | Δρmin = −0.15 e Å−3 |
119 parameters | Extinction correction: Larson (1970). Crystallographic Computing eq 22 |
22 restraints | Extinction coefficient: 160 (40) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | ||
C1 | 0.46908 (19) | 0.57839 (11) | 0.38206 (11) | 0.0155 | |
C2 | 0.3993 (2) | 0.53163 (12) | 0.51244 (11) | 0.0189 | |
C3 | 0.1674 (2) | 0.48138 (12) | 0.47830 (12) | 0.0222 | |
O4 | 0.07521 (16) | 0.57859 (10) | 0.39976 (11) | 0.0281 | |
C5 | 0.2554 (2) | 0.64695 (12) | 0.34158 (13) | 0.0214 | |
C6 | 0.1851 (2) | 0.35936 (13) | 0.40555 (13) | 0.0251 | |
N7 | 0.35777 (19) | 0.36957 (10) | 0.30873 (10) | 0.0225 | |
C8 | 0.5087 (2) | 0.46236 (11) | 0.29935 (11) | 0.0177 | |
O9 | 0.66711 (17) | 0.45784 (10) | 0.22519 (9) | 0.0280 | |
O10 | 0.53826 (18) | 0.43619 (9) | 0.56141 (9) | 0.0264 | |
O11 | 0.65015 (14) | 0.66291 (8) | 0.37860 (9) | 0.0214 | |
H21 | 0.389 (2) | 0.6029 (13) | 0.5712 (13) | 0.0227* | |
H31 | 0.068 (2) | 0.4703 (14) | 0.5491 (13) | 0.0261* | |
H51 | 0.258 (3) | 0.7354 (13) | 0.3728 (13) | 0.0251* | |
H52 | 0.237 (3) | 0.6469 (13) | 0.2507 (12) | 0.0251* | |
H61 | 0.221 (3) | 0.2901 (13) | 0.4609 (14) | 0.0304* | |
H62 | 0.039 (2) | 0.3439 (15) | 0.3661 (14) | 0.0304* | |
H9 | 0.7732 | 0.6178 | 0.3838 | 0.0500* | |
H11 | 0.5929 | 0.4673 | 0.6253 | 0.0500* | |
H1 | 0.3644 | 0.3088 | 0.2554 | 0.0500* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0115 (4) | 0.0152 (4) | 0.0197 (5) | −0.0004 (4) | −0.0014 (4) | 0.0014 (4) |
C2 | 0.0194 (5) | 0.0198 (5) | 0.0177 (5) | 0.0005 (5) | −0.0002 (4) | −0.0013 (4) |
C3 | 0.0167 (5) | 0.0264 (6) | 0.0234 (5) | −0.0017 (5) | 0.0041 (5) | 0.0011 (5) |
O4 | 0.0121 (4) | 0.0292 (5) | 0.0430 (6) | 0.0011 (4) | 0.0002 (4) | 0.0057 (4) |
C5 | 0.0134 (5) | 0.0204 (5) | 0.0305 (6) | 0.0018 (5) | −0.0026 (5) | 0.0033 (5) |
C6 | 0.0210 (6) | 0.0235 (6) | 0.0308 (7) | −0.0081 (5) | 0.0017 (5) | 0.0002 (5) |
N7 | 0.0228 (5) | 0.0201 (5) | 0.0245 (5) | −0.0026 (4) | 0.0013 (5) | −0.0066 (4) |
C8 | 0.0166 (5) | 0.0205 (5) | 0.0160 (5) | 0.0019 (5) | −0.0015 (4) | 0.0005 (4) |
O9 | 0.0227 (4) | 0.0349 (5) | 0.0263 (4) | 0.0006 (4) | 0.0083 (4) | −0.0029 (4) |
O10 | 0.0319 (5) | 0.0240 (4) | 0.0233 (4) | 0.0012 (4) | −0.0098 (4) | 0.0033 (4) |
O11 | 0.0124 (4) | 0.0167 (4) | 0.0352 (5) | −0.0020 (3) | −0.0031 (4) | 0.0042 (4) |
C1—C2 | 1.5387 (17) | C5—H51 | 0.994 (13) |
C1—C5 | 1.5292 (17) | C5—H52 | 0.979 (13) |
C1—C8 | 1.5330 (16) | C6—N7 | 1.4651 (17) |
C1—O11 | 1.4028 (14) | C6—H61 | 0.967 (13) |
C2—C3 | 1.5263 (18) | C6—H62 | 0.979 (14) |
C2—O10 | 1.4080 (15) | N7—C8 | 1.3363 (16) |
C2—H21 | 0.985 (13) | N7—H1 | 0.861 |
C3—O4 | 1.4383 (17) | C8—O9 | 1.2348 (15) |
C3—C6 | 1.5125 (19) | O10—H11 | 0.826 |
C3—H31 | 0.969 (13) | O11—H9 | 0.877 |
O4—C5 | 1.4374 (16) | ||
C2—C1—C5 | 100.65 (10) | C1—C5—H51 | 109.7 (9) |
C2—C1—C8 | 107.94 (9) | O4—C5—H51 | 109.9 (9) |
C5—C1—C8 | 110.19 (10) | C1—C5—H52 | 111.9 (9) |
C2—C1—O11 | 115.93 (10) | O4—C5—H52 | 110.4 (9) |
C5—C1—O11 | 109.32 (9) | H51—C5—H52 | 109.7 (11) |
C8—C1—O11 | 112.17 (10) | C3—C6—N7 | 110.52 (10) |
C1—C2—C3 | 98.03 (9) | C3—C6—H61 | 110.3 (9) |
C1—C2—O10 | 114.20 (10) | N7—C6—H61 | 109.6 (9) |
C3—C2—O10 | 111.84 (10) | C3—C6—H62 | 107.6 (9) |
C1—C2—H21 | 110.5 (8) | N7—C6—H62 | 109.3 (9) |
C3—C2—H21 | 111.3 (9) | H61—C6—H62 | 109.5 (12) |
O10—C2—H21 | 110.4 (8) | C6—N7—C8 | 125.51 (10) |
C2—C3—O4 | 103.70 (10) | C6—N7—H1 | 116.531 |
C2—C3—C6 | 110.98 (10) | C8—N7—H1 | 117.916 |
O4—C3—C6 | 109.68 (11) | C1—C8—N7 | 116.23 (10) |
C2—C3—H31 | 114.0 (9) | C1—C8—O9 | 121.38 (11) |
O4—C3—H31 | 108.2 (9) | N7—C8—O9 | 122.35 (11) |
C6—C3—H31 | 110.0 (9) | C2—O10—H11 | 104.724 |
C3—O4—C5 | 109.17 (10) | C1—O11—H9 | 107.130 |
C1—C5—O4 | 105.12 (10) |
Footnotes
‡Current address: Visiting Scientist at the Department of Chemical, Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
Acknowledgements
Financial support (to MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187–207. Web of Science CrossRef CAS Google Scholar
Grotenberg, G. M., Timmer, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444–3446. Web of Science CSD CrossRef PubMed Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45. Accepted. (DOI: 10.1016/j.tetlet.2004.10.086). Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Smith, M. D. Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647–3655. Web of Science CrossRef PubMed CAS Google Scholar
Smith, M. D., Claridge, T. D. W., Tranter, G. E., Sansom, M. S. P. & Fleet, G. W. J. (1998). Chem. Commun. pp. 2041–2042. Web of Science CrossRef Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Well, R. M. van, Marinelli, L., Altona, C., Erkelens, K., Siegal, G., van Raaij, M., Llamas-Saiz, A. L., Kessler, H., Novellino, E., Lavecchia, A., van Boom, J. H. & Overhand, M. (2003). J. Am. Chem. Soc. 125, 10822–10829. Web of Science CSD CrossRef PubMed Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.