organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­fluoro­phenyl­boronic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, England, and bChemistry Department, University of Wales, Bangor, LL57 2UW, Wales
*Correspondence e-mail: pnh@soton.ac.uk

(Received 5 August 2004; accepted 9 September 2004; online 6 November 2004)

Crystals of the title compound, C6F5B(OH)2, were obtained from an attempted recrystallization of (C6F5)3B3O3·Et3PO from THF/hexane solution. The central B atom of the boronic acid has a trigonal planar configuration with two hydroxyl groups and one pentafluor­phenyl substituent.

Comment

There has been much recent interest in the chemistry of per­fluoro­aryl­boron compounds owing to their use as Lewis acid catalysts in organic transformations (Piers & Chivers, 1997[Piers, W. E. & Chivers, T. (1997). Chem. Soc. Rev. 26, 345-354.]; Ishihara & Yamamoto, 1999[Ishihara, K. & Yamamoto, H. (1999). Eur. J. Org. Chem. pp. 527-538.]). We have recently explored the chemistry of phospho­ryl donors towards B(C6F5)3 (Beckett et al., 2000[Beckett, M. A., Brassington, D. S., Coles, S. J. & Hursthouse, M. B. (2000) Inorg. Chem. Commun. 3, 530-533.], 2001[Beckett, M. A., Brassington., D. S., Light, M. E. & Hursthouse, M. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1768-1772.]) and are now examining the related boroxine, (C6F5)3B3O3. The adduct (C6F5)3B3O3·Et3PO, (1[link]), is readily obtained from the stoichiometric reaction of Et3PO with (C6F5)3B3O3 in THF solution. Compound (1[link]), a colourless solid which gave satisfactory elemental analysis data, was characterized by IR and NMR spectroscopy. The strongly Lewis acidic nature of (C6F5)3B3O3 is reflected in the 31P chemical shift of (1[link]), which is considerably downfield of that of free Et3PO (Mayer et al., 1975[Mayer, U., Gutmann, V. & Gerger, W. (1975). Monatash. Chem. 106, 1275-1257.]). An attempted recrystallization of (1[link]), by slow diffusion of hexane into a THF solution of the compound, afforded crystals of the title compound (C6F5)B(OH)2, (2[link]). Presumably, (2[link]) arose as a consequence of hydro­lysis of (1[link]), caused by H2O in our recrystallization solvents. Compound (2[link]) is well documented in the literature (Chambers & Chivers, 1965[Chambers, R. N. & Chivers, T. (1965). J. Chem. Soc. pp. 3933-3939.]; Frohn et al., 2002[Frohn, H.-J., Adonin, N. Y., Bardin, V. V. & Starichenko, V. F. (2002). Z. Anorg. Allg. Chem. 628, 2827-2833.]), but its crystal and molecular structure has not been previously reported.[link]

[Scheme 1]

Crystallographic studies on compounds which contain a similar (C6F5)BO2 motif are limited to the cyclic penta­fluoro­phenyl­boronic acid ester of 2,3-di­hydroxy­naphthalene, (C6F5)BO2C10H6 (Vagedes et al., 1999[Vagedes, D., Frohlich, R. & Erker, G. (1999). Angew. Chem. Int. Ed. Engl. 38, 3362-3365.]) and the metallocycle [ZrCp2{μ-O2B(C6F5)}]2 (Balkwill et al., 2002[Balkwill, J. E., Cole, S. C., Coles, M. P. & Hitchcock, P. B. (2002) Inorg. Chem. 41, 3548-3552.]). The motif also appears in the borate anion of the salt [CpNi(C6H6)NiCp][B3O3(C6F5)5] (Priego et al., 2000[Priego, J. L., Doerrer, L. H., Rees, L. H. & Green, M. L. H. (2000) Chem. Commun. pp. 779-780.]), in which there are B atoms with both trigonal and tetrahedral geometry. The cyclic trimeric borinic acid derivative [{(C6F5)2B(OH)}3] contains the C6F5BO2 motif with tetrahedral boron (Beringhelli et al., 2003[Beringhelli, T., D'Alfonso, G., Donghi, D., Maggioni, D., Mercandelli, P. & Sironi, A. (2003) Organometallics, 22, 1588-1590.]).

B and C atoms are essentially trigonal planar and most of the B—O, B—C, and C—F bond lengths are unremarkable, with structural data for the C6F5BO2 motif similar to those previously reported. Bond angles at B and C are consistent with sp2 hybridization but with significant deviations from the expected 120° angles occurring in close proximity to the B(OH)2 substituent on C1. Thus the angles C6—C1—C2 [115.31 (16)°], F1—C2—C3 [116.81 (17)°] and F5—C6—C5 [117.20 (16)°] are significantly smaller than the other C—C—C and C—C—F angles respectively. The B(OH)2 group is twisted by 38.14 (15)° relative to the C6F5 group. The B—O distances are equivalent and average 1.359 Å, consistent with relatively strong π-interactions and a bond order >1 (Beckett et al., 1996[Beckett, M. A., Strickland, G. C., Varma, K. S., Hibbs, D. E., Hursthouse, M. B. & Malik, K. M. A (1996). J. Organomet. Chem. 535, 33-41.]). Conversely, the C1—B1 bond length [1.579 (3) Å] is slightly greater than that typically found in boroxines e.g. (4-MeC6H4)3B3O3, 1.543 (4) Å (Beckett et al., 1996[Beckett, M. A., Strickland, G. C., Varma, K. S., Hibbs, D. E., Hursthouse, M. B. & Malik, K. M. A (1996). J. Organomet. Chem. 535, 33-41.]), indicating a weakening of this bond by the electron-withdrawing C6F5 group. The H atoms were located and H—O—B angles and H—O distances average 113.3° and 0.855 Å, respectively. Both H atoms are involved in hydrogen bonds, H2O in a hydrogen-bond dimer (equivalent to the carboxyl­ic acid dimer) and H1O in an extended tape (see Fig. 2[link]), which combine, giving a two-dimensional extended structure.

[Figure 1]
Figure 1
View of the structure of (C6F5)B(OH)2, showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View showing hydrogen bonding (dashed lines).

Experimental

To a stirred solution of (C6F5)3B3O3 (0.50 g, 0.86 mmol) in THF (25 cm3) was added Et3PO (0.12 g; 0.89 mmol). The reaction mixture was stirred at room temperature for 1 h. Removal of volatiles in vacuo afforded the adduct (C6F5)3B3O3·Et3PO, (1), a colourless solid (0.58 g; 94%). NMR (δ/p.p.m.; C6D6/RT): 1H (500.1 MHz): 1.4 (q, 6H, 3J 6.6 Hz), 0.7 (t, 9H, 3J 6.6 Hz); 31P (202.4 MHz): +80.0; {Δδ = 39.0 p.p.m., AN (acceptor number) = 86 (Mayer et al., 1975[Mayer, U., Gutmann, V. & Gerger, W. (1975). Monatash. Chem. 106, 1275-1257.])}. IR (KBr disc, ηmax cm−1): 3385 (m), 2984 (m), 1649 (s), 1486 (s), 1340 (s), 1244 (s), 1100 (s), 976 (s), 935 (m), 781 (m). Elemental analysis (%) required for C24H15B3F15PO4: C 40.3, H 2.1; Found: C, 40.2, H 2.0%. A few crystals of C6F5B(OH)2, (2[link]), suitable for X-ray diffraction, were grown by slow (14 days) diffusion of hexane into a THF solution of (1[link]).

Crystal data
  • C6H2BF5O2

  • Mr = 211.89

  • Monoclinic, P21/c

  • a = 12.6214 (6) Å

  • b = 6.2949 (2) Å

  • c = 9.3973 (4) Å

  • β = 98.254 (2)°

  • V = 738.89 (5) Å3

  • Z = 4

  • Dx = 1.905 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1621 reflections

  • θ = 2.9–27.5°

  • μ = 0.22 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.15 × 0.08 × 0.02 mm

Data collection
  • Nonius Kappa CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.968, Tmax = 0.996

  • 5560 measured reflections

  • 1692 independent reflections

  • 1186 reflections with >2σ(I)

  • Rint = 0.070

  • θmax = 27.5°

  • h = −16 → 14

  • k = −8 → 6

  • l = −10 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.03

  • 1692 reflections

  • 135 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0634P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.92 (3) 1.81 (3) 2.7326 (18) 176 (2)
O1—H1O⋯O2ii 0.82 (3) 1.99 (3) 2.7653 (19) 160 (2)
Symmetry codes: (i) -x,-1-y,-z; (ii) [x,-{\script{1\over 2}}-y,z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski and Minor, 1997); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997).

Pentafluoroboronic acid top
Crystal data top
C6H2BF5O2F(000) = 416
Mr = 211.89Dx = 1.905 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6214 (6) ÅCell parameters from 1621 reflections
b = 6.2949 (2) Åθ = 2.9–27.5°
c = 9.3973 (4) ŵ = 0.22 mm1
β = 98.254 (2)°T = 120 K
V = 738.89 (5) Å3Plate, colourless
Z = 40.15 × 0.08 × 0.02 mm
Data collection top
Nonius KappaCCD Area Detector
diffractometer
1692 independent reflections
Radiation source: Nonius FR591 rotating anode1186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
φ and ω scans to fill Ewald Sphereh = 1614
Absorption correction: multi-scan
(SORTAV; Blessing 1997)
k = 86
Tmin = 0.968, Tmax = 0.996l = 1012
5560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.116All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
1692 reflections(Δ/σ)max < 0.001
135 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Experimental. PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20469 (15)0.1065 (3)0.0334 (2)0.0205 (4)
C20.28746 (15)0.1513 (3)0.1108 (2)0.0215 (4)
C30.37112 (14)0.0124 (3)0.12031 (19)0.0233 (4)
C40.37121 (15)0.1827 (3)0.0553 (2)0.0244 (5)
C50.28903 (15)0.2369 (3)0.0197 (2)0.0232 (4)
C60.20904 (15)0.0925 (3)0.03115 (19)0.0212 (4)
B10.11484 (17)0.2747 (3)0.0150 (2)0.0208 (5)
O10.07353 (11)0.4073 (2)0.12348 (16)0.0236 (3)
O20.07956 (11)0.2880 (2)0.11424 (13)0.0248 (3)
F10.29011 (9)0.33900 (16)0.17951 (12)0.0257 (3)
F20.45090 (9)0.06577 (18)0.19359 (13)0.0314 (3)
F30.45065 (10)0.31949 (18)0.06461 (13)0.0352 (3)
F40.28823 (10)0.42794 (16)0.08323 (12)0.0308 (3)
F50.13194 (9)0.15083 (17)0.10926 (12)0.0276 (3)
H1O0.086 (2)0.374 (4)0.204 (3)0.041 (7)*
H2O0.029 (2)0.394 (4)0.115 (3)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0227 (10)0.0246 (9)0.0144 (9)0.0001 (7)0.0036 (8)0.0033 (7)
C20.0292 (11)0.0193 (9)0.0160 (9)0.0005 (7)0.0036 (8)0.0003 (7)
C30.0185 (10)0.0335 (10)0.0185 (10)0.0014 (7)0.0043 (8)0.0041 (8)
C40.0245 (11)0.0272 (10)0.0208 (10)0.0083 (8)0.0010 (8)0.0045 (8)
C50.0307 (11)0.0208 (9)0.0175 (9)0.0017 (7)0.0009 (8)0.0000 (7)
C60.0248 (10)0.0255 (9)0.0141 (10)0.0035 (7)0.0059 (8)0.0001 (7)
B10.0243 (12)0.0214 (10)0.0172 (11)0.0021 (8)0.0046 (9)0.0007 (8)
O10.0282 (8)0.0288 (7)0.0150 (8)0.0054 (5)0.0071 (6)0.0002 (6)
O20.0281 (8)0.0303 (8)0.0170 (7)0.0084 (6)0.0071 (6)0.0024 (5)
F10.0301 (7)0.0247 (6)0.0236 (6)0.0011 (4)0.0087 (5)0.0038 (4)
F20.0232 (6)0.0430 (7)0.0304 (7)0.0010 (5)0.0119 (5)0.0006 (5)
F30.0327 (7)0.0363 (7)0.0370 (7)0.0142 (5)0.0063 (5)0.0037 (5)
F40.0447 (7)0.0217 (6)0.0257 (7)0.0057 (5)0.0041 (6)0.0034 (4)
F50.0328 (7)0.0261 (6)0.0263 (7)0.0005 (5)0.0123 (5)0.0040 (4)
Geometric parameters (Å, º) top
C1—C21.385 (3)C4—C51.378 (3)
C1—C61.389 (3)C5—F41.343 (2)
C1—B11.579 (3)C5—C61.374 (3)
C2—F11.349 (2)C6—F51.351 (2)
C2—C31.384 (3)B1—O21.355 (3)
C3—F21.342 (2)B1—O11.362 (2)
C3—C41.372 (3)O1—H1O0.82 (3)
C4—F31.334 (2)O2—H2O0.92 (3)
C2—C1—C6115.31 (16)F4—C5—C6120.34 (17)
C2—C1—B1121.92 (16)F4—C5—C4120.20 (16)
C6—C1—B1122.73 (17)C6—C5—C4119.45 (17)
F1—C2—C3116.81 (17)F5—C6—C5117.20 (16)
F1—C2—C1120.14 (16)F5—C6—C1119.74 (16)
C3—C2—C1123.04 (17)C5—C6—C1123.07 (17)
F2—C3—C4120.00 (17)O2—B1—O1119.55 (18)
F2—C3—C2120.72 (17)O2—B1—C1118.24 (17)
C4—C3—C2119.28 (17)O1—B1—C1122.20 (18)
F3—C4—C3120.10 (17)B1—O1—H1O115.6 (18)
F3—C4—C5120.11 (16)B1—O2—H2O111.4 (16)
C3—C4—C5119.79 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.92 (3)1.81 (3)2.7326 (18)176 (2)
O1—H1O···O2ii0.82 (3)1.99 (3)2.7653 (19)160 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z1/2.
 

Acknowledgements

The authors thank the EPSRC for funding the crystallographic facilities.

References

First citationBalkwill, J. E., Cole, S. C., Coles, M. P. & Hitchcock, P. B. (2002) Inorg. Chem. 41, 3548–3552.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBeckett, M. A., Brassington, D. S., Coles, S. J. & Hursthouse, M. B. (2000) Inorg. Chem. Commun. 3, 530–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeckett, M. A., Brassington., D. S., Light, M. E. & Hursthouse, M. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1768–1772.  Web of Science CSD CrossRef Google Scholar
First citationBeckett, M. A., Strickland, G. C., Varma, K. S., Hibbs, D. E., Hursthouse, M. B. & Malik, K. M. A (1996). J. Organomet. Chem. 535, 33–41.  CSD CrossRef Web of Science Google Scholar
First citationBeringhelli, T., D'Alfonso, G., Donghi, D., Maggioni, D., Mercandelli, P. & Sironi, A. (2003) Organometallics, 22, 1588–1590.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChambers, R. N. & Chivers, T. (1965). J. Chem. Soc. pp. 3933–3939.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrohn, H.-J., Adonin, N. Y., Bardin, V. V. & Starichenko, V. F. (2002). Z. Anorg. Allg. Chem. 628, 2827–2833.  CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, The Netherlands.  Google Scholar
First citationIshihara, K. & Yamamoto, H. (1999). Eur. J. Org. Chem. pp. 527–538.  CrossRef Google Scholar
First citationMayer, U., Gutmann, V. & Gerger, W. (1975). Monatash. Chem. 106, 1275–1257.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPiers, W. E. & Chivers, T. (1997). Chem. Soc. Rev. 26, 345–354.  CrossRef CAS Web of Science Google Scholar
First citationPriego, J. L., Doerrer, L. H., Rees, L. H. & Green, M. L. H. (2000) Chem. Commun. pp. 779–780.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVagedes, D., Frohlich, R. & Erker, G. (1999). Angew. Chem. Int. Ed. Engl. 38, 3362–3365.  Web of Science CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds