metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′-Di-tert-butyl-6,6′-bis­­(di­meth­oxy­methyl)-2,2′-[propane-1,3-diyl­bis­­(nitrilo­methyl­­idyne)]­bis­­(thio­phenolato)-κ4S,N,N′,S′}nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England, and cCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
*Correspondence e-mail: chk@chem.sdu.dk

(Received 11 October 2004; accepted 8 November 2004; online 20 November 2004)

The title compound, [Ni(C31H44N2O4S2)], is an N2S2 four-coordinated nickel(II) complex. The coordination geometry of the metal, on a twofold rotation axis, is more distorted from square planar than in related compounds.

Comment

The title compound, Ni(pabtp), (I[link]), was isolated from a mixture of the di­aldehyde [N,N′-propane-1,3-diyl(6-formyl-4-tert-butyl-2-methyl­iminato­thio­phenolato)]­nickel(II) (Chris­ten­sen & McKenzie, 2004[Christensen, A. & McKenzie, C. J. (2004). Unpublished results.]), Ni(pfbtp) and 1,3-di­amino­propane in methanol (see scheme). This reaction was an unsuccessful attempt to prepare a ring-closed Schiff base derivative of Ni(pfbtp) under conditions analogous to those in which we prepared 2 + 2 and 4 + 4 thio­phenolate macrocyclic complexes using Ni(pfmtp), (II[link]), which is homologous to Ni(pfbtp) [Cambridge Structural Database, Version 5.25 of November 2003 with three updates (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode NULPOZ; Christensen et al., 1997[Christensen, A., Jensen, S., McKee, V., McKenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080-6085.]].[link]

[Scheme 1]

Comparing (I[link]) and (II[link]), it is immediately evident that no change in the length of the coordinating bonds has occurred, but although the coordination geometry at the Ni atom in (I[link]) may be described as square planar, it is far more distorted towards tetrahedral than in (II[link]). This can be seen from the change in bond angles around the Ni atom, which lies on a twofold rotation axis, but is more strikingly described by looking at the volume of the (irregular) tetrahedron spanned by the four donor atoms (N2S2). This is 1.544 Å3 for (I[link]) but only 0.159 Å3 for (II[link]). A space-filling model shows no direct interaction between the two (MeO)2CH— groups on either side of the Ni atom, thus this distortion from square planar is apparently not due to the bulkier di­methyl­acetal groups replacing the formyl groups. The distortion is then more likely to be due to packing effects. Inspection of the packing diagrams for (I[link]) and (II[link]) reveals a number of similarities. The mol­ecules in (I[link]) essentially stack along c, alternating their direction in either layer, but, whereas mol­ecules in (II[link]) have the Ni atoms directly above one another, they are more displaced in (I[link]). These stacks then pack in a head-to-tail fashion along b, with the central methyl­ene group nestled between the two S atoms of the next mol­ecule [C—H⋯S = 3.64 Å compared to 3.20 Å in (II)]. These ab layers then have tert-butyl groups on both sides along c in (I[link]) [methyl groups in the case of (II)]. This is probably the origin of the distortion around Ni, for while (II[link]) shows only very modest interaction between the methyl and formyl groups, (I[link]) has a much closer approach of the tert-butyl groups to the di­methoxy­methyl group.

[Figure 1]
Figure 1
View of (I[link]), with 50% probability displacement ellipsoids shown only for atoms of the asymmetric unit. Unlabelled atoms are related to labelled atoms by -x, y, 1/2-z.
[Figure 2]
Figure 2
The packing of (a) Ni(pabtp), (I[link]), (b) Ni(pfmtp), (II[link]). View down b with tert-butyl (a) or methyl (b) groups shown as space-filling on the left and di­methoxy­methyl (a) or formyl (b) groups on the right.

Experimental

Crystals of (I[link]) were isolated from a 1:1 mixture of Ni(pfbtp) (Christensen & McKenzie, 2004[Christensen, A. & McKenzie, C. J. (2004). Unpublished results.]) and 1,3-di­amino­propane in methanol after several days standing in a closed vessel.

Crystal data
  • [Ni(C31H44N2O4S2)]

  • Mr = 631.51

  • Monoclinic, C2/c

  • a = 28.352 (4) Å

  • b = 9.1532 (11) Å

  • c = 12.1556 (15) Å

  • β = 102.178 (2)°

  • V = 3083.5 (7) Å3

  • Z = 4

  • Dx = 1.36 Mg m−3

  • Synchrotron radiation

  • λ = 0.6881 Å

  • Cell parameters from 6249 reflections

  • θ = 2.8–29.2°

  • μ = 0.80 mm−1

  • T = 150 (2) K

  • Needle, orange-red

  • 0.22 × 0.02 × 0.01 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT (Version 6.02a), SADABS (Version 2.03), XPREP and SHELXTL/NT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 0.992

  • 9981 measured reflections

  • 9981 independent reflections

  • 8220 reflections with I > 2σ(I)

  • θmax = 27.5°

  • h = −37 → 38

  • k = −12 → 12

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.228

  • S = 1.04

  • 9981 reflections

  • 188 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.169P)2 + 0.2945P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.77 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 1.907 (2)
Ni1—S1 2.1742 (8)
N1—Ni1—N1i 90.49 (14)
N1—Ni1—S1i 163.52 (7)
N1—Ni1—S1 95.30 (7)
S1i—Ni1—S1 83.41 (4)
Symmetry code: (i) [-x,y,{\script{1\over 2}}-z].

The crystals turned out to be twinned. ROTAX (Parsons & Gould, 2001[Parsons, S. & Gould, R. O. (2001). ROTAX. University of Edinburgh, Scotland. [Additions by Richard Cooper (Oxford) and Louis Farrugia (Glasgow), Version 26th November, 2001.]]) identifies the twinning as 180° rotation about the a axis. The twin scale is [101, 0[\overline 1]0, 00[\overline 1]]. The batch scale factor refines to 0.2786 (18). The non-merohedral twinning prevents merging of equivalent reflections before refinement. The maximum and minimum electron-density peaks are located 0.88 and 0.76 Å, respectively, from atom Ni1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT (Version 6.02a), SADABS (Version 2.03), XPREP and SHELXTL/NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT (Version 6.02a), SADABS (Version 2.03), XPREP and SHELXTL/NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: X-Seed (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

{4,4'-Di-tert-butyl-6,6'-bis(dimethoxymethyl)-2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]bis(thiophenolato)-κ4S,N,N',S'}nickel(II) top
Crystal data top
[Ni(C31H44N2O4S2)]F(000) = 1344
Mr = 631.51Dx = 1.36 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.6881 Å
Hall symbol: -C 2ycCell parameters from 6249 reflections
a = 28.352 (4) Åθ = 2.8–29.2°
b = 9.1532 (11) ŵ = 0.80 mm1
c = 12.1556 (15) ÅT = 150 K
β = 102.178 (2)°Needle, orange-red
V = 3083.5 (7) Å30.22 × 0.02 × 0.01 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
9981 independent reflections
Radiation source: Synchrotron, SRS station 9.88220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0
0.20 ° ω rotation, 3 s a frame scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3738
Tmin = 0.843, Tmax = 0.992k = 1212
9981 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.169P)2 + 0.2945P]
where P = (Fo2 + 2Fc2)/3
9981 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 1.77 e Å3
0 restraintsΔρmin = 1.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The crystals turn out to be twinned. ROTAX (Parsons & Gould, 2001) identifies the twinning as 180° rotation about {1 0 0} (a¯). The corresponding twin law is [1 0 1] [0 - 1 0] [0 0 - 1] The batch scale factor refines to 0.27859

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.07866 (9)0.1434 (3)0.1114 (2)0.0182 (5)
C20.11604 (9)0.2375 (3)0.0921 (3)0.0201 (5)
C30.15119 (10)0.1872 (3)0.0375 (2)0.0208 (5)
H30.17640.25190.02890.025*
C40.15123 (10)0.0449 (3)0.0057 (3)0.0195 (5)
C50.11417 (10)0.0464 (3)0.0113 (3)0.0200 (5)
H50.11250.14280.01820.024*
C60.07905 (10)0.0017 (3)0.0706 (3)0.0190 (6)
C70.04429 (9)0.1128 (3)0.0840 (2)0.0208 (6)
H70.04340.19730.03820.025*
C80.01691 (10)0.2415 (3)0.1459 (3)0.0229 (6)
H8A0.01580.29890.07740.028*
H8B0.05070.21030.14180.028*
C900.3360 (4)0.250.0267 (8)
H9A0.02680.39960.26140.032*0.5
H9B0.02680.39960.23860.032*0.5
C100.19091 (11)0.0047 (3)0.0660 (3)0.0212 (6)
C110.23991 (11)0.0099 (3)0.0154 (3)0.0309 (7)
H11A0.24480.11160.04040.046*
H11B0.26560.01910.02290.046*
H11C0.24070.05350.08070.046*
C120.19012 (12)0.0918 (4)0.1696 (3)0.0329 (7)
H12A0.15920.07990.22280.049*
H12B0.21640.06280.20590.049*
H12C0.19430.19420.14630.049*
C130.18436 (12)0.1650 (3)0.1058 (3)0.0321 (7)
H13A0.18830.22960.04020.048*
H13B0.20860.18920.14960.048*
H13C0.1520.17790.15280.048*
C140.11796 (9)0.3942 (3)0.1360 (3)0.0235 (6)
H140.10950.39250.21180.028*
C150.17227 (12)0.5804 (3)0.2073 (3)0.0339 (8)
H15A0.15030.65320.16510.051*
H15B0.20570.61330.21460.051*
H15C0.16520.56820.28240.051*
C160.09516 (15)0.5158 (3)0.0422 (4)0.0361 (8)
H16A0.12530.57130.0330.054*
H16B0.06880.57230.0880.054*
H16C0.09860.42280.07960.054*
N10.01452 (8)0.1109 (2)0.1508 (2)0.0204 (5)
O10.16587 (7)0.4450 (2)0.1494 (2)0.0290 (5)
O20.08471 (8)0.4884 (2)0.0652 (2)0.0311 (6)
Ni100.03581 (5)0.250.01859 (15)
S10.03409 (3)0.21315 (7)0.17667 (7)0.02433 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0216 (12)0.0109 (12)0.0249 (14)0.0007 (9)0.0108 (11)0.0012 (10)
C20.0242 (12)0.0106 (12)0.0270 (14)0.0027 (9)0.0091 (11)0.0017 (10)
C30.0242 (13)0.0124 (12)0.0284 (15)0.0023 (9)0.0112 (11)0.0006 (10)
C40.0212 (12)0.0131 (12)0.0256 (15)0.0007 (9)0.0079 (11)0.0003 (10)
C50.0242 (13)0.0100 (12)0.0277 (15)0.0013 (9)0.0097 (11)0.0009 (10)
C60.0190 (12)0.0095 (12)0.0304 (16)0.0023 (9)0.0092 (11)0.0011 (10)
C70.0243 (12)0.0131 (12)0.0254 (15)0.0036 (10)0.0059 (11)0.0036 (10)
C80.0266 (13)0.0161 (13)0.0278 (16)0.0069 (10)0.0095 (12)0.0022 (11)
C90.038 (2)0.0121 (18)0.034 (2)00.016 (2)0
C100.0259 (13)0.0098 (12)0.0321 (17)0.0013 (9)0.0154 (13)0.0008 (10)
C110.0229 (14)0.0263 (16)0.045 (2)0.0031 (11)0.0095 (15)0.0008 (13)
C120.0465 (17)0.0230 (15)0.0354 (19)0.0070 (13)0.0227 (15)0.0074 (13)
C130.0380 (16)0.0121 (14)0.053 (2)0.0002 (11)0.0242 (15)0.0052 (12)
C140.0273 (13)0.0126 (13)0.0337 (17)0.0037 (10)0.0131 (12)0.0053 (11)
C150.0441 (18)0.0184 (15)0.042 (2)0.0098 (12)0.0160 (15)0.0142 (13)
C160.052 (2)0.0176 (15)0.036 (2)0.0112 (13)0.0022 (17)0.0011 (13)
N10.0237 (11)0.0108 (10)0.0268 (13)0.0035 (8)0.0053 (9)0.0007 (9)
O10.0297 (11)0.0162 (10)0.0444 (14)0.0080 (8)0.0153 (10)0.0127 (9)
O20.0354 (12)0.0130 (10)0.0465 (17)0.0013 (8)0.0121 (11)0.0008 (9)
Ni10.0206 (2)0.0115 (2)0.0264 (3)00.0112 (2)0
S10.0298 (3)0.0120 (3)0.0370 (4)0.0027 (2)0.0204 (3)0.0034 (3)
Geometric parameters (Å, º) top
C1—C61.418 (3)C11—H11A0.98
C1—C21.423 (4)C11—H11B0.98
C1—S11.749 (3)C11—H11C0.98
C2—C31.388 (4)C12—H12A0.98
C2—C141.527 (4)C12—H12B0.98
C3—C41.404 (4)C12—H12C0.98
C3—H30.95C13—H13A0.98
C4—C51.392 (4)C13—H13B0.98
C4—C101.535 (4)C13—H13C0.98
C5—C61.407 (4)C14—O11.413 (3)
C5—H50.95C14—O21.425 (4)
C6—C71.450 (4)C14—H141
C7—N11.288 (4)C15—O11.418 (3)
C7—H70.95C15—H15A0.98
C8—N11.485 (3)C15—H15B0.98
C8—C91.525 (4)C15—H15C0.98
C8—H8A0.99C16—O21.420 (5)
C8—H8B0.99C16—H16A0.98
C9—C8i1.525 (4)C16—H16B0.98
C9—H9A0.99C16—H16C0.98
C9—H9B0.99Ni1—N11.907 (2)
C10—C111.532 (5)Ni1—N1i1.907 (2)
C10—C121.534 (4)Ni1—S1i2.1742 (8)
C10—C131.543 (4)Ni1—S12.1742 (8)
C6—C1—C2116.6 (2)H11B—C11—H11C109.5
C6—C1—S1124.08 (19)C10—C12—H12A109.5
C2—C1—S1119.2 (2)C10—C12—H12B109.5
C3—C2—C1120.9 (2)H12A—C12—H12B109.5
C3—C2—C14120.2 (2)C10—C12—H12C109.5
C1—C2—C14118.9 (2)H12A—C12—H12C109.5
C2—C3—C4122.9 (2)H12B—C12—H12C109.5
C2—C3—H3118.5C10—C13—H13A109.5
C4—C3—H3118.5C10—C13—H13B109.5
C5—C4—C3116.2 (3)H13A—C13—H13B109.5
C5—C4—C10123.0 (2)C10—C13—H13C109.5
C3—C4—C10120.8 (2)H13A—C13—H13C109.5
C4—C5—C6122.6 (2)H13B—C13—H13C109.5
C4—C5—H5118.7O1—C14—O2111.6 (2)
C6—C5—H5118.7O1—C14—C2108.2 (2)
C5—C6—C1120.7 (2)O2—C14—C2112.8 (2)
C5—C6—C7115.1 (2)O1—C14—H14108.1
C1—C6—C7124.2 (2)O2—C14—H14108.1
N1—C7—C6127.8 (3)C2—C14—H14108.1
N1—C7—H7116.1O1—C15—H15A109.5
C6—C7—H7116.1O1—C15—H15B109.5
N1—C8—C9110.0 (2)H15A—C15—H15B109.5
N1—C8—H8A109.7O1—C15—H15C109.5
C9—C8—H8A109.7H15A—C15—H15C109.5
N1—C8—H8B109.7H15B—C15—H15C109.5
C9—C8—H8B109.7O2—C16—H16A109.5
H8A—C8—H8B108.2O2—C16—H16B109.5
C8i—C9—C8110.8 (3)H16A—C16—H16B109.5
C8i—C9—H9A109.5O2—C16—H16C109.5
C8—C9—H9A109.5H16A—C16—H16C109.5
C8i—C9—H9B109.5H16B—C16—H16C109.5
C8—C9—H9B109.5C7—N1—C8115.5 (2)
H9A—C9—H9B108.1C7—N1—Ni1131.74 (19)
C11—C10—C12109.5 (3)C8—N1—Ni1112.60 (18)
C11—C10—C4108.8 (3)C14—O1—C15111.4 (2)
C12—C10—C4109.6 (2)C16—O2—C14115.0 (3)
C11—C10—C13108.5 (2)N1—Ni1—N1i90.49 (14)
C12—C10—C13108.1 (3)N1—Ni1—S1i163.52 (7)
C4—C10—C13112.3 (2)N1i—Ni1—S1i95.30 (7)
C10—C11—H11A109.5N1—Ni1—S195.30 (7)
C10—C11—H11B109.5N1i—Ni1—S1163.52 (7)
H11A—C11—H11B109.5S1i—Ni1—S183.41 (4)
C10—C11—H11C109.5C1—S1—Ni1109.86 (9)
H11A—C11—H11C109.5
C6—C1—C2—C30.9 (4)C3—C4—C10—C13179.5 (3)
S1—C1—C2—C3178.0 (2)C3—C2—C14—O121.8 (4)
C6—C1—C2—C14178.9 (3)C1—C2—C14—O1156.3 (3)
S1—C1—C2—C143.9 (4)C3—C2—C14—O2102.1 (3)
C1—C2—C3—C42.6 (5)C1—C2—C14—O279.8 (3)
C14—C2—C3—C4179.4 (3)C6—C7—N1—C8180.0 (3)
C2—C3—C4—C51.4 (4)C6—C7—N1—Ni14.6 (5)
C2—C3—C4—C10179.7 (3)C9—C8—N1—C7106.0 (3)
C3—C4—C5—C61.4 (4)C9—C8—N1—Ni177.7 (2)
C10—C4—C5—C6177.4 (3)O2—C14—O1—C1565.2 (3)
C4—C5—C6—C13.1 (5)C2—C14—O1—C15170.2 (3)
C4—C5—C6—C7177.7 (3)O1—C14—O2—C1654.4 (3)
C2—C1—C6—C51.8 (4)C2—C14—O2—C1667.6 (3)
S1—C1—C6—C5175.1 (2)C7—N1—Ni1—N1i149.1 (3)
C2—C1—C6—C7179.0 (3)C8—N1—Ni1—N1i35.38 (15)
S1—C1—C6—C74.0 (4)C7—N1—Ni1—S1i100.1 (3)
C5—C6—C7—N1166.0 (3)C8—N1—Ni1—S1i75.4 (3)
C1—C6—C7—N114.8 (5)C7—N1—Ni1—S115.4 (3)
N1—C8—C9—C8i37.87 (15)C8—N1—Ni1—S1160.07 (17)
C5—C4—C10—C11119.5 (3)C6—C1—S1—Ni124.5 (3)
C3—C4—C10—C1159.3 (3)C2—C1—S1—Ni1158.6 (2)
C5—C4—C10—C12120.8 (3)N1—Ni1—S1—C124.99 (12)
C3—C4—C10—C1260.4 (4)N1i—Ni1—S1—C185.1 (3)
C5—C4—C10—C130.6 (4)S1i—Ni1—S1—C1171.52 (11)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

We are grateful to the CCLRC Daresbury Laboratory for the award of beamtime to carry out the diffraction experiment.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBruker (2000). SMART (Version 5.054), SAINT (Version 6.02a), SADABS (Version 2.03), XPREP and SHELXTL/NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristensen, A. & McKenzie, C. J. (2004). Unpublished results.  Google Scholar
First citationChristensen, A., Jensen, S., McKee, V., McKenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080–6085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S. & Gould, R. O. (2001). ROTAX. University of Edinburgh, Scotland. [Additions by Richard Cooper (Oxford) and Louis Farrugia (Glasgow), Version 26th November, 2001.]  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds