metal-organic compounds
{4,4′-Di-tert-butyl-6,6′-bis(dimethoxymethyl)-2,2′-[propane-1,3-diylbis(nitrilomethylidyne)]bis(thiophenolato)-κ4S,N,N′,S′}nickel(II)
aDepartment of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England, and cCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
*Correspondence e-mail: chk@chem.sdu.dk
The title compound, [Ni(C31H44N2O4S2)], is an N2S2 four-coordinated nickel(II) complex. The coordination geometry of the metal, on a twofold rotation axis, is more distorted from square planar than in related compounds.
Comment
The title compound, Ni(pabtp), (I), was isolated from a mixture of the dialdehyde [N,N′-propane-1,3-diyl(6-formyl-4-tert-butyl-2-methyliminatothiophenolato)]nickel(II) (Christensen & McKenzie, 2004), Ni(pfbtp) and 1,3-diaminopropane in methanol (see scheme). This reaction was an unsuccessful attempt to prepare a ring-closed Schiff base derivative of Ni(pfbtp) under conditions analogous to those in which we prepared 2 + 2 and 4 + 4 thiophenolate macrocyclic complexes using Ni(pfmtp), (II), which is homologous to Ni(pfbtp) [Cambridge Structural Database, Version 5.25 of November 2003 with three updates (Allen, 2002) refcode NULPOZ; Christensen et al., 1997].
Comparing (I) and (II), it is immediately evident that no change in the length of the coordinating bonds has occurred, but although the coordination geometry at the Ni atom in (I) may be described as square planar, it is far more distorted towards tetrahedral than in (II). This can be seen from the change in bond angles around the Ni atom, which lies on a twofold rotation axis, but is more strikingly described by looking at the volume of the (irregular) tetrahedron spanned by the four donor atoms (N2S2). This is 1.544 Å3 for (I) but only 0.159 Å3 for (II). A space-filling model shows no direct interaction between the two (MeO)2CH— groups on either side of the Ni atom, thus this distortion from square planar is apparently not due to the bulkier dimethylacetal groups replacing the formyl groups. The distortion is then more likely to be due to packing effects. Inspection of the packing diagrams for (I) and (II) reveals a number of similarities. The molecules in (I) essentially stack along c, alternating their direction in either layer, but, whereas molecules in (II) have the Ni atoms directly above one another, they are more displaced in (I). These stacks then pack in a head-to-tail fashion along b, with the central methylene group nestled between the two S atoms of the next molecule [C—H⋯S = 3.64 Å compared to 3.20 Å in (II)]. These ab layers then have tert-butyl groups on both sides along c in (I) [methyl groups in the case of (II)]. This is probably the origin of the distortion around Ni, for while (II) shows only very modest interaction between the methyl and formyl groups, (I) has a much closer approach of the tert-butyl groups to the dimethoxymethyl group.
Experimental
Crystals of (I) were isolated from a 1:1 mixture of Ni(pfbtp) (Christensen & McKenzie, 2004) and 1,3-diaminopropane in methanol after several days standing in a closed vessel.
Crystal data
|
Refinement
|
|
The crystals turned out to be twinned. ROTAX (Parsons & Gould, 2001) identifies the as 180° rotation about the a axis. The twin scale is [101, 00, 00]. The batch scale factor refines to 0.2786 (18). The non-merohedral prevents merging of equivalent reflections before The maximum and minimum electron-density peaks are located 0.88 and 0.76 Å, respectively, from atom Ni1.
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-Seed (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536804028879/wk6035sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804028879/wk6035Isup2.hkl
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).[Ni(C31H44N2O4S2)] | F(000) = 1344 |
Mr = 631.51 | Dx = 1.36 Mg m−3 |
Monoclinic, C2/c | Synchrotron radiation, λ = 0.6881 Å |
Hall symbol: -C 2yc | Cell parameters from 6249 reflections |
a = 28.352 (4) Å | θ = 2.8–29.2° |
b = 9.1532 (11) Å | µ = 0.80 mm−1 |
c = 12.1556 (15) Å | T = 150 K |
β = 102.178 (2)° | Needle, orange-red |
V = 3083.5 (7) Å3 | 0.22 × 0.02 × 0.01 mm |
Z = 4 |
Bruker SMART 1K CCD diffractometer | 9981 independent reflections |
Radiation source: Synchrotron, SRS station 9.8 | 8220 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0 |
0.20 ° ω rotation, 3 s a frame scans | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −37→38 |
Tmin = 0.843, Tmax = 0.992 | k = −12→12 |
9981 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.084 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.228 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.169P)2 + 0.2945P] where P = (Fo2 + 2Fc2)/3 |
9981 reflections | (Δ/σ)max < 0.001 |
188 parameters | Δρmax = 1.77 e Å−3 |
0 restraints | Δρmin = −1.23 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The crystals turn out to be twinned. ROTAX (Parsons & Gould, 2001) identifies the twinning as 180° rotation about {1 0 0} (a¯). The corresponding twin law is [1 0 1] [0 - 1 0] [0 0 - 1] The batch scale factor refines to 0.27859 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.07866 (9) | 0.1434 (3) | 0.1114 (2) | 0.0182 (5) | |
C2 | 0.11604 (9) | 0.2375 (3) | 0.0921 (3) | 0.0201 (5) | |
C3 | 0.15119 (10) | 0.1872 (3) | 0.0375 (2) | 0.0208 (5) | |
H3 | 0.1764 | 0.2519 | 0.0289 | 0.025* | |
C4 | 0.15123 (10) | 0.0449 (3) | −0.0057 (3) | 0.0195 (5) | |
C5 | 0.11417 (10) | −0.0464 (3) | 0.0113 (3) | 0.0200 (5) | |
H5 | 0.1125 | −0.1428 | −0.0182 | 0.024* | |
C6 | 0.07905 (10) | −0.0017 (3) | 0.0706 (3) | 0.0190 (6) | |
C7 | 0.04429 (9) | −0.1128 (3) | 0.0840 (2) | 0.0208 (6) | |
H7 | 0.0434 | −0.1973 | 0.0382 | 0.025* | |
C8 | −0.01691 (10) | −0.2415 (3) | 0.1459 (3) | 0.0229 (6) | |
H8A | −0.0158 | −0.2989 | 0.0774 | 0.028* | |
H8B | −0.0507 | −0.2103 | 0.1418 | 0.028* | |
C9 | 0 | −0.3360 (4) | 0.25 | 0.0267 (8) | |
H9A | −0.0268 | −0.3996 | 0.2614 | 0.032* | 0.5 |
H9B | 0.0268 | −0.3996 | 0.2386 | 0.032* | 0.5 |
C10 | 0.19091 (11) | −0.0047 (3) | −0.0660 (3) | 0.0212 (6) | |
C11 | 0.23991 (11) | 0.0099 (3) | 0.0154 (3) | 0.0309 (7) | |
H11A | 0.2448 | 0.1116 | 0.0404 | 0.046* | |
H11B | 0.2656 | −0.0191 | −0.0229 | 0.046* | |
H11C | 0.2407 | −0.0535 | 0.0807 | 0.046* | |
C12 | 0.19012 (12) | 0.0918 (4) | −0.1696 (3) | 0.0329 (7) | |
H12A | 0.1592 | 0.0799 | −0.2228 | 0.049* | |
H12B | 0.2164 | 0.0628 | −0.2059 | 0.049* | |
H12C | 0.1943 | 0.1942 | −0.1463 | 0.049* | |
C13 | 0.18436 (12) | −0.1650 (3) | −0.1058 (3) | 0.0321 (7) | |
H13A | 0.1883 | −0.2296 | −0.0402 | 0.048* | |
H13B | 0.2086 | −0.1892 | −0.1496 | 0.048* | |
H13C | 0.152 | −0.1779 | −0.1528 | 0.048* | |
C14 | 0.11796 (9) | 0.3942 (3) | 0.1360 (3) | 0.0235 (6) | |
H14 | 0.1095 | 0.3925 | 0.2118 | 0.028* | |
C15 | 0.17227 (12) | 0.5804 (3) | 0.2073 (3) | 0.0339 (8) | |
H15A | 0.1503 | 0.6532 | 0.1651 | 0.051* | |
H15B | 0.2057 | 0.6133 | 0.2146 | 0.051* | |
H15C | 0.1652 | 0.5682 | 0.2824 | 0.051* | |
C16 | 0.09516 (15) | 0.5158 (3) | −0.0422 (4) | 0.0361 (8) | |
H16A | 0.1253 | 0.5713 | −0.033 | 0.054* | |
H16B | 0.0688 | 0.5723 | −0.088 | 0.054* | |
H16C | 0.0986 | 0.4228 | −0.0796 | 0.054* | |
N1 | 0.01452 (8) | −0.1109 (2) | 0.1508 (2) | 0.0204 (5) | |
O1 | 0.16587 (7) | 0.4450 (2) | 0.1494 (2) | 0.0290 (5) | |
O2 | 0.08471 (8) | 0.4884 (2) | 0.0652 (2) | 0.0311 (6) | |
Ni1 | 0 | 0.03581 (5) | 0.25 | 0.01859 (15) | |
S1 | 0.03409 (3) | 0.21315 (7) | 0.17667 (7) | 0.02433 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0216 (12) | 0.0109 (12) | 0.0249 (14) | −0.0007 (9) | 0.0108 (11) | −0.0012 (10) |
C2 | 0.0242 (12) | 0.0106 (12) | 0.0270 (14) | −0.0027 (9) | 0.0091 (11) | −0.0017 (10) |
C3 | 0.0242 (13) | 0.0124 (12) | 0.0284 (15) | −0.0023 (9) | 0.0112 (11) | 0.0006 (10) |
C4 | 0.0212 (12) | 0.0131 (12) | 0.0256 (15) | −0.0007 (9) | 0.0079 (11) | 0.0003 (10) |
C5 | 0.0242 (13) | 0.0100 (12) | 0.0277 (15) | −0.0013 (9) | 0.0097 (11) | −0.0009 (10) |
C6 | 0.0190 (12) | 0.0095 (12) | 0.0304 (16) | −0.0023 (9) | 0.0092 (11) | −0.0011 (10) |
C7 | 0.0243 (12) | 0.0131 (12) | 0.0254 (15) | −0.0036 (10) | 0.0059 (11) | −0.0036 (10) |
C8 | 0.0266 (13) | 0.0161 (13) | 0.0278 (16) | −0.0069 (10) | 0.0095 (12) | −0.0022 (11) |
C9 | 0.038 (2) | 0.0121 (18) | 0.034 (2) | 0 | 0.016 (2) | 0 |
C10 | 0.0259 (13) | 0.0098 (12) | 0.0321 (17) | 0.0013 (9) | 0.0154 (13) | 0.0008 (10) |
C11 | 0.0229 (14) | 0.0263 (16) | 0.045 (2) | 0.0031 (11) | 0.0095 (15) | −0.0008 (13) |
C12 | 0.0465 (17) | 0.0230 (15) | 0.0354 (19) | 0.0070 (13) | 0.0227 (15) | 0.0074 (13) |
C13 | 0.0380 (16) | 0.0121 (14) | 0.053 (2) | 0.0002 (11) | 0.0242 (15) | −0.0052 (12) |
C14 | 0.0273 (13) | 0.0126 (13) | 0.0337 (17) | −0.0037 (10) | 0.0131 (12) | −0.0053 (11) |
C15 | 0.0441 (18) | 0.0184 (15) | 0.042 (2) | −0.0098 (12) | 0.0160 (15) | −0.0142 (13) |
C16 | 0.052 (2) | 0.0176 (15) | 0.036 (2) | −0.0112 (13) | 0.0022 (17) | 0.0011 (13) |
N1 | 0.0237 (11) | 0.0108 (10) | 0.0268 (13) | −0.0035 (8) | 0.0053 (9) | −0.0007 (9) |
O1 | 0.0297 (11) | 0.0162 (10) | 0.0444 (14) | −0.0080 (8) | 0.0153 (10) | −0.0127 (9) |
O2 | 0.0354 (12) | 0.0130 (10) | 0.0465 (17) | 0.0013 (8) | 0.0121 (11) | −0.0008 (9) |
Ni1 | 0.0206 (2) | 0.0115 (2) | 0.0264 (3) | 0 | 0.0112 (2) | 0 |
S1 | 0.0298 (3) | 0.0120 (3) | 0.0370 (4) | −0.0027 (2) | 0.0204 (3) | −0.0034 (3) |
C1—C6 | 1.418 (3) | C11—H11A | 0.98 |
C1—C2 | 1.423 (4) | C11—H11B | 0.98 |
C1—S1 | 1.749 (3) | C11—H11C | 0.98 |
C2—C3 | 1.388 (4) | C12—H12A | 0.98 |
C2—C14 | 1.527 (4) | C12—H12B | 0.98 |
C3—C4 | 1.404 (4) | C12—H12C | 0.98 |
C3—H3 | 0.95 | C13—H13A | 0.98 |
C4—C5 | 1.392 (4) | C13—H13B | 0.98 |
C4—C10 | 1.535 (4) | C13—H13C | 0.98 |
C5—C6 | 1.407 (4) | C14—O1 | 1.413 (3) |
C5—H5 | 0.95 | C14—O2 | 1.425 (4) |
C6—C7 | 1.450 (4) | C14—H14 | 1 |
C7—N1 | 1.288 (4) | C15—O1 | 1.418 (3) |
C7—H7 | 0.95 | C15—H15A | 0.98 |
C8—N1 | 1.485 (3) | C15—H15B | 0.98 |
C8—C9 | 1.525 (4) | C15—H15C | 0.98 |
C8—H8A | 0.99 | C16—O2 | 1.420 (5) |
C8—H8B | 0.99 | C16—H16A | 0.98 |
C9—C8i | 1.525 (4) | C16—H16B | 0.98 |
C9—H9A | 0.99 | C16—H16C | 0.98 |
C9—H9B | 0.99 | Ni1—N1 | 1.907 (2) |
C10—C11 | 1.532 (5) | Ni1—N1i | 1.907 (2) |
C10—C12 | 1.534 (4) | Ni1—S1i | 2.1742 (8) |
C10—C13 | 1.543 (4) | Ni1—S1 | 2.1742 (8) |
C6—C1—C2 | 116.6 (2) | H11B—C11—H11C | 109.5 |
C6—C1—S1 | 124.08 (19) | C10—C12—H12A | 109.5 |
C2—C1—S1 | 119.2 (2) | C10—C12—H12B | 109.5 |
C3—C2—C1 | 120.9 (2) | H12A—C12—H12B | 109.5 |
C3—C2—C14 | 120.2 (2) | C10—C12—H12C | 109.5 |
C1—C2—C14 | 118.9 (2) | H12A—C12—H12C | 109.5 |
C2—C3—C4 | 122.9 (2) | H12B—C12—H12C | 109.5 |
C2—C3—H3 | 118.5 | C10—C13—H13A | 109.5 |
C4—C3—H3 | 118.5 | C10—C13—H13B | 109.5 |
C5—C4—C3 | 116.2 (3) | H13A—C13—H13B | 109.5 |
C5—C4—C10 | 123.0 (2) | C10—C13—H13C | 109.5 |
C3—C4—C10 | 120.8 (2) | H13A—C13—H13C | 109.5 |
C4—C5—C6 | 122.6 (2) | H13B—C13—H13C | 109.5 |
C4—C5—H5 | 118.7 | O1—C14—O2 | 111.6 (2) |
C6—C5—H5 | 118.7 | O1—C14—C2 | 108.2 (2) |
C5—C6—C1 | 120.7 (2) | O2—C14—C2 | 112.8 (2) |
C5—C6—C7 | 115.1 (2) | O1—C14—H14 | 108.1 |
C1—C6—C7 | 124.2 (2) | O2—C14—H14 | 108.1 |
N1—C7—C6 | 127.8 (3) | C2—C14—H14 | 108.1 |
N1—C7—H7 | 116.1 | O1—C15—H15A | 109.5 |
C6—C7—H7 | 116.1 | O1—C15—H15B | 109.5 |
N1—C8—C9 | 110.0 (2) | H15A—C15—H15B | 109.5 |
N1—C8—H8A | 109.7 | O1—C15—H15C | 109.5 |
C9—C8—H8A | 109.7 | H15A—C15—H15C | 109.5 |
N1—C8—H8B | 109.7 | H15B—C15—H15C | 109.5 |
C9—C8—H8B | 109.7 | O2—C16—H16A | 109.5 |
H8A—C8—H8B | 108.2 | O2—C16—H16B | 109.5 |
C8i—C9—C8 | 110.8 (3) | H16A—C16—H16B | 109.5 |
C8i—C9—H9A | 109.5 | O2—C16—H16C | 109.5 |
C8—C9—H9A | 109.5 | H16A—C16—H16C | 109.5 |
C8i—C9—H9B | 109.5 | H16B—C16—H16C | 109.5 |
C8—C9—H9B | 109.5 | C7—N1—C8 | 115.5 (2) |
H9A—C9—H9B | 108.1 | C7—N1—Ni1 | 131.74 (19) |
C11—C10—C12 | 109.5 (3) | C8—N1—Ni1 | 112.60 (18) |
C11—C10—C4 | 108.8 (3) | C14—O1—C15 | 111.4 (2) |
C12—C10—C4 | 109.6 (2) | C16—O2—C14 | 115.0 (3) |
C11—C10—C13 | 108.5 (2) | N1—Ni1—N1i | 90.49 (14) |
C12—C10—C13 | 108.1 (3) | N1—Ni1—S1i | 163.52 (7) |
C4—C10—C13 | 112.3 (2) | N1i—Ni1—S1i | 95.30 (7) |
C10—C11—H11A | 109.5 | N1—Ni1—S1 | 95.30 (7) |
C10—C11—H11B | 109.5 | N1i—Ni1—S1 | 163.52 (7) |
H11A—C11—H11B | 109.5 | S1i—Ni1—S1 | 83.41 (4) |
C10—C11—H11C | 109.5 | C1—S1—Ni1 | 109.86 (9) |
H11A—C11—H11C | 109.5 | ||
C6—C1—C2—C3 | −0.9 (4) | C3—C4—C10—C13 | 179.5 (3) |
S1—C1—C2—C3 | −178.0 (2) | C3—C2—C14—O1 | −21.8 (4) |
C6—C1—C2—C14 | −178.9 (3) | C1—C2—C14—O1 | 156.3 (3) |
S1—C1—C2—C14 | 3.9 (4) | C3—C2—C14—O2 | 102.1 (3) |
C1—C2—C3—C4 | 2.6 (5) | C1—C2—C14—O2 | −79.8 (3) |
C14—C2—C3—C4 | −179.4 (3) | C6—C7—N1—C8 | 180.0 (3) |
C2—C3—C4—C5 | −1.4 (4) | C6—C7—N1—Ni1 | 4.6 (5) |
C2—C3—C4—C10 | 179.7 (3) | C9—C8—N1—C7 | 106.0 (3) |
C3—C4—C5—C6 | −1.4 (4) | C9—C8—N1—Ni1 | −77.7 (2) |
C10—C4—C5—C6 | 177.4 (3) | O2—C14—O1—C15 | 65.2 (3) |
C4—C5—C6—C1 | 3.1 (5) | C2—C14—O1—C15 | −170.2 (3) |
C4—C5—C6—C7 | −177.7 (3) | O1—C14—O2—C16 | 54.4 (3) |
C2—C1—C6—C5 | −1.8 (4) | C2—C14—O2—C16 | −67.6 (3) |
S1—C1—C6—C5 | 175.1 (2) | C7—N1—Ni1—N1i | −149.1 (3) |
C2—C1—C6—C7 | 179.0 (3) | C8—N1—Ni1—N1i | 35.38 (15) |
S1—C1—C6—C7 | −4.0 (4) | C7—N1—Ni1—S1i | 100.1 (3) |
C5—C6—C7—N1 | 166.0 (3) | C8—N1—Ni1—S1i | −75.4 (3) |
C1—C6—C7—N1 | −14.8 (5) | C7—N1—Ni1—S1 | 15.4 (3) |
N1—C8—C9—C8i | 37.87 (15) | C8—N1—Ni1—S1 | −160.07 (17) |
C5—C4—C10—C11 | −119.5 (3) | C6—C1—S1—Ni1 | 24.5 (3) |
C3—C4—C10—C11 | 59.3 (3) | C2—C1—S1—Ni1 | −158.6 (2) |
C5—C4—C10—C12 | 120.8 (3) | N1—Ni1—S1—C1 | −24.99 (12) |
C3—C4—C10—C12 | −60.4 (4) | N1i—Ni1—S1—C1 | 85.1 (3) |
C5—C4—C10—C13 | 0.6 (4) | S1i—Ni1—S1—C1 | 171.52 (11) |
Symmetry code: (i) −x, y, −z+1/2. |
Acknowledgements
We are grateful to the CCLRC Daresbury Laboratory for the award of beamtime to carry out the diffraction experiment.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Google Scholar
Bruker (2000). SMART (Version 5.054), SAINT (Version 6.02a), SADABS (Version 2.03), XPREP and SHELXTL/NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christensen, A. & McKenzie, C. J. (2004). Unpublished results. Google Scholar
Christensen, A., Jensen, S., McKee, V., McKenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080–6085. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Parsons, S. & Gould, R. O. (2001). ROTAX. University of Edinburgh, Scotland. [Additions by Richard Cooper (Oxford) and Louis Farrugia (Glasgow), Version 26th November, 2001.] Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.