organic compounds
A 1:2
of isonicotinamide and propionic acidaSchool of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland, and bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
*Correspondence e-mail: s.parsons@ed.ac.uk
Isonicotinamide has been shown to form many 1:1 co-crystals with monofunctional carboxylic acids, but with propionic acid it forms a 6H6N2O·2C3H6O2. The consists of `supermolecules' made up of of one isonicotinamide molecule and two acid molecules, and the contains two of these supermolecules. One of the acid molecules is hydrogen bonded to the pyridine function, and the other to the amide function of the isonicotinamide. Further N—H⋯O hydrogen bonds connect these supermolecules into chains which run along the [100] direction. The chains are linked into layers perpendicular to (010) by C—H⋯O and π-stacking interactions. The layers are then linked together by further C—H⋯O interactions.
containing two acid molecules and one isonicotinamide molecule per formula unit, CComment
Isonicotinamide has been shown to crystallize with carboxylic acids in a 1:1 stoichiometry to form a robust building block or `supermolecule' consisting of two amide and two acid molecules, (I) (Aakeröy et al., 2002). When a of isonicotinamide in warm propionic acid was allowed to cool, colourless crystalline laths were obtained. Single-crystal X-ray diffraction revealed these to be a consisting of isonicotinamide and propionic acid in a 1:2 ratio, viz. (II).
Similar preparative routes with formic and acetic acids both yielded 1:1 co-crystals (Oswald, 2004). Attempts to prepare a 1:1 with propionic acid failed. For example, a 1:1 mixture of propionic acid and isonicotinamide in ethanol yielded only crystals of (II); even in the presence of excess isonicotinamide, the only crystals obtained were isonicotinamide itself and (II).
The ) consists of supermolecules comprising two acid and one isonicotinamide molecule. One acid forms an R22(8) motif with the amide moiety (Bernstein et al., 1995). Another acid molecule forms a hydrogen bond to the pyridine N atom, supported by a weaker C—H⋯O hydrogen bond (Fig. 1 and Table 1). There are two supermolecules in the and, in the terminology of Aakeröy et al. (2002), both are in the trans–trans conformation.
of (IIThe independent supermolecules hydrogen-bond together using the second amide donor and the carbonyl group from the propionic acid molecules located at the pyridine end of the supermolecules. This builds up a helical chain in which successive supermolecules are aligned approximately perpendicular to one another (Figs. 2–4; hydrogen-bond dimensions are listed in Table 1). The chains run along the a direction, and they comprise all the conventional N—H⋯O and O—H⋯O hydrogen bonds in the (see Table 1); additional C—H⋯O interactions (C5A—H5A⋯O2U and C5B—H5B⋯O2V) are also formed within the chains (Desiraju & Steiner, 1999).
Successive helical chains are distributed along the c direction at z = ¼, ¾, …, etc. (Fig. 5). Though there are no direct hydrogen-bonding interactions between neighbouring chains, weak C—H⋯O interactions are formed between chains located one lattice-repeat away from each other (e.g. the red and blue chains in Fig. 5; see also Fig. 6). These interactions involve C2A—H2A⋯O3T and C2B—H2B⋯O3S. Supermolecules in neighbouring chains are interleaved to produce stacks of supermolecules along a (Fig. 5). Stacks containing only the supermolecules based on isonicotinamide molecule A occur at z = ½, while stacks containing only those based on molecule B occur at z = 0, 1, … etc. Within the stacks, pairs of pyridine moieties are π-stacked across inversion centres (Fig. 7). The stacking distances are 3.34 and 3.33 Å for the A and B pyridine rings, respectively.
Thus, layers are formed in the ac-plane by chains of hydrogen-bonded supermolecules linked by weak C—H⋯O and π-stacking interactions. The layers are connected via C—H⋯O hydrogen bonds involving pairs of C4T—H4T1⋯O2T and C4V—H4V1⋯O2S interactions disposed about inversion centres (Fig. 8).
Experimental
All materials were obtained from Aldrich and used as received. Isonicotinamide (0.50 g, 4.10 mmol) was dissolved in an excess of propionic acid (2.40 g, 32.43 mmol) and warmed until all the solid dissolved. The solution was cooled to room temperature, producing colourless laths.
Crystal data
|
Data collection
Refinement
|
H atoms were placed on C atoms in calculated positions [Uiso(H) = 1.2Ueq(C)] and allowed to ride on their parent atoms [C(phenyl)—H = 0.95, C(methylene)—H = 0.99 and C(methyl)—H = 0.98 Å]. Amide and hydroxyl H atoms were located in difference maps and refined freely, the former subject to the restraint N—H = 0.95 (3) Å. The ranges of N—H and O—H bond lengths were 0.91 (2)–0.96 (1) and 0.75 (5)–0.87 (4) Å, respectively.
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2003); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, MERCURY (Taylor & Macrae, 2001) and DIAMOND (Crystal Impact, 2004); software used to prepare material for publication: SHELXTL, EnCIFer (Allen et al., 2004) and PLATON (Spek, 2003), as incorporated in WinGX (Farrugia, 1999)..
Supporting information
https://doi.org/10.1107/S1600536804028776/ya6228sup1.cif
contains datablocks II, global. DOI:Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S1600536804028776/ya6228IIsup2.hkl
Data collection: SMART (Bruker, 2001); cell
SMART; data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, Mercury (Taylor & Macrae, 2001) and DIAMOND (Crystal Impact, 2004); software used to prepare material for publication: SHELXTL, enCIFer (Allen et al., 2004) and PLATON (Spek, 2004), as incorported in WinGX (Farrugia, 1999)..C6H6N2O·2C3H6O2 | Z = 4 |
Mr = 270.28 | F(000) = 576 |
Triclinic, P1 | Dx = 1.278 Mg m−3 |
Hall symbol: -P1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.038 (3) Å | Cell parameters from 1107 reflections |
b = 11.559 (4) Å | θ = 2.6–22.2° |
c = 12.740 (4) Å | µ = 0.10 mm−1 |
α = 103.203 (6)° | T = 150 K |
β = 90.140 (6)° | Lath, colourless |
γ = 102.247 (6)° | 0.75 × 0.20 × 0.08 mm |
V = 1404.5 (8) Å3 |
Bruker SMART CCD area-detector diffractometer | 6498 independent reflections |
Radiation source: fine-focus sealed tube | 3362 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
φ and ω scans | θmax = 28.9°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −13→13 |
Tmin = 0.783, Tmax = 1.000 | k = −15→15 |
12519 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.088 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.198 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0681P)2 + 0.3798P] where P = (Fo2 + 2Fc2)/3 |
6498 reflections | (Δ/σ)max < 0.001 |
379 parameters | Δρmax = 0.36 e Å−3 |
4 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ············. 0.84 T min and Tmax reported: 0.783 1.000 Tmin' and Tmax expected: 0.927 0.992 Noted, but no action taken. SADABS attempts to correct for all systematic errors not just absorption. The large range could represent a small amount of crystal decay for example. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ······. 0.98 ============================================================================ Resolution & Completeness Statistics (Cumulative) ============================================================================ Theta sin(th)/Lambda Complete Expected Measured Missing —————————————————————————- —- 20.82 0.500 0.998 2939 2932 7 23.01 0.550 0.990 3900 3861 39 25.24 0.600 0.979 5085 4978 107 ———————————————————— ACTA Min. Res. —- 27.51 0.650 0.961 6447 6198 249 29.84 0.700 0.875 7427 6498 929 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ······. 0.75 mm Gorbitz has shown that use of a large crystal does not appear to matter. See C. H. Gorbitz Acta Cryst. (1999). B55, 1090–1098 PLAT414_ALERT_2_C Short Intra D—H.·H—X H5A.. H92A.. 1.98 A ng PLAT414_ALERT_2_C Short Intra D—H.·H—X H5B.. H92B.. 1.96 A ng PLAT480_ALERT_4_C Long H···A H-Bond Reported H6A.. O2V.. 2.73 A ng PLAT480_ALERT_4_C Long H···A H-Bond Reported H6B.. O2U.. 2.72 A ng See text. PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ··· 3.02 Ratio PLAT340_ALERT_3_C Low Bond Precision on C—C bonds (x 1000) Ang ··· 5 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ······.. 20 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 4 C3 H6 O2 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 6 C3 H6 O2 No action taken. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.0374 (3) | −0.1364 (2) | 0.5184 (2) | 0.0340 (6) | |
C2A | 0.0899 (3) | −0.1354 (3) | 0.4224 (3) | 0.0399 (9) | |
H2A | 0.0424 | −0.1899 | 0.3598 | 0.048* | |
C3A | 0.2125 (3) | −0.0566 (3) | 0.4114 (3) | 0.0367 (8) | |
H3A | 0.2482 | −0.0576 | 0.3423 | 0.044* | |
C4A | 0.2807 (3) | 0.0225 (3) | 0.5023 (2) | 0.0307 (7) | |
C5A | 0.2266 (3) | 0.0211 (3) | 0.6018 (3) | 0.0358 (8) | |
H5A | 0.2724 | 0.0739 | 0.6659 | 0.043* | |
C6A | 0.1023 (3) | −0.0605 (3) | 0.6056 (3) | 0.0372 (8) | |
H6A | 0.0635 | −0.0610 | 0.6734 | 0.045* | |
C7A | 0.4134 (3) | 0.1076 (3) | 0.4875 (3) | 0.0300 (7) | |
O8A | 0.4515 (2) | 0.1028 (2) | 0.39475 (18) | 0.0422 (6) | |
N9A | 0.4801 (3) | 0.1821 (3) | 0.5743 (2) | 0.0400 (7) | |
H91A | 0.559 (4) | 0.239 (4) | 0.561 (4) | 0.13 (2)* | |
H92A | 0.448 (4) | 0.177 (4) | 0.641 (2) | 0.075 (14)* | |
N1B | 0.6050 (2) | 1.1345 (2) | −0.0179 (2) | 0.0347 (7) | |
C2B | 0.6559 (3) | 1.1321 (3) | 0.0769 (3) | 0.0363 (8) | |
H2B | 0.6352 | 1.1865 | 0.1396 | 0.044* | |
C3B | 0.7394 (3) | 1.0525 (3) | 0.0886 (3) | 0.0372 (8) | |
H3B | 0.7738 | 1.0521 | 0.1580 | 0.045* | |
C4B | 0.7705 (3) | 0.9749 (3) | −0.0022 (2) | 0.0318 (8) | |
C5B | 0.7187 (3) | 0.9781 (3) | −0.1016 (3) | 0.0343 (8) | |
H5B | 0.7395 | 0.9262 | −0.1658 | 0.041* | |
C6B | 0.6340 (3) | 1.0601 (3) | −0.1058 (3) | 0.0358 (8) | |
H6B | 0.5967 | 1.0620 | −0.1738 | 0.043* | |
C7B | 0.8617 (3) | 0.8898 (3) | 0.0125 (3) | 0.0315 (8) | |
O8B | 0.9029 (2) | 0.8942 (2) | 0.10510 (18) | 0.0435 (6) | |
N9B | 0.8926 (3) | 0.8168 (3) | −0.0743 (2) | 0.0402 (7) | |
H91B | 0.943 (4) | 0.761 (3) | −0.064 (3) | 0.079 (14)* | |
H92B | 0.855 (3) | 0.817 (3) | −0.141 (2) | 0.059 (11)* | |
C1S | 0.7475 (3) | 0.3193 (3) | 0.4192 (3) | 0.0380 (8) | |
O2S | 0.7115 (3) | 0.3378 (2) | 0.5096 (2) | 0.0546 (7) | |
O3S | 0.6802 (3) | 0.2306 (2) | 0.34051 (19) | 0.0442 (7) | |
H3S | 0.618 (4) | 0.189 (3) | 0.361 (3) | 0.052 (13)* | |
C4S | 0.8744 (4) | 0.3943 (3) | 0.3861 (3) | 0.0473 (9) | |
H4S1 | 0.8645 | 0.4799 | 0.4013 | 0.057* | |
H4S2 | 0.9519 | 0.3916 | 0.4329 | 0.057* | |
C5S | 0.9112 (4) | 0.3599 (4) | 0.2720 (3) | 0.0597 (11) | |
H5S1 | 0.9249 | 0.2763 | 0.2558 | 0.090* | |
H5S2 | 0.9955 | 0.4155 | 0.2611 | 0.090* | |
H5S3 | 0.8374 | 0.3652 | 0.2241 | 0.090* | |
C1T | 1.0981 (3) | 0.6806 (3) | 0.0803 (3) | 0.0374 (8) | |
O2T | 1.0571 (2) | 0.6652 (2) | −0.0116 (2) | 0.0521 (7) | |
O3T | 1.0671 (3) | 0.7648 (3) | 0.1601 (2) | 0.0468 (7) | |
H3T | 1.029 (5) | 0.809 (4) | 0.145 (4) | 0.10 (2)* | |
C4T | 1.1877 (4) | 0.6048 (3) | 0.1135 (3) | 0.0468 (9) | |
H4T1 | 1.1369 | 0.5189 | 0.0955 | 0.056* | |
H4T2 | 1.2686 | 0.6099 | 0.0691 | 0.056* | |
C5T | 1.2363 (4) | 0.6365 (4) | 0.2284 (3) | 0.0621 (12) | |
H5T1 | 1.2872 | 0.7214 | 0.2480 | 0.093* | |
H5T2 | 1.2960 | 0.5829 | 0.2395 | 0.093* | |
H5T3 | 1.1579 | 0.6263 | 0.2736 | 0.093* | |
C1U | 0.5951 (3) | 0.7137 (3) | 0.1200 (3) | 0.0331 (8) | |
O2U | 0.5695 (2) | 0.7875 (2) | 0.19782 (18) | 0.0417 (6) | |
O3U | 0.5494 (3) | 0.7069 (2) | 0.02220 (19) | 0.0440 (6) | |
H3U | 0.496 (4) | 0.757 (4) | 0.021 (3) | 0.086 (16)* | |
C4U | 0.6782 (3) | 0.6226 (3) | 0.1251 (3) | 0.0442 (9) | |
H4U1 | 0.7507 | 0.6291 | 0.0730 | 0.053* | |
H4U2 | 0.6191 | 0.5400 | 0.1026 | 0.053* | |
C5U | 0.7439 (4) | 0.6374 (4) | 0.2361 (3) | 0.0574 (11) | |
H5U1 | 0.8006 | 0.7198 | 0.2602 | 0.086* | |
H5U2 | 0.8010 | 0.5777 | 0.2326 | 0.086* | |
H5U3 | 0.6727 | 0.6243 | 0.2873 | 0.086* | |
C1V | 0.7618 (3) | 0.7141 (3) | −0.3789 (3) | 0.0319 (8) | |
O2V | 0.8246 (2) | 0.7852 (2) | −0.30190 (18) | 0.0417 (6) | |
O3V | 0.8021 (3) | 0.7075 (2) | −0.47843 (18) | 0.0410 (6) | |
H3V | 0.876 (5) | 0.763 (4) | −0.479 (4) | 0.11 (2)* | |
C4V | 0.6318 (3) | 0.6233 (3) | −0.3745 (3) | 0.0419 (9) | |
H4V1 | 0.6485 | 0.5401 | −0.3985 | 0.050* | |
H4V2 | 0.5621 | 0.6322 | −0.4254 | 0.050* | |
C5V | 0.5763 (4) | 0.6378 (4) | −0.2626 (3) | 0.0572 (11) | |
H5V1 | 0.6443 | 0.6283 | −0.2118 | 0.086* | |
H5V2 | 0.4925 | 0.5756 | −0.2645 | 0.086* | |
H5V3 | 0.5561 | 0.7189 | −0.2393 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0336 (15) | 0.0404 (17) | 0.0301 (16) | 0.0147 (13) | 0.0006 (12) | 0.0068 (13) |
C2A | 0.044 (2) | 0.048 (2) | 0.0270 (19) | 0.0148 (18) | 0.0026 (15) | 0.0027 (16) |
C3A | 0.039 (2) | 0.043 (2) | 0.0292 (19) | 0.0145 (16) | 0.0062 (15) | 0.0059 (16) |
C4A | 0.0311 (18) | 0.0397 (19) | 0.0268 (18) | 0.0192 (15) | 0.0031 (14) | 0.0082 (15) |
C5A | 0.040 (2) | 0.041 (2) | 0.0266 (18) | 0.0118 (16) | −0.0037 (14) | 0.0062 (15) |
C6A | 0.038 (2) | 0.051 (2) | 0.0258 (18) | 0.0168 (17) | 0.0034 (15) | 0.0081 (16) |
C7A | 0.0331 (18) | 0.0347 (19) | 0.0273 (18) | 0.0168 (15) | 0.0033 (14) | 0.0086 (15) |
O8A | 0.0419 (14) | 0.0506 (15) | 0.0308 (14) | 0.0072 (11) | 0.0074 (11) | 0.0053 (11) |
N9A | 0.0385 (18) | 0.053 (2) | 0.0293 (17) | 0.0112 (15) | 0.0020 (14) | 0.0098 (15) |
N1B | 0.0327 (15) | 0.0389 (17) | 0.0283 (16) | −0.0003 (12) | 0.0036 (12) | 0.0066 (13) |
C2B | 0.0356 (19) | 0.042 (2) | 0.0260 (18) | 0.0049 (16) | 0.0013 (14) | 0.0008 (15) |
C3B | 0.0333 (19) | 0.045 (2) | 0.0300 (19) | 0.0028 (16) | −0.0016 (14) | 0.0074 (16) |
C4B | 0.0247 (17) | 0.0384 (19) | 0.0256 (18) | −0.0044 (14) | 0.0012 (13) | 0.0041 (15) |
C5B | 0.0316 (18) | 0.041 (2) | 0.0261 (18) | 0.0027 (15) | 0.0051 (14) | 0.0039 (15) |
C6B | 0.0305 (18) | 0.047 (2) | 0.0277 (19) | 0.0027 (16) | 0.0031 (14) | 0.0097 (16) |
C7B | 0.0240 (17) | 0.040 (2) | 0.0267 (18) | 0.0002 (14) | 0.0046 (14) | 0.0058 (15) |
O8B | 0.0443 (14) | 0.0561 (16) | 0.0298 (14) | 0.0148 (12) | −0.0054 (11) | 0.0060 (12) |
N9B | 0.0369 (17) | 0.057 (2) | 0.0296 (17) | 0.0164 (15) | 0.0024 (13) | 0.0105 (15) |
C1S | 0.037 (2) | 0.036 (2) | 0.041 (2) | 0.0110 (16) | −0.0024 (17) | 0.0075 (17) |
O2S | 0.0603 (17) | 0.0601 (18) | 0.0367 (16) | 0.0011 (13) | 0.0122 (13) | 0.0086 (13) |
O3S | 0.0406 (15) | 0.0520 (17) | 0.0380 (16) | 0.0037 (13) | 0.0121 (12) | 0.0123 (14) |
C4S | 0.048 (2) | 0.046 (2) | 0.048 (2) | 0.0055 (18) | 0.0052 (18) | 0.0144 (19) |
C5S | 0.051 (2) | 0.051 (3) | 0.068 (3) | −0.001 (2) | 0.015 (2) | 0.007 (2) |
C1T | 0.0295 (18) | 0.038 (2) | 0.044 (2) | 0.0010 (15) | 0.0086 (16) | 0.0140 (18) |
O2T | 0.0605 (17) | 0.0616 (17) | 0.0381 (16) | 0.0204 (13) | −0.0049 (13) | 0.0128 (13) |
O3T | 0.0473 (16) | 0.0573 (18) | 0.0402 (16) | 0.0202 (14) | −0.0039 (12) | 0.0122 (14) |
C4T | 0.041 (2) | 0.053 (2) | 0.048 (2) | 0.0085 (18) | −0.0012 (17) | 0.0167 (19) |
C5T | 0.071 (3) | 0.062 (3) | 0.055 (3) | 0.027 (2) | −0.011 (2) | 0.005 (2) |
C1U | 0.0280 (17) | 0.038 (2) | 0.032 (2) | 0.0005 (15) | 0.0009 (14) | 0.0135 (16) |
O2U | 0.0442 (14) | 0.0499 (15) | 0.0316 (14) | 0.0156 (12) | 0.0041 (11) | 0.0058 (12) |
O3U | 0.0492 (15) | 0.0549 (17) | 0.0311 (14) | 0.0223 (14) | 0.0019 (11) | 0.0066 (12) |
C4U | 0.043 (2) | 0.044 (2) | 0.050 (2) | 0.0134 (17) | 0.0062 (17) | 0.0182 (18) |
C5U | 0.055 (3) | 0.055 (3) | 0.069 (3) | 0.018 (2) | −0.008 (2) | 0.023 (2) |
C1V | 0.0361 (19) | 0.038 (2) | 0.0297 (19) | 0.0199 (16) | 0.0084 (15) | 0.0135 (16) |
O2V | 0.0384 (13) | 0.0551 (16) | 0.0276 (14) | 0.0075 (12) | 0.0012 (11) | 0.0042 (12) |
O3V | 0.0427 (15) | 0.0500 (16) | 0.0279 (13) | 0.0070 (13) | 0.0062 (11) | 0.0070 (11) |
C4V | 0.041 (2) | 0.039 (2) | 0.048 (2) | 0.0101 (17) | 0.0103 (16) | 0.0142 (17) |
C5V | 0.051 (2) | 0.059 (3) | 0.064 (3) | 0.010 (2) | 0.023 (2) | 0.022 (2) |
N1A—C6A | 1.318 (4) | C4S—H4S1 | 0.9900 |
N1A—C2A | 1.333 (4) | C4S—H4S2 | 0.9900 |
C2A—C3A | 1.396 (5) | C5S—H5S1 | 0.9800 |
C2A—H2A | 0.9500 | C5S—H5S2 | 0.9800 |
C3A—C4A | 1.375 (4) | C5S—H5S3 | 0.9800 |
C3A—H3A | 0.9500 | C1T—O2T | 1.201 (4) |
C4A—C5A | 1.383 (4) | C1T—O3T | 1.325 (4) |
C4A—C7A | 1.519 (4) | C1T—C4T | 1.502 (5) |
C5A—C6A | 1.404 (4) | O3T—H3T | 0.75 (5) |
C5A—H5A | 0.9500 | C4T—C5T | 1.479 (5) |
C6A—H6A | 0.9500 | C4T—H4T1 | 0.9900 |
C7A—O8A | 1.235 (4) | C4T—H4T2 | 0.9900 |
C7A—N9A | 1.315 (4) | C5T—H5T1 | 0.9800 |
N9A—H91A | 0.96 (3) | C5T—H5T2 | 0.9800 |
N9A—H92A | 0.91 (2) | C5T—H5T3 | 0.9800 |
N1B—C2B | 1.318 (4) | C1U—O2U | 1.218 (4) |
N1B—C6B | 1.321 (4) | C1U—O3U | 1.307 (4) |
C2B—C3B | 1.401 (4) | C1U—C4U | 1.488 (5) |
C2B—H2B | 0.9500 | O3U—H3U | 0.87 (4) |
C3B—C4B | 1.375 (4) | C4U—C5U | 1.517 (5) |
C3B—H3B | 0.9500 | C4U—H4U1 | 0.9900 |
C4B—C5B | 1.378 (4) | C4U—H4U2 | 0.9900 |
C4B—C7B | 1.518 (4) | C5U—H5U1 | 0.9800 |
C5B—C6B | 1.411 (4) | C5U—H5U2 | 0.9800 |
C5B—H5B | 0.9500 | C5U—H5U3 | 0.9800 |
C6B—H6B | 0.9500 | C1V—O2V | 1.201 (4) |
C7B—O8B | 1.236 (4) | C1V—O3V | 1.323 (4) |
C7B—N9B | 1.310 (4) | C1V—C4V | 1.502 (4) |
N9B—H91B | 0.93 (2) | O3V—H3V | 0.87 (5) |
N9B—H92B | 0.93 (2) | C4V—C5V | 1.518 (5) |
C1S—O2S | 1.194 (4) | C4V—H4V1 | 0.9900 |
C1S—O3S | 1.321 (4) | C4V—H4V2 | 0.9900 |
C1S—C4S | 1.501 (5) | C5V—H5V1 | 0.9800 |
O3S—H3S | 0.79 (4) | C5V—H5V2 | 0.9800 |
C4S—C5S | 1.485 (5) | C5V—H5V3 | 0.9800 |
C6A—N1A—C2A | 119.4 (3) | C4S—C5S—H5S1 | 109.5 |
N1A—C2A—C3A | 121.9 (3) | C4S—C5S—H5S2 | 109.5 |
N1A—C2A—H2A | 119.1 | H5S1—C5S—H5S2 | 109.5 |
C3A—C2A—H2A | 119.1 | C4S—C5S—H5S3 | 109.5 |
C4A—C3A—C2A | 118.9 (3) | H5S1—C5S—H5S3 | 109.5 |
C4A—C3A—H3A | 120.5 | H5S2—C5S—H5S3 | 109.5 |
C2A—C3A—H3A | 120.5 | O2T—C1T—O3T | 122.7 (3) |
C3A—C4A—C5A | 119.2 (3) | O2T—C1T—C4T | 122.4 (3) |
C3A—C4A—C7A | 117.6 (3) | O3T—C1T—C4T | 114.9 (3) |
C5A—C4A—C7A | 123.2 (3) | C1T—O3T—H3T | 117 (4) |
C4A—C5A—C6A | 118.2 (3) | C5T—C4T—C1T | 117.1 (3) |
C4A—C5A—H5A | 120.9 | C5T—C4T—H4T1 | 108.0 |
C6A—C5A—H5A | 120.9 | C1T—C4T—H4T1 | 108.0 |
N1A—C6A—C5A | 122.4 (3) | C5T—C4T—H4T2 | 108.0 |
N1A—C6A—H6A | 118.8 | C1T—C4T—H4T2 | 108.0 |
C5A—C6A—H6A | 118.8 | H4T1—C4T—H4T2 | 107.3 |
O8A—C7A—N9A | 124.2 (3) | C4T—C5T—H5T1 | 109.5 |
O8A—C7A—C4A | 118.0 (3) | C4T—C5T—H5T2 | 109.5 |
N9A—C7A—C4A | 117.8 (3) | H5T1—C5T—H5T2 | 109.5 |
C7A—N9A—H91A | 115 (3) | C4T—C5T—H5T3 | 109.5 |
C7A—N9A—H92A | 119 (3) | H5T1—C5T—H5T3 | 109.5 |
H91A—N9A—H92A | 126 (4) | H5T2—C5T—H5T3 | 109.5 |
C2B—N1B—C6B | 119.4 (3) | O2U—C1U—O3U | 122.0 (3) |
N1B—C2B—C3B | 122.4 (3) | O2U—C1U—C4U | 124.7 (3) |
N1B—C2B—H2B | 118.8 | O3U—C1U—C4U | 113.2 (3) |
C3B—C2B—H2B | 118.8 | C1U—O3U—H3U | 112 (3) |
C4B—C3B—C2B | 118.7 (3) | C1U—C4U—C5U | 113.9 (3) |
C4B—C3B—H3B | 120.6 | C1U—C4U—H4U1 | 108.8 |
C2B—C3B—H3B | 120.6 | C5U—C4U—H4U1 | 108.8 |
C3B—C4B—C5B | 118.9 (3) | C1U—C4U—H4U2 | 108.8 |
C3B—C4B—C7B | 117.8 (3) | C5U—C4U—H4U2 | 108.8 |
C5B—C4B—C7B | 123.3 (3) | H4U1—C4U—H4U2 | 107.7 |
C4B—C5B—C6B | 118.6 (3) | C4U—C5U—H5U1 | 109.5 |
C4B—C5B—H5B | 120.7 | C4U—C5U—H5U2 | 109.5 |
C6B—C5B—H5B | 120.7 | H5U1—C5U—H5U2 | 109.5 |
N1B—C6B—C5B | 121.9 (3) | C4U—C5U—H5U3 | 109.5 |
N1B—C6B—H6B | 119.0 | H5U1—C5U—H5U3 | 109.5 |
C5B—C6B—H6B | 119.0 | H5U2—C5U—H5U3 | 109.5 |
O8B—C7B—N9B | 124.1 (3) | O2V—C1V—O3V | 122.6 (3) |
O8B—C7B—C4B | 118.2 (3) | O2V—C1V—C4V | 125.0 (3) |
N9B—C7B—C4B | 117.7 (3) | O3V—C1V—C4V | 112.5 (3) |
C7B—N9B—H91B | 117 (3) | C1V—O3V—H3V | 110 (3) |
C7B—N9B—H92B | 119 (2) | C1V—C4V—C5V | 113.2 (3) |
H91B—N9B—H92B | 123 (3) | C1V—C4V—H4V1 | 108.9 |
O2S—C1S—O3S | 122.9 (3) | C5V—C4V—H4V1 | 108.9 |
O2S—C1S—C4S | 122.5 (3) | C1V—C4V—H4V2 | 108.9 |
O3S—C1S—C4S | 114.5 (3) | C5V—C4V—H4V2 | 108.9 |
C1S—O3S—H3S | 112 (3) | H4V1—C4V—H4V2 | 107.7 |
C5S—C4S—C1S | 117.6 (3) | C4V—C5V—H5V1 | 109.5 |
C5S—C4S—H4S1 | 107.9 | C4V—C5V—H5V2 | 109.5 |
C1S—C4S—H4S1 | 107.9 | H5V1—C5V—H5V2 | 109.5 |
C5S—C4S—H4S2 | 107.9 | C4V—C5V—H5V3 | 109.5 |
C1S—C4S—H4S2 | 107.9 | H5V1—C5V—H5V3 | 109.5 |
H4S1—C4S—H4S2 | 107.2 | H5V2—C5V—H5V3 | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3S—H3S···O8A | 0.79 (4) | 1.86 (4) | 2.639 (4) | 170 (4) |
O3T—H3T···O8B | 0.76 (5) | 1.89 (5) | 2.639 (4) | 169 (5) |
O3U—H3U···N1Bi | 0.87 (4) | 1.78 (4) | 2.649 (4) | 177 (5) |
O3V—H3V···N1Aii | 0.87 (5) | 1.79 (5) | 2.657 (4) | 174 (5) |
N9A—H91A···O2S | 0.96 (5) | 1.92 (4) | 2.868 (4) | 170 (5) |
N9B—H91B···O2T | 0.93 (4) | 1.96 (4) | 2.880 (4) | 168 (3) |
N9A—H92A···O2Uiii | 0.92 (3) | 2.02 (3) | 2.901 (4) | 161 (3) |
N9B—H92B···O2V | 0.93 (3) | 2.01 (3) | 2.900 (4) | 160 (3) |
C2A—H2A···O3Tiv | 0.95 | 2.50 | 3.267 (5) | 138 |
C2B—H2B···O3Sv | 0.95 | 2.51 | 3.281 (5) | 138 |
C5A—H5A···O2Uiii | 0.95 | 2.40 | 3.328 (4) | 167 |
C5B—H5B···O2V | 0.95 | 2.39 | 3.322 (4) | 168 |
C6A—H6A···O2Vvi | 0.95 | 2.73 | 3.348 (4) | 123 |
C6B—H6B···O2Ui | 0.95 | 2.72 | 3.333 (4) | 123 |
C4T—H4T1···O2Tvii | 0.99 | 2.58 | 3.513 (5) | 157 |
C4V—H4V1···O2Sviii | 0.99 | 2.57 | 3.551 (4) | 170 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1, y+1, z−1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y−1, z; (v) x, y+1, z; (vi) x−1, y−1, z+1; (vii) −x+2, −y+1, −z; (viii) x, y, z−1. |
Acknowledgements
We thank the EPSRC, the University of Edinburgh and the Cambridge Crystallographic Data Centre for funding.
References
Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432. Web of Science PubMed Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT. Version 7. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Crystal Impact (2004). DIAMOND. Version 3.0a. Crystal Impact GbR, Postfach 1251, 53002 Bonn, Germany. (URL: https://www.crystalimpact.com/diamond.) Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. IUCr Monographs on Crystallography, No. 9. Oxford University Press. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Oswald, I. D. H. (2004) PhD thesis, The University of Edinburgh, Scotland. Google Scholar
Sheldrick, G. M. (2001). SHELXTL. Version 6.01. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, R. & Macrae, C. F. (2001). Acta Cryst. B57, 815–827. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.