organic compounds
3,4-O-Isopropylidene-2-C-methyl-D-arabinono-1,5-lactone
aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk
The title δ-lactone, C9H14O5, formed in high by the Kiliani reaction of a protected 1-deoxyketose, adopts a boat conformation in which an OH group occupies a flagpole position.
Comment
Although sugars provide the largest group of readily available chiral building blocks and bioactive scaffolds (Lichtenthaler & Peters, 2004), the potential of the Kiliani ascension of to provide readily available branched scaffolds has only just begun to be developed (Hotchkiss et al., 2004; Shallard-Brown et al., 2004 Cowley et al., 2004; van Ameijde et al., 2004). While the range of commercially available is restricted, 1-deoxyketoses may readily be generated by addition of organometallic reagents to sugar As an extension to the branching chemistry of the protected 1-deoxyketose (1) was treated with sodium cyanide and gave a single diastereomeric product. The reported in this paper firmly establishes that the lactone (2) was formed; none of the epimeric lactone (3) was isolated.
The δ-lactone (2) (Fig. 1) adopts a boat conformation. While there are several example of fused 3,4-ketals of δ-lactones that adopt boat conformations (Bruce et al., 1990; Bichard et al., 1991; Beacham et al., 1991), very few of them have a flagpole substituent (Wheatley et al., 1994); the hydroxy group at atom C1 is clearly in a very hindered position, being additionally attached to a tertiary C atom. Nonetheless, as usually expected for sugar derivatives, hydrogen bonding occurs between molecules (Fig. 2 and Table 2).
Experimental
The sugar was crystallized by dissolving it in diethyl ether, adding a few drops of cyclohexane and allowing the slow competitive evaporation of the two solvents until crystals formed.
Crystal data
|
Data collection
|
Refinement
|
|
The multi-scan technique (Otwinowski & Minor, 1997) was used to correct for changes in the illuminated volume of the long needle crystal. In the absence of significant effects, Friedel pairs were merged. The was assigned from the known configuration of the starting material in the synthesis. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.97–1.01 Å and O—H = 0.94 Å), after which they were refined as riding, with Uiso(H) = 1.2Ueq(C) for those bonded to C atoms, and Uiso(H) = 0.05 Å2 for the hydroxy group.
Data collection: COLLECT (Nonius, 1997); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536804032659/cf6391sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804032659/cf6391Isup2.hkl
Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C9H14O5 | F(000) = 216 |
Mr = 202.21 | Dx = 1.356 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7315 (3) Å | Cell parameters from 1264 reflections |
b = 6.2859 (3) Å | θ = 5–30° |
c = 10.4209 (6) Å | µ = 0.11 mm−1 |
β = 102.1024 (17)° | T = 190 K |
V = 495.19 (4) Å3 | Needle, colourless |
Z = 2 | 0.90 × 0.20 × 0.20 mm |
Nonius KappaCCD diffractometer | Rint = 0.018 |
Graphite monochromator | θmax = 30.0°, θmin = 5.3° |
ω scans | h = −10→10 |
2579 measured reflections | k = −8→8 |
1527 independent reflections | l = −14→14 |
1448 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(F2) + 0.04 + 0.06P], where P = (max(Fo2,0) + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.000343 |
1527 reflections | Δρmax = 0.24 e Å−3 |
127 parameters | Δρmin = −0.16 e Å−3 |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C1 | 0.38045 (16) | 0.7432 (2) | 0.63155 (12) | 0.0190 | |
C2 | 0.28987 (16) | 0.8696 (2) | 0.72414 (13) | 0.0206 | |
C3 | 0.09390 (16) | 0.8070 (2) | 0.71356 (13) | 0.0221 | |
O4 | 0.08151 (12) | 0.7559 (2) | 0.84474 (9) | 0.0292 | |
C5 | 0.23824 (17) | 0.8319 (3) | 0.93106 (13) | 0.0254 | |
O6 | 0.37167 (12) | 0.81163 (18) | 0.85511 (9) | 0.0231 | |
C7 | 0.2183 (2) | 1.0639 (3) | 0.96718 (18) | 0.0372 | |
C8 | 0.2838 (2) | 0.6857 (3) | 1.04806 (15) | 0.0382 | |
C9 | 0.03922 (18) | 0.6164 (3) | 0.62648 (15) | 0.0269 | |
O10 | 0.17525 (13) | 0.45193 (18) | 0.64662 (11) | 0.0274 | |
C11 | 0.34223 (18) | 0.5063 (2) | 0.64601 (13) | 0.0207 | |
O12 | 0.45221 (14) | 0.36653 (18) | 0.65495 (10) | 0.0273 | |
O13 | 0.29608 (12) | 0.80258 (19) | 0.50056 (9) | 0.0261 | |
C14 | 0.57875 (16) | 0.7863 (3) | 0.65965 (13) | 0.0244 | |
H21 | 0.3019 | 1.0247 | 0.7105 | 0.0248* | |
H31 | 0.0179 | 0.9270 | 0.6816 | 0.0280* | |
H71 | 0.3345 | 1.1210 | 1.0175 | 0.0488* | |
H72 | 0.1220 | 1.0707 | 1.0178 | 0.0488* | |
H73 | 0.1804 | 1.1428 | 0.8838 | 0.0488* | |
H81 | 0.3965 | 0.7308 | 1.1071 | 0.0479* | |
H82 | 0.1833 | 0.7025 | 1.0914 | 0.0479* | |
H83 | 0.2915 | 0.5387 | 1.0159 | 0.0479* | |
H91 | −0.0661 | 0.5480 | 0.6502 | 0.0333* | |
H92 | 0.0135 | 0.6646 | 0.5337 | 0.0333* | |
H141 | 0.6340 | 0.7072 | 0.5946 | 0.0310* | |
H142 | 0.5908 | 0.9419 | 0.6521 | 0.0310* | |
H143 | 0.6324 | 0.7393 | 0.7493 | 0.0310* | |
H3 | 0.3800 | 0.8152 | 0.4478 | 0.0500* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0200 (5) | 0.0201 (6) | 0.0178 (6) | 0.0008 (5) | 0.0061 (4) | 0.0015 (4) |
C2 | 0.0211 (5) | 0.0193 (6) | 0.0222 (6) | 0.0010 (5) | 0.0062 (4) | 0.0002 (5) |
C3 | 0.0193 (5) | 0.0257 (6) | 0.0218 (6) | 0.0004 (5) | 0.0057 (4) | −0.0008 (5) |
O4 | 0.0230 (4) | 0.0451 (7) | 0.0214 (5) | −0.0088 (5) | 0.0086 (4) | −0.0016 (5) |
C5 | 0.0200 (5) | 0.0368 (9) | 0.0204 (6) | −0.0006 (6) | 0.0068 (4) | −0.0051 (6) |
O6 | 0.0194 (4) | 0.0302 (5) | 0.0205 (4) | 0.0011 (4) | 0.0063 (3) | −0.0042 (4) |
C7 | 0.0321 (7) | 0.0436 (10) | 0.0381 (9) | 0.0032 (7) | 0.0127 (7) | −0.0163 (8) |
C8 | 0.0360 (7) | 0.0563 (11) | 0.0230 (7) | 0.0015 (8) | 0.0075 (6) | 0.0031 (7) |
C9 | 0.0201 (5) | 0.0299 (7) | 0.0297 (7) | −0.0024 (6) | 0.0029 (5) | −0.0053 (6) |
O10 | 0.0261 (5) | 0.0216 (5) | 0.0355 (5) | −0.0041 (4) | 0.0089 (4) | −0.0027 (4) |
C11 | 0.0252 (6) | 0.0219 (6) | 0.0162 (5) | 0.0010 (5) | 0.0071 (4) | −0.0002 (5) |
O12 | 0.0356 (5) | 0.0228 (5) | 0.0265 (5) | 0.0061 (4) | 0.0134 (4) | 0.0020 (4) |
O13 | 0.0256 (4) | 0.0331 (5) | 0.0205 (4) | 0.0043 (5) | 0.0069 (3) | 0.0080 (4) |
C14 | 0.0204 (5) | 0.0275 (7) | 0.0269 (6) | 0.0003 (6) | 0.0084 (5) | 0.0015 (6) |
C1—C2 | 1.5284 (18) | C7—H72 | 0.999 |
C1—C11 | 1.5318 (19) | C7—H73 | 0.990 |
C1—O13 | 1.4334 (15) | C8—H81 | 0.997 |
C1—C14 | 1.5237 (17) | C8—H82 | 0.983 |
C2—C3 | 1.5468 (18) | C8—H83 | 0.989 |
C2—O6 | 1.4261 (16) | C9—O10 | 1.4581 (18) |
C2—H21 | 0.992 | C9—H91 | 0.996 |
C3—O4 | 1.4268 (16) | C9—H92 | 0.993 |
C3—C9 | 1.509 (2) | O10—C11 | 1.3367 (16) |
C3—H31 | 0.971 | C11—O12 | 1.2124 (17) |
O4—C5 | 1.4312 (16) | O13—H3 | 0.938 |
C5—O6 | 1.4314 (16) | C14—H141 | 1.006 |
C5—C7 | 1.522 (2) | C14—H142 | 0.987 |
C5—C8 | 1.508 (2) | C14—H143 | 0.985 |
C7—H71 | 1.007 | ||
C2—C1—C11 | 108.66 (10) | H71—C7—H72 | 113.1 |
C2—C1—O13 | 106.76 (10) | C5—C7—H73 | 106.8 |
C11—C1—O13 | 106.76 (11) | H71—C7—H73 | 110.2 |
C2—C1—C14 | 111.22 (11) | H72—C7—H73 | 109.0 |
C11—C1—C14 | 111.17 (12) | C5—C8—H81 | 110.5 |
O13—C1—C14 | 112.04 (10) | C5—C8—H82 | 103.5 |
C1—C2—C3 | 113.22 (11) | H81—C8—H82 | 111.0 |
C1—C2—O6 | 107.54 (10) | C5—C8—H83 | 108.4 |
C3—C2—O6 | 103.56 (10) | H81—C8—H83 | 111.6 |
C1—C2—H21 | 110.6 | H82—C8—H83 | 111.5 |
C3—C2—H21 | 111.1 | C3—C9—O10 | 111.94 (11) |
O6—C2—H21 | 110.6 | C3—C9—H91 | 109.5 |
C2—C3—O4 | 104.50 (10) | O10—C9—H91 | 105.1 |
C2—C3—C9 | 113.06 (11) | C3—C9—H92 | 108.5 |
O4—C3—C9 | 109.33 (13) | O10—C9—H92 | 110.3 |
C2—C3—H31 | 109.9 | H91—C9—H92 | 111.5 |
O4—C3—H31 | 110.2 | C9—O10—C11 | 119.10 (11) |
C9—C3—H31 | 109.7 | C1—C11—O10 | 117.08 (12) |
C3—O4—C5 | 108.01 (10) | C1—C11—O12 | 124.42 (12) |
O4—C5—O6 | 103.66 (10) | O10—C11—O12 | 118.49 (13) |
O4—C5—C7 | 111.02 (13) | C1—O13—H3 | 110.4 |
O6—C5—C7 | 110.14 (13) | C1—C14—H141 | 109.6 |
O4—C5—C8 | 109.15 (13) | C1—C14—H142 | 105.6 |
O6—C5—C8 | 108.63 (12) | H141—C14—H142 | 112.1 |
C7—C5—C8 | 113.74 (14) | C1—C14—H143 | 109.6 |
C5—O6—C2 | 106.26 (9) | H141—C14—H143 | 109.7 |
C5—C7—H71 | 110.2 | H142—C14—H143 | 110.2 |
C5—C7—H72 | 107.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H3···O12i | 0.94 | 1.87 | 2.8103 (14) | 175 |
Symmetry code: (i) −x+1, y+1/2, −z+1. |
Footnotes
‡Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.
References
Ameijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140–o2141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435. CrossRef Web of Science IUCr Journals Google Scholar
Beacham, A. R., Bruce, I., Choi, S., Doherty, O., Fairbanks, A. J., Fleet, G. W. J., Skead, B. M., Peach, J. M., Saunders, J. & Watkin, D. J. (1991). Tetrahedron Asymmetry, 2, 883–900. CSD CrossRef CAS Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bichard, C. J. F., Fairbanks, A. J., Fleet, G. W. J., Ramsden, N. G., Vogt, K., Doherty, O., Pearce, L. & Watkin, D. J. (1991). Tetrahedron Asymmetry, 2, 901–912. CSD CrossRef CAS Web of Science Google Scholar
Bruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. & Watkin, D. J. (1990). Tetrahedron, 46, 19–32. CSD CrossRef CAS Web of Science Google Scholar
Cowley, A. R., Fleet, G. W. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2142–o2143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Lichtenthaler, F. W. & Peters, S. (2004). Compt. Rend. Chim. 7, 65–90. Web of Science CrossRef CAS Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163–o2164. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Wheatley, J. R., Beacham, A. R., Lilley, P. D., Watkin, D. J. & Fleet, G. W. J. (1994). Tetrahedron Asymmetry, 5, 2523–2534. CSD CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.