organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-O-Iso­propyl­­idene-2-C-methyl-D-arabinono-1,5-lactone

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk

(Received 23 November 2004; accepted 9 December 2004; online 18 December 2004)

The title δ-lactone, C9H14O5, formed in high diastereoselectivity by the Kiliani reaction of a protected 1-deoxy­ketose, adopts a boat conformation in which an OH group occupies a flagpole position.

Comment

Although sugars provide the largest group of readily available chiral building blocks and bioactive scaffolds (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). Compt. Rend. Chim. 7, 65-90.]), the potential of the Kiliani ascension of ketoses to provide readily available branched scaffolds has only just begun to be developed (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Shallard-Brown et al., 2004[Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163-o2164.] Cowley et al., 2004[Cowley, A. R., Fleet, G. W. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2142-o2143.]; van Ameijde et al., 2004[Ameijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140-o2141.]). While the range of commercially available ketoses is restricted, 1-deoxy­ketoses may readily be generated by addition of organometallic reagents to sugar lactones. As an extension to the branching chemistry of ketoses, the protected 1-deoxy­ketose (1)[link] was treated with sodium cyanide and gave a single diastereomeric product. The crystal structure reported in this paper firmly establishes that the lactone (2)[link] was formed; none of the epimeric lactone (3)[link] was isolated.

[Scheme 1]

The δ-lactone (2)[link] (Fig. 1[link]) adopts a boat conformation. While there are several example of fused 3,4-ketals of δ-lactones that adopt boat conformations (Bruce et al., 1990[Bruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. & Watkin, D. J. (1990). Tetrahedron, 46, 19-32.]; Bichard et al., 1991[Bichard, C. J. F., Fairbanks, A. J., Fleet, G. W. J., Ramsden, N. G., Vogt, K., Doherty, O., Pearce, L. & Watkin, D. J. (1991). Tetrahedron Asymmetry, 2, 901-912.]; Beacham et al., 1991[Beacham, A. R., Bruce, I., Choi, S., Doherty, O., Fairbanks, A. J., Fleet, G. W. J., Skead, B. M., Peach, J. M., Saunders, J. & Watkin, D. J. (1991). Tetrahedron Asymmetry, 2, 883-900.]), very few of them have a flagpole substituent (Wheatley et al., 1994[Wheatley, J. R., Beacham, A. R., Lilley, P. D., Watkin, D. J. & Fleet, G. W. J. (1994). Tetrahedron Asymmetry, 5, 2523-2534.]); the hydroxy group at atom C1 is clearly in a very hindered position, being additionally attached to a tertiary C atom. Nonetheless, as usually expected for sugar derivatives, hydrogen bonding occurs between molecules (Fig. 2[link] and Table 2[link]).

[Figure 1]
Figure 1
The molecular structure of (2), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
[Figure 2]
Figure 2
Partial packing diagram of (2), viewed down the b axis. Hydrogen bonds are shown as dotted lines.

Experimental

The sugar was crystallized by dissolving it in diethyl ether, adding a few drops of cyclo­hexane and allowing the slow competitive evaporation of the two solvents until crystals formed.

Crystal data
  • C9H14O5

  • Mr = 202.21

  • Monoclinic, P21

  • a = 7.7315 (3) Å

  • b = 6.2859 (3) Å

  • c = 10.4209 (6) Å

  • β = 102.1024 (17)°

  • V = 495.19 (4) Å3

  • Z = 2

  • Dx = 1.356 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1264 reflections

  • θ = 5–30°

  • μ = 0.11 mm−1

  • T = 190 K

  • Needle, colourless

  • 0.90 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • 2579 measured reflections

  • 1527 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.018

  • θmax = 30.0°

  • h = −10 → 10

  • k = −8 → 8

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 0.99

  • 1527 reflections

  • 127 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + 0.04 + 0.06P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.5284 (18)
C1—C11 1.5318 (19)
C1—O13 1.4334 (15)
C1—C14 1.5237 (17)
C2—C3 1.5468 (18)
C2—O6 1.4261 (16)
C3—O4 1.4268 (16)
C3—C9 1.509 (2)
O4—C5 1.4312 (16)
C5—O6 1.4314 (16)
C5—C7 1.522 (2)
C5—C8 1.508 (2)
C9—O10 1.4581 (18)
O10—C11 1.3367 (16)
C11—O12 1.2124 (17)
C2—C1—C11 108.66 (10)
C2—C1—O13 106.76 (10)
C11—C1—O13 106.76 (11)
C2—C1—C14 111.22 (11)
C11—C1—C14 111.17 (12)
O13—C1—C14 112.04 (10)
C1—C2—C3 113.22 (11)
C1—C2—O6 107.54 (10)
C3—C2—O6 103.56 (10)
C2—C3—O4 104.50 (10)
C2—C3—C9 113.06 (11)
O4—C3—C9 109.33 (13)
C3—O4—C5 108.01 (10)
O4—C5—O6 103.66 (10)
O4—C5—C7 111.02 (13)
O6—C5—C7 110.14 (13)
O4—C5—C8 109.15 (13)
O6—C5—C8 108.63 (12)
C7—C5—C8 113.74 (14)
C5—O6—C2 106.26 (9)
C3—C9—O10 111.94 (11)
C9—O10—C11 119.10 (11)
C1—C11—O10 117.08 (12)
C1—C11—O12 124.42 (12)
O10—C11—O12 118.49 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H3⋯O12i 0.94 1.87 2.8103 (14) 175
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].

The multi-scan technique (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) was used to correct for changes in the illuminated volume of the long needle crystal. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned from the known configuration of the starting material in the synthesis. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.97–1.01 Å and O—H = 0.94 Å), after which they were refined as riding, with Uiso(H) = 1.2Ueq(C) for those bonded to C atoms, and Uiso(H) = 0.05 Å2 for the hydroxy group.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

3,4-O-Isoprpylidene-D-arabinono-1,5-lactone top
Crystal data top
C9H14O5F(000) = 216
Mr = 202.21Dx = 1.356 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.7315 (3) ÅCell parameters from 1264 reflections
b = 6.2859 (3) Åθ = 5–30°
c = 10.4209 (6) ŵ = 0.11 mm1
β = 102.1024 (17)°T = 190 K
V = 495.19 (4) Å3Needle, colourless
Z = 20.90 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.018
Graphite monochromatorθmax = 30.0°, θmin = 5.3°
ω scansh = 1010
2579 measured reflectionsk = 88
1527 independent reflectionsl = 1414
1448 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(F2) + 0.04 + 0.06P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.000343
1527 reflectionsΔρmax = 0.24 e Å3
127 parametersΔρmin = 0.16 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38045 (16)0.7432 (2)0.63155 (12)0.0190
C20.28987 (16)0.8696 (2)0.72414 (13)0.0206
C30.09390 (16)0.8070 (2)0.71356 (13)0.0221
O40.08151 (12)0.7559 (2)0.84474 (9)0.0292
C50.23824 (17)0.8319 (3)0.93106 (13)0.0254
O60.37167 (12)0.81163 (18)0.85511 (9)0.0231
C70.2183 (2)1.0639 (3)0.96718 (18)0.0372
C80.2838 (2)0.6857 (3)1.04806 (15)0.0382
C90.03922 (18)0.6164 (3)0.62648 (15)0.0269
O100.17525 (13)0.45193 (18)0.64662 (11)0.0274
C110.34223 (18)0.5063 (2)0.64601 (13)0.0207
O120.45221 (14)0.36653 (18)0.65495 (10)0.0273
O130.29608 (12)0.80258 (19)0.50056 (9)0.0261
C140.57875 (16)0.7863 (3)0.65965 (13)0.0244
H210.30191.02470.71050.0248*
H310.01790.92700.68160.0280*
H710.33451.12101.01750.0488*
H720.12201.07071.01780.0488*
H730.18041.14280.88380.0488*
H810.39650.73081.10710.0479*
H820.18330.70251.09140.0479*
H830.29150.53871.01590.0479*
H910.06610.54800.65020.0333*
H920.01350.66460.53370.0333*
H1410.63400.70720.59460.0310*
H1420.59080.94190.65210.0310*
H1430.63240.73930.74930.0310*
H30.38000.81520.44780.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (5)0.0201 (6)0.0178 (6)0.0008 (5)0.0061 (4)0.0015 (4)
C20.0211 (5)0.0193 (6)0.0222 (6)0.0010 (5)0.0062 (4)0.0002 (5)
C30.0193 (5)0.0257 (6)0.0218 (6)0.0004 (5)0.0057 (4)0.0008 (5)
O40.0230 (4)0.0451 (7)0.0214 (5)0.0088 (5)0.0086 (4)0.0016 (5)
C50.0200 (5)0.0368 (9)0.0204 (6)0.0006 (6)0.0068 (4)0.0051 (6)
O60.0194 (4)0.0302 (5)0.0205 (4)0.0011 (4)0.0063 (3)0.0042 (4)
C70.0321 (7)0.0436 (10)0.0381 (9)0.0032 (7)0.0127 (7)0.0163 (8)
C80.0360 (7)0.0563 (11)0.0230 (7)0.0015 (8)0.0075 (6)0.0031 (7)
C90.0201 (5)0.0299 (7)0.0297 (7)0.0024 (6)0.0029 (5)0.0053 (6)
O100.0261 (5)0.0216 (5)0.0355 (5)0.0041 (4)0.0089 (4)0.0027 (4)
C110.0252 (6)0.0219 (6)0.0162 (5)0.0010 (5)0.0071 (4)0.0002 (5)
O120.0356 (5)0.0228 (5)0.0265 (5)0.0061 (4)0.0134 (4)0.0020 (4)
O130.0256 (4)0.0331 (5)0.0205 (4)0.0043 (5)0.0069 (3)0.0080 (4)
C140.0204 (5)0.0275 (7)0.0269 (6)0.0003 (6)0.0084 (5)0.0015 (6)
Geometric parameters (Å, º) top
C1—C21.5284 (18)C7—H720.999
C1—C111.5318 (19)C7—H730.990
C1—O131.4334 (15)C8—H810.997
C1—C141.5237 (17)C8—H820.983
C2—C31.5468 (18)C8—H830.989
C2—O61.4261 (16)C9—O101.4581 (18)
C2—H210.992C9—H910.996
C3—O41.4268 (16)C9—H920.993
C3—C91.509 (2)O10—C111.3367 (16)
C3—H310.971C11—O121.2124 (17)
O4—C51.4312 (16)O13—H30.938
C5—O61.4314 (16)C14—H1411.006
C5—C71.522 (2)C14—H1420.987
C5—C81.508 (2)C14—H1430.985
C7—H711.007
C2—C1—C11108.66 (10)H71—C7—H72113.1
C2—C1—O13106.76 (10)C5—C7—H73106.8
C11—C1—O13106.76 (11)H71—C7—H73110.2
C2—C1—C14111.22 (11)H72—C7—H73109.0
C11—C1—C14111.17 (12)C5—C8—H81110.5
O13—C1—C14112.04 (10)C5—C8—H82103.5
C1—C2—C3113.22 (11)H81—C8—H82111.0
C1—C2—O6107.54 (10)C5—C8—H83108.4
C3—C2—O6103.56 (10)H81—C8—H83111.6
C1—C2—H21110.6H82—C8—H83111.5
C3—C2—H21111.1C3—C9—O10111.94 (11)
O6—C2—H21110.6C3—C9—H91109.5
C2—C3—O4104.50 (10)O10—C9—H91105.1
C2—C3—C9113.06 (11)C3—C9—H92108.5
O4—C3—C9109.33 (13)O10—C9—H92110.3
C2—C3—H31109.9H91—C9—H92111.5
O4—C3—H31110.2C9—O10—C11119.10 (11)
C9—C3—H31109.7C1—C11—O10117.08 (12)
C3—O4—C5108.01 (10)C1—C11—O12124.42 (12)
O4—C5—O6103.66 (10)O10—C11—O12118.49 (13)
O4—C5—C7111.02 (13)C1—O13—H3110.4
O6—C5—C7110.14 (13)C1—C14—H141109.6
O4—C5—C8109.15 (13)C1—C14—H142105.6
O6—C5—C8108.63 (12)H141—C14—H142112.1
C7—C5—C8113.74 (14)C1—C14—H143109.6
C5—O6—C2106.26 (9)H141—C14—H143109.7
C5—C7—H71110.2H142—C14—H143110.2
C5—C7—H72107.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H3···O12i0.941.872.8103 (14)175
Symmetry code: (i) x+1, y+1/2, z+1.
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.

References

First citationAmeijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140–o2141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeacham, A. R., Bruce, I., Choi, S., Doherty, O., Fairbanks, A. J., Fleet, G. W. J., Skead, B. M., Peach, J. M., Saunders, J. & Watkin, D. J. (1991). Tetrahedron Asymmetry, 2, 883–900.  CSD CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBichard, C. J. F., Fairbanks, A. J., Fleet, G. W. J., Ramsden, N. G., Vogt, K., Doherty, O., Pearce, L. & Watkin, D. J. (1991). Tetrahedron Asymmetry, 2, 901–912.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. & Watkin, D. J. (1990). Tetrahedron, 46, 19–32.  CSD CrossRef CAS Web of Science Google Scholar
First citationCowley, A. R., Fleet, G. W. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2142–o2143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). Compt. Rend. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163–o2164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWheatley, J. R., Beacham, A. R., Lilley, P. D., Watkin, D. J. & Fleet, G. W. J. (1994). Tetrahedron Asymmetry, 5, 2523–2534.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds