organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4,10,16,21-Penta­aza-7,13,24-triazoniabi­cyclo­[8.8.8]hexa­cosane monohydrate clathrate trichloride hexahydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Queen's University, Belfast BT9 5AG, Northern Ireland, and bChemistry Department, Loughborough University, Leicestershire LE11 3TU, England
*Correspondence e-mail: v.mckee@lboro.ac.uk

(Received 23 November 2004; accepted 3 December 2004; online 11 December 2004)

The title compound, C18H59N[{}_{8}^{\,3+}]·3 Cl·7H2O, is a chloride salt of a triprotonated cryptand. One of the water molecules is located inside the crypt and makes six hydrogen bonds to the crypt (two as donor and four as acceptor). The coordination geometry about the bound water molecule is trigonal prismatic.

Comment

The small cryptand 1,4,7,10,13,16,21,24-octaaza­bicyclo­[8.8.8]hexacosane is a versatile host for cations (Coyle et al., 1997[Coyle, J., Drew, M. G. B., Nelson, J. & Town, R. M. (1997). J. Chem. Soc. Dalton Trans. pp. 112-116.], 2004[Coyle, J., Downard, A. J., Harding, C. J., Herbst-Irmer, R., McKee, V. & Nelson, J. (2004). J. Chem. Soc. Dalton Trans. pp. 2357-2363.]; McKee et al., 2001[McKee, V., Nelson, J., Speed, D. & Town, R. M. (2001). J. Chem. Soc. Dalton Trans. pp. 3641-3646.]) and also, in the hexaprotonated form, for anions (Dietrich et al., 1996[Dietrich, B., Dilworth, B., Lehn, J.-M., Souchez, J.-P., Cesario, M., Guilhem, J. & Pascard, C. (1996). Helv. Chim. Acta, 79, 569-586.]; Hossain et al., 2002[Hossain, M. A., Llinares, J. M., Alcock, N. W., Powell, D. & Bowman-James, K. (2002). J. Supramol. Chem. 2, 143-149.]). In this paper, we report the structure, (I)[link], of a triprotonated form of the cryptand, which encapsulates a neutral water molecule as guest in the cavity. A similar complex formed from the tetraprotonated ligand has been reported recently (Hossain et al., 2002[Hossain, M. A., Llinares, J. M., Alcock, N. W., Powell, D. & Bowman-James, K. (2002). J. Supramol. Chem. 2, 143-149.]).

[Scheme 1]

The structure of the [C18H59N8(H2O)]3+ cation is shown in Fig. 1[link]. H atoms bonded to O or N atoms were located in difference maps. The highest residual peaks are in the region of the chloride anions and not close to the amines; the protonated amines are N3B, N4A and N4C. The water molecule makes six hydrogen bonds to the cryptand (Table 1[link]), two as donor (to N3A and N3C), and four as acceptor (from the three protonated amines and from N4B). These hydrogen bonds cover a wide range [2.680 (2)–3.022 (2) Å]; the shortest are those where the encapsulated water molecule acts as donor to the neutral amines N3A and N3C, and the longest is that with neutral amine N4B as donor. Taken in isolation, it is surprising that the shortest hydrogen bonds are not the charge-assisted interactions involving the protonated amines; however, this is likely to be due to mutual constraints within the extended hydrogen-bond network (Fig. 2[link]). All the secondary amine groups, protonated or not, make two hydrogen bonds, one to the central water molecule (O1) and the other to either a chloride anion or a water molecule of crystallization (Table 1[link]). Within each of the three clefts formed by the cryptand is an amine–chloride–water–amine hydrogen-bonded chain and the hydrogen bonding extends in three dimensions throughout the crystal structure.

The coordination geometry at the encapsulated water O atom (O1W) is close to trigonal prismatic (Fig. 2[link]). The arrangement of the six hydrogen bonds is remarkably similar to that observed for the encapsulated water molecule in the tetraprotonated analogue [C18H60N8(H2O)]4+, although in that case (Hossain et al., 2002[Hossain, M. A., Llinares, J. M., Alcock, N. W., Powell, D. & Bowman-James, K. (2002). J. Supramol. Chem. 2, 143-149.]) the geometry was described as tetrahedral.

[Figure 1]
Figure 1
A perspective view of the [C18H59N8(H2O)]3+ cation. H atoms bonded to C atoms have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level. The protonated N atoms are N3B, N4A and N4C.
[Figure 2]
Figure 2
The hydrogen bonding about the cryptate (dashed lines); displacement ellipsoids for the Cl and O atoms are drawn at the 50% probability level. [Symmetry codes: (i) x − [{1\over 2}], y, [{1\over 2}] − z; (ii) [{5\over 2}] − x, y − [{1\over 2}], z; (iii) x − [{1\over 2}], [{1\over 2}] − y, 1 − z.]

Experimental

The unsubstituted cryptand was prepared as described previously (Smith et al., 1993[Smith, P. H., Barr, M. E., Brainard, J. R., Ford, D. K., Frieser, H., Muralidharan, S., Reilly, S. D., Ryan, R. R., Silks, L. A. & Yu, W. (1993). J. Org. Chem. 58, 7939-7941.]). The protonated product was obtained in an attempt at part-tosyl­ation of the amine N atoms. To one millimole of free cryptand in dichloro­methane (50 ml) was added 4-methoxy­benzene sulfonyl chloride (4 mmol) and triethyl­amine (4 mmol). The mixture was stirred overnight and evaporated to dryness. The white solid obtained was redissolved and subjected to alumina chromatography using as eluant dichloro­methane/1% MeOH, which had been treated with ammonia gas beforehand. The crystals were obtained on slow evaporation of the eluant.

Crystal data
  • C18H45N[{}_{8}^{\,3+}]·3Cl·7H2O

  • Mr = 606.08

  • Orthorhombic, Pbca

  • a = 14.2710 (6) Å

  • b = 14.9228 (6) Å

  • c = 29.8597 (12) Å

  • V = 6359.0 (4) Å3

  • Z = 8

  • Dx = 1.266 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 12 824 reflections

  • θ = 2.4–27.5°

  • μ = 0.34 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.36 × 0.30 × 0.29 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS and SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 0.907

  • 43 473 measured reflections

  • 5604 independent reflections

  • 4323 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 25.0°

  • h = −16 → 16

  • k = −17 → 17

  • l = −35 → 35

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.03

  • 5604 reflections

  • 394 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0412P)2 + 5.7025P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3A4⋯Cl1 0.86 (3) 2.55 (3) 3.4000 (19) 172 (2)
N3B—H3B3⋯O4W 0.86 (3) 1.96 (3) 2.787 (3) 161 (3)
N3B—H3B4⋯O1W 0.96 (3) 1.91 (3) 2.859 (2) 170 (2)
N3C—H3C3⋯Cl2 0.80 (3) 2.62 (3) 3.420 (2) 173 (3)
N4A—H4A3⋯O2W 0.89 (3) 1.86 (3) 2.743 (3) 170 (3)
N4A—H4A4⋯O1W 0.91 (3) 2.19 (3) 2.954 (2) 141 (2)
N4B—H4B4⋯O1W 0.87 (3) 2.21 (3) 3.022 (2) 154 (2)
N4C—H4C3⋯O1W 0.90 (3) 2.04 (3) 2.888 (2) 156 (2)
N4C—H4C4⋯Cl3 0.93 (3) 2.22 (3) 3.144 (2) 173 (2)
O1W—H1WA⋯N3C 0.845 (9) 1.842 (11) 2.680 (2) 171 (3)
O1W—H1WB⋯N3A 0.838 (10) 1.861 (10) 2.696 (2) 174 (3)
O2W—H2WA⋯O6W 0.833 (10) 1.908 (12) 2.709 (3) 161 (3)
O2W—H2WB⋯Cl2 0.831 (9) 2.314 (11) 3.1240 (18) 165 (2)
O3W—H3WA⋯Cl1 0.844 (10) 2.313 (10) 3.1531 (19) 174 (2)
O3W—H3WB⋯N4B 0.851 (10) 1.968 (10) 2.818 (3) 177 (2)
O4W—H4WB⋯Cl2iv 0.837 (9) 2.328 (11) 3.1410 (19) 164 (2)
O4W—H4WA⋯Cl3 0.835 (9) 2.295 (11) 3.1087 (19) 165 (2)
O5W—H5WA⋯Cl3v 0.851 (10) 2.423 (12) 3.257 (2) 166 (2)
O5W—H5WB⋯Cl2 0.850 (10) 2.340 (10) 3.187 (2) 174 (2)
O6W—H6WA⋯O7Wvi 0.867 (10) 1.893 (11) 2.734 (3) 163 (2)
O6W—H6WB⋯Cl1vii 0.847 (10) 2.319 (11) 3.147 (2) 166 (2)
O7W—H7WA⋯Cl3viii 0.832 (10) 2.408 (10) 3.228 (2) 169 (2)
O7W—H7WB⋯O3W 0.824 (10) 1.941 (11) 2.743 (3) 164 (3)
Symmetry codes: (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+1; (vii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, z]; (viii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

H atoms bonded to C atoms were placed at calculated positions and refined using a riding model. The C—H distances were constrained to 0.99 Å and were refined with Uiso(H) = 1.2Ueq(C). H atoms bonded to O or N were located in difference maps and assigned a common Uiso(H) value of 0.05 Å2; their coordinates were refined freely, except that DFIX restraints were applied to the O—H distances [0.84 (2) Å] and H—O—H angles [by restraining the H⋯H distances to 1.37 (1) Å] (Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS and SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS and SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

1,4,10,16,21-Pentaaza-7,13,24-triazoniabicyclo[8.8.8]hexacosane monohydrate clathrate trichloride hexahydrate top
Crystal data top
C18H45N83+·3Cl·7H2OF(000) = 2640
Mr = 606.08Dx = 1.266 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 12824 reflections
a = 14.2710 (6) Åθ = 2.4–27.5°
b = 14.9228 (6) ŵ = 0.34 mm1
c = 29.8597 (12) ÅT = 150 K
V = 6359.0 (4) Å3Block, colourless
Z = 80.36 × 0.30 × 0.29 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5604 independent reflections
Radiation source: normal-focus sealed tube4323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1616
Tmin = 0.826, Tmax = 0.907k = 1717
43473 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0412P)2 + 5.7025P]
where P = (Fo2 + 2Fc2)/3
5604 reflections(Δ/σ)max = 0.001
394 parametersΔρmax = 0.52 e Å3
21 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.13477 (13)0.07746 (12)0.30336 (6)0.0301 (4)
C1A1.23306 (15)0.09037 (16)0.31705 (8)0.0345 (5)
H1A11.27450.07470.29160.041*
H1A21.24750.04900.34200.041*
C2A1.25378 (16)0.18517 (15)0.33170 (8)0.0336 (5)
H2A11.32220.19220.33600.040*
H2A21.23390.22720.30790.040*
N3A1.20534 (13)0.20831 (12)0.37365 (6)0.0287 (4)
C3A1.23589 (16)0.29603 (15)0.39027 (8)0.0337 (5)
H3A11.22570.34140.36660.040*
H3A21.30390.29370.39660.040*
C4A1.18507 (16)0.32482 (16)0.43195 (8)0.0348 (5)
H4A11.18970.27660.45460.042*
H4A21.21600.37880.44430.042*
N4A1.08415 (14)0.34515 (14)0.42357 (7)0.0315 (4)
C5A1.03864 (18)0.39006 (17)0.46258 (8)0.0393 (6)
H5A11.07130.44710.46910.047*
H5A21.04370.35120.48930.047*
C6A0.93677 (18)0.40858 (16)0.45281 (8)0.0395 (6)
H6A10.90710.43490.47970.047*
H6A20.93230.45310.42830.047*
N20.88543 (13)0.32694 (12)0.43985 (6)0.0323 (4)
C1B1.10709 (17)0.01725 (15)0.30762 (8)0.0336 (5)
H1B11.15840.05580.29630.040*
H1B21.05100.02840.28890.040*
C2B1.08563 (15)0.04221 (14)0.35556 (7)0.0299 (5)
H2B11.07220.10720.35740.036*
H2B21.14090.02950.37460.036*
N3B1.00330 (13)0.00944 (12)0.37246 (6)0.0255 (4)
C3B0.97707 (16)0.01609 (14)0.41909 (7)0.0316 (5)
H3B11.03150.00620.43900.038*
H3B20.96160.08070.41990.038*
C4B0.89437 (16)0.03693 (14)0.43656 (7)0.0314 (5)
H4B10.84370.03590.41390.038*
H4B20.87030.00770.46400.038*
N4B0.91826 (13)0.13050 (12)0.44682 (6)0.0283 (4)
C5B0.84034 (17)0.17591 (16)0.46944 (8)0.0368 (5)
H5B10.82510.14370.49750.044*
H5B20.78420.17440.44990.044*
C6B0.86466 (17)0.27241 (16)0.48021 (8)0.0382 (6)
H6B10.81160.30000.49650.046*
H6B20.91990.27340.50030.046*
C1C1.11905 (17)0.11018 (17)0.25743 (7)0.0378 (6)
H1C11.13690.06250.23600.045*
H1C21.16030.16230.25190.045*
C2C1.01835 (17)0.13746 (16)0.24855 (8)0.0362 (5)
H2C11.01080.15230.21640.043*
H2C20.97620.08670.25560.043*
N3C0.99193 (13)0.21537 (13)0.27584 (6)0.0307 (4)
C3C0.89795 (16)0.24844 (16)0.26544 (8)0.0360 (5)
H3C10.85230.19930.26980.043*
H3C20.89560.26630.23350.043*
C4C0.86957 (17)0.32736 (16)0.29407 (8)0.0363 (5)
H4C10.91930.37350.29250.044*
H4C20.81150.35390.28160.044*
N4C0.85314 (14)0.30325 (14)0.34199 (7)0.0334 (4)
C5C0.81360 (18)0.37909 (17)0.36888 (8)0.0415 (6)
H5C10.75340.39850.35560.050*
H5C20.85740.43050.36800.050*
C6C0.79792 (17)0.35121 (17)0.41688 (8)0.0396 (6)
H6C10.76750.40110.43320.048*
H6C20.75480.29930.41750.048*
Cl11.23502 (4)0.04805 (4)0.453342 (19)0.03510 (15)
Cl21.14708 (4)0.38858 (4)0.264667 (19)0.03771 (15)
Cl30.70182 (5)0.15299 (4)0.35678 (2)0.04588 (17)
O1W1.01762 (10)0.19982 (10)0.36441 (5)0.0255 (3)
O2W1.04341 (13)0.45163 (12)0.35126 (6)0.0432 (4)
O3W1.07898 (13)0.16730 (12)0.49848 (6)0.0453 (4)
O4W0.85106 (13)0.02680 (13)0.31466 (6)0.0483 (5)
O5W1.07215 (18)0.32483 (16)0.16931 (8)0.0751 (7)
O6W1.08022 (16)0.59849 (17)0.40159 (8)0.0756 (7)
O7W1.05245 (18)0.2838 (2)0.56842 (8)0.1029 (11)
H3A41.2180 (19)0.1704 (19)0.3943 (9)0.050*
H3B30.956 (2)0.0014 (19)0.3552 (9)0.050*
H3B41.0153 (19)0.073 (2)0.3710 (9)0.050*
H3C31.028 (2)0.2553 (19)0.2708 (9)0.050*
H4A31.0781 (19)0.3785 (19)0.3989 (10)0.050*
H4A41.0491 (19)0.2955 (19)0.4179 (9)0.050*
H4B40.9305 (19)0.1608 (18)0.4225 (9)0.050*
H4C30.907 (2)0.2844 (18)0.3547 (9)0.050*
H4C40.8114 (19)0.2555 (19)0.3447 (9)0.050*
H1WA1.0089 (16)0.1985 (18)0.3364 (4)0.050*
H1WB1.0757 (8)0.1995 (19)0.3688 (8)0.050*
H2WA1.0517 (19)0.5031 (10)0.3613 (8)0.050*
H2WB1.0712 (17)0.4454 (16)0.3270 (5)0.050*
H3WA1.1221 (12)0.1345 (16)0.4883 (8)0.050*
H3WB1.0317 (11)0.1555 (18)0.4821 (8)0.050*
H4WB0.8399 (17)0.0070 (15)0.2929 (6)0.050*
H4WA0.8038 (12)0.0557 (16)0.3226 (8)0.050*
H5WA1.0970 (18)0.2752 (11)0.1618 (8)0.050*
H5WB1.0951 (18)0.3390 (16)0.1946 (5)0.050*
H6WA1.0473 (15)0.6399 (14)0.4145 (8)0.050*
H6WB1.1258 (13)0.5906 (18)0.4193 (7)0.050*
H7WA1.0955 (13)0.2937 (17)0.5865 (7)0.050*
H7WB1.0673 (17)0.2436 (14)0.5508 (7)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0306 (10)0.0307 (10)0.0291 (10)0.0004 (8)0.0069 (8)0.0009 (8)
C1A0.0268 (12)0.0366 (13)0.0400 (13)0.0039 (10)0.0091 (10)0.0006 (10)
C2A0.0245 (11)0.0360 (13)0.0403 (13)0.0024 (10)0.0044 (10)0.0062 (10)
N3A0.0268 (10)0.0250 (10)0.0342 (10)0.0025 (8)0.0003 (8)0.0062 (8)
C3A0.0259 (11)0.0296 (12)0.0457 (14)0.0074 (10)0.0051 (10)0.0053 (10)
C4A0.0362 (13)0.0302 (12)0.0380 (13)0.0054 (10)0.0108 (10)0.0021 (10)
N4A0.0355 (11)0.0274 (10)0.0316 (10)0.0038 (9)0.0045 (9)0.0049 (8)
C5A0.0526 (15)0.0337 (13)0.0315 (12)0.0062 (11)0.0003 (11)0.0099 (10)
C6A0.0517 (16)0.0299 (13)0.0368 (13)0.0018 (11)0.0086 (11)0.0084 (10)
N20.0332 (10)0.0296 (10)0.0343 (10)0.0040 (8)0.0057 (8)0.0037 (8)
C1B0.0366 (13)0.0282 (12)0.0361 (13)0.0033 (10)0.0061 (10)0.0076 (10)
C2B0.0291 (12)0.0237 (11)0.0368 (12)0.0031 (9)0.0015 (10)0.0031 (9)
N3B0.0270 (10)0.0246 (10)0.0250 (10)0.0008 (8)0.0011 (7)0.0004 (7)
C3B0.0412 (13)0.0254 (11)0.0281 (12)0.0003 (10)0.0035 (10)0.0041 (9)
C4B0.0368 (13)0.0283 (12)0.0293 (12)0.0048 (10)0.0079 (10)0.0021 (9)
N4B0.0311 (10)0.0264 (10)0.0274 (10)0.0003 (8)0.0090 (8)0.0012 (8)
C5B0.0374 (13)0.0366 (13)0.0365 (13)0.0026 (11)0.0145 (11)0.0003 (10)
C6B0.0425 (14)0.0393 (13)0.0329 (13)0.0058 (11)0.0137 (11)0.0030 (10)
C1C0.0444 (14)0.0420 (14)0.0270 (12)0.0012 (11)0.0099 (10)0.0019 (10)
C2C0.0457 (14)0.0400 (13)0.0229 (11)0.0074 (11)0.0002 (10)0.0007 (10)
N3C0.0295 (10)0.0341 (11)0.0286 (10)0.0066 (8)0.0040 (8)0.0033 (8)
C3C0.0346 (13)0.0431 (14)0.0303 (12)0.0074 (11)0.0109 (10)0.0073 (10)
C4C0.0333 (13)0.0392 (13)0.0365 (13)0.0005 (10)0.0099 (10)0.0110 (11)
N4C0.0270 (10)0.0343 (11)0.0391 (11)0.0057 (9)0.0024 (9)0.0047 (9)
C5C0.0373 (14)0.0363 (14)0.0509 (15)0.0130 (11)0.0040 (12)0.0005 (11)
C6C0.0335 (13)0.0377 (14)0.0477 (15)0.0116 (11)0.0071 (11)0.0037 (11)
Cl10.0375 (3)0.0296 (3)0.0382 (3)0.0002 (2)0.0041 (2)0.0002 (2)
Cl20.0420 (3)0.0367 (3)0.0344 (3)0.0069 (3)0.0041 (3)0.0001 (2)
Cl30.0439 (4)0.0460 (4)0.0478 (4)0.0002 (3)0.0007 (3)0.0037 (3)
O1W0.0232 (7)0.0299 (8)0.0235 (7)0.0006 (6)0.0008 (6)0.0002 (6)
O2W0.0471 (11)0.0473 (11)0.0352 (10)0.0039 (9)0.0029 (8)0.0024 (8)
O3W0.0444 (11)0.0413 (10)0.0502 (11)0.0038 (9)0.0013 (9)0.0097 (8)
O4W0.0420 (11)0.0548 (12)0.0481 (11)0.0077 (9)0.0074 (9)0.0153 (9)
O5W0.0931 (18)0.0682 (15)0.0641 (15)0.0318 (13)0.0317 (13)0.0160 (12)
O6W0.0529 (13)0.0848 (17)0.0891 (17)0.0239 (12)0.0207 (12)0.0399 (14)
O7W0.0830 (18)0.161 (3)0.0648 (16)0.0622 (18)0.0364 (13)0.0654 (17)
Geometric parameters (Å, º) top
N1—C1C1.473 (3)N4B—C5B1.467 (3)
N1—C1B1.473 (3)N4B—H4B40.87 (3)
N1—C1A1.474 (3)C5B—C6B1.516 (3)
C1A—C2A1.510 (3)C5B—H5B10.99
C1A—H1A10.99C5B—H5B20.99
C1A—H1A20.99C6B—H6B10.99
C2A—N3A1.472 (3)C6B—H6B20.99
C2A—H2A10.99C1C—C2C1.517 (3)
C2A—H2A20.99C1C—H1C10.99
N3A—C3A1.466 (3)C1C—H1C20.99
N3A—H3A40.86 (3)C2C—N3C1.469 (3)
C3A—C4A1.503 (3)C2C—H2C10.99
C3A—H3A10.99C2C—H2C20.99
C3A—H3A20.99N3C—C3C1.463 (3)
C4A—N4A1.493 (3)N3C—H3C30.80 (3)
C4A—H4A10.99C3C—C4C1.511 (3)
C4A—H4A20.99C3C—H3C10.99
N4A—C5A1.492 (3)C3C—H3C20.99
N4A—H4A30.89 (3)C4C—N4C1.494 (3)
N4A—H4A40.91 (3)C4C—H4C10.99
C5A—C6A1.508 (4)C4C—H4C20.99
C5A—H5A10.99N4C—C5C1.498 (3)
C5A—H5A20.99N4C—H4C30.90 (3)
C6A—N21.473 (3)N4C—H4C40.93 (3)
C6A—H6A10.99C5C—C6C1.509 (3)
C6A—H6A20.99C5C—H5C10.99
N2—C6C1.470 (3)C5C—H5C20.99
N2—C6B1.484 (3)C6C—H6C10.99
C1B—C2B1.510 (3)C6C—H6C20.99
C1B—H1B10.99O1W—H1WA0.845 (9)
C1B—H1B20.99O1W—H1WB0.838 (10)
C2B—N3B1.493 (3)O2W—H2WA0.833 (10)
C2B—H2B10.99O2W—H2WB0.831 (9)
C2B—H2B20.99O3W—H3WA0.844 (10)
N3B—C3B1.491 (3)O3W—H3WB0.851 (10)
N3B—H3B30.86 (3)O4W—H4WB0.837 (9)
N3B—H3B40.96 (3)O4W—H4WA0.835 (9)
C3B—C4B1.514 (3)O5W—H5WA0.851 (10)
C3B—H3B10.99O5W—H5WB0.850 (10)
C3B—H3B20.99O6W—H6WA0.867 (10)
C4B—N4B1.470 (3)O6W—H6WB0.847 (10)
C4B—H4B10.99O7W—H7WA0.832 (10)
C4B—H4B20.99O7W—H7WB0.824 (10)
C1C—N1—C1B110.95 (18)H3B1—C3B—H3B2107.8
C1C—N1—C1A111.10 (18)N4B—C4B—C3B112.81 (18)
C1B—N1—C1A110.90 (18)N4B—C4B—H4B1109.0
N1—C1A—C2A112.90 (18)C3B—C4B—H4B1109.0
N1—C1A—H1A1109.0N4B—C4B—H4B2109.0
C2A—C1A—H1A1109.0C3B—C4B—H4B2109.0
N1—C1A—H1A2109.0H4B1—C4B—H4B2107.8
C2A—C1A—H1A2109.0C5B—N4B—C4B111.03 (18)
H1A1—C1A—H1A2107.8C5B—N4B—H4B4107.1 (18)
N3A—C2A—C1A111.99 (18)C4B—N4B—H4B4111.5 (18)
N3A—C2A—H2A1109.2N4B—C5B—C6B111.28 (19)
C1A—C2A—H2A1109.2N4B—C5B—H5B1109.4
N3A—C2A—H2A2109.2C6B—C5B—H5B1109.4
C1A—C2A—H2A2109.2N4B—C5B—H5B2109.4
H2A1—C2A—H2A2107.9C6B—C5B—H5B2109.4
C3A—N3A—C2A110.97 (17)H5B1—C5B—H5B2108.0
C3A—N3A—H3A4106.5 (19)N2—C6B—C5B113.23 (19)
C2A—N3A—H3A4111.0 (19)N2—C6B—H6B1108.9
N3A—C3A—C4A113.07 (18)C5B—C6B—H6B1108.9
N3A—C3A—H3A1109.0N2—C6B—H6B2108.9
C4A—C3A—H3A1109.0C5B—C6B—H6B2108.9
N3A—C3A—H3A2109.0H6B1—C6B—H6B2107.7
C4A—C3A—H3A2109.0N1—C1C—C2C113.33 (18)
H3A1—C3A—H3A2107.8N1—C1C—H1C1108.9
N4A—C4A—C3A112.63 (18)C2C—C1C—H1C1108.9
N4A—C4A—H4A1109.1N1—C1C—H1C2108.9
C3A—C4A—H4A1109.1C2C—C1C—H1C2108.9
N4A—C4A—H4A2109.1H1C1—C1C—H1C2107.7
C3A—C4A—H4A2109.1N3C—C2C—C1C111.01 (19)
H4A1—C4A—H4A2107.8N3C—C2C—H2C1109.4
C5A—N4A—C4A112.36 (18)C1C—C2C—H2C1109.4
C5A—N4A—H4A3110.6 (18)N3C—C2C—H2C2109.4
C4A—N4A—H4A3110.1 (18)C1C—C2C—H2C2109.4
C5A—N4A—H4A4105.8 (17)H2C1—C2C—H2C2108.0
C4A—N4A—H4A4113.3 (17)C3C—N3C—C2C112.62 (18)
H4A3—N4A—H4A4104 (2)C3C—N3C—H3C3107 (2)
N4A—C5A—C6A110.53 (19)C2C—N3C—H3C3108 (2)
N4A—C5A—H5A1109.5N3C—C3C—C4C112.88 (18)
C6A—C5A—H5A1109.5N3C—C3C—H3C1109.0
N4A—C5A—H5A2109.5C4C—C3C—H3C1109.0
C6A—C5A—H5A2109.5N3C—C3C—H3C2109.0
H5A1—C5A—H5A2108.1C4C—C3C—H3C2109.0
N2—C6A—C5A112.25 (19)H3C1—C3C—H3C2107.8
N2—C6A—H6A1109.2N4C—C4C—C3C113.35 (19)
C5A—C6A—H6A1109.2N4C—C4C—H4C1108.9
N2—C6A—H6A2109.2C3C—C4C—H4C1108.9
C5A—C6A—H6A2109.2N4C—C4C—H4C2108.9
H6A1—C6A—H6A2107.9C3C—C4C—H4C2108.9
C6C—N2—C6A109.95 (19)H4C1—C4C—H4C2107.7
C6C—N2—C6B110.14 (19)C4C—N4C—C5C112.98 (19)
C6A—N2—C6B109.85 (18)C4C—N4C—H4C3110.0 (17)
N1—C1B—C2B111.89 (18)C5C—N4C—H4C3109.4 (17)
N1—C1B—H1B1109.2C4C—N4C—H4C4111.5 (17)
C2B—C1B—H1B1109.2C5C—N4C—H4C4106.8 (17)
N1—C1B—H1B2109.2H4C3—N4C—H4C4106 (2)
C2B—C1B—H1B2109.2N4C—C5C—C6C110.89 (19)
H1B1—C1B—H1B2107.9N4C—C5C—H5C1109.5
N3B—C2B—C1B110.65 (18)C6C—C5C—H5C1109.5
N3B—C2B—H2B1109.5N4C—C5C—H5C2109.5
C1B—C2B—H2B1109.5C6C—C5C—H5C2109.5
N3B—C2B—H2B2109.5H5C1—C5C—H5C2108.1
C1B—C2B—H2B2109.5N2—C6C—C5C112.66 (19)
H2B1—C2B—H2B2108.1N2—C6C—H6C1109.1
C3B—N3B—C2B112.42 (17)C5C—C6C—H6C1109.1
C3B—N3B—H3B3109.2 (18)N2—C6C—H6C2109.1
C2B—N3B—H3B3110.0 (18)C5C—C6C—H6C2109.1
C3B—N3B—H3B4109.8 (16)H6C1—C6C—H6C2107.8
C2B—N3B—H3B4110.6 (16)H1WA—O1W—H1WB107.5 (19)
H3B3—N3B—H3B4104 (2)H2WA—O2W—H2WB110 (2)
N3B—C3B—C4B112.58 (18)H3WA—O3W—H3WB104.6 (19)
N3B—C3B—H3B1109.1H4WB—O4W—H4WA112 (2)
C4B—C3B—H3B1109.1H5WA—O5W—H5WB106.9 (19)
N3B—C3B—H3B2109.1H6WA—O6W—H6WB103.7 (18)
C4B—C3B—H3B2109.1H7WA—O7W—H7WB111 (2)
C1C—N1—C1A—C2A79.9 (2)C3B—C4B—N4B—C5B172.04 (19)
C1B—N1—C1A—C2A156.24 (18)C4B—N4B—C5B—C6B179.86 (19)
N1—C1A—C2A—N3A67.6 (2)C6C—N2—C6B—C5B76.9 (2)
C1A—C2A—N3A—C3A172.63 (19)C6A—N2—C6B—C5B161.8 (2)
C2A—N3A—C3A—C4A177.26 (18)N4B—C5B—C6B—N261.0 (3)
N3A—C3A—C4A—N4A68.4 (2)C1B—N1—C1C—C2C81.7 (2)
C3A—C4A—N4A—C5A169.05 (19)C1A—N1—C1C—C2C154.39 (19)
C4A—N4A—C5A—C6A179.51 (19)N1—C1C—C2C—N3C65.4 (3)
N4A—C5A—C6A—N255.4 (3)C1C—C2C—N3C—C3C175.10 (18)
C5A—C6A—N2—C6C161.48 (19)C2C—N3C—C3C—C4C178.80 (19)
C5A—C6A—N2—C6B77.2 (2)N3C—C3C—C4C—N4C69.6 (3)
C1C—N1—C1B—C2B157.38 (19)C3C—C4C—N4C—C5C172.82 (19)
C1A—N1—C1B—C2B78.6 (2)C4C—N4C—C5C—C6C179.7 (2)
N1—C1B—C2B—N3B63.6 (2)C6A—N2—C6C—C5C77.8 (2)
C1B—C2B—N3B—C3B177.49 (18)C6B—N2—C6C—C5C161.0 (2)
C2B—N3B—C3B—C4B179.29 (18)N4C—C5C—C6C—N262.9 (3)
N3B—C3B—C4B—N4B72.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3A4···Cl10.86 (3)2.55 (3)3.4000 (19)172 (2)
N3B—H3B3···O4W0.86 (3)1.96 (3)2.787 (3)161 (3)
N3B—H3B4···O1W0.96 (3)1.91 (3)2.859 (2)170 (2)
N3C—H3C3···Cl20.80 (3)2.62 (3)3.420 (2)173 (3)
N4A—H4A3···O2W0.89 (3)1.86 (3)2.743 (3)170 (3)
N4A—H4A4···O1W0.91 (3)2.19 (3)2.954 (2)141 (2)
N4B—H4B4···O1W0.87 (3)2.21 (3)3.022 (2)154 (2)
N4C—H4C3···O1W0.90 (3)2.04 (3)2.888 (2)156 (2)
N4C—H4C4···Cl30.93 (3)2.22 (3)3.144 (2)173 (2)
O1W—H1WA···N3C0.85 (1)1.84 (1)2.680 (2)171 (3)
O1W—H1WB···N3A0.84 (1)1.86 (1)2.696 (2)174 (3)
O2W—H2WA···O6W0.83 (1)1.91 (1)2.709 (3)161 (3)
O2W—H2WB···Cl20.83 (1)2.31 (1)3.1240 (18)165 (2)
O3W—H3WA···Cl10.84 (1)2.31 (1)3.1531 (19)174 (2)
O3W—H3WB···N4B0.85 (1)1.97 (1)2.818 (3)177 (2)
O4W—H4WB···Cl2i0.84 (1)2.33 (1)3.1410 (19)164 (2)
O4W—H4WA···Cl30.84 (1)2.30 (1)3.1087 (19)165 (2)
O5W—H5WA···Cl3ii0.85 (1)2.42 (1)3.257 (2)166 (2)
O5W—H5WB···Cl20.85 (1)2.34 (1)3.187 (2)174 (2)
O6W—H6WA···O7Wiii0.87 (1)1.89 (1)2.734 (3)163 (2)
O6W—H6WB···Cl1iv0.85 (1)2.32 (1)3.147 (2)166 (2)
O7W—H7WA···Cl3v0.83 (1)2.41 (1)3.228 (2)169 (2)
O7W—H7WB···O3W0.82 (1)1.94 (1)2.743 (3)164 (3)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+2, y+1, z+1; (iv) x+5/2, y+1/2, z; (v) x+1/2, y+1/2, z+1.
 

Acknowledgements

We are grateful to BBSRC for funding (DF) and to the Leverhulme Trust for an Emeritus Fellowship (JN).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoyle, J., Downard, A. J., Harding, C. J., Herbst-Irmer, R., McKee, V. & Nelson, J. (2004). J. Chem. Soc. Dalton Trans. pp. 2357–2363.  CrossRef Google Scholar
First citationCoyle, J., Drew, M. G. B., Nelson, J. & Town, R. M. (1997). J. Chem. Soc. Dalton Trans. pp. 112–116.  Google Scholar
First citationDietrich, B., Dilworth, B., Lehn, J.-M., Souchez, J.-P., Cesario, M., Guilhem, J. & Pascard, C. (1996). Helv. Chim. Acta, 79, 569–586.  CSD CrossRef CAS Web of Science Google Scholar
First citationHossain, M. A., Llinares, J. M., Alcock, N. W., Powell, D. & Bowman-James, K. (2002). J. Supramol. Chem. 2, 143–149.  CSD CrossRef CAS Google Scholar
First citationMcKee, V., Nelson, J., Speed, D. & Town, R. M. (2001). J. Chem. Soc. Dalton Trans. pp. 3641–3646.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2001). SADABS and SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSmith, P. H., Barr, M. E., Brainard, J. R., Ford, D. K., Frieser, H., Muralidharan, S., Reilly, S. D., Ryan, R. R., Silks, L. A. & Yu, W. (1993). J. Org. Chem. 58, 7939–7941.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds