organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Anthracen-9-yl­methyl)­di­ethyl­amine at 100 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bSchool of Pure and Applied Chemistry, Howard College, University of KwaZulu-Natal, Durban 4041, South Africa
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 25 November 2004; accepted 29 November 2004; online 11 December 2004)

The molecular geometry in the title compound, C19H21N, is as expected for a compound of this kind. The mol­ecules are interconnected to form layers by C—H⋯π interactions, some between edge-to-face mol­ecules in the manner characteristic of polycyclic hydro­carbon compounds and others involving H atoms of both methyl groups of the methyl­diethyl­amine substituent.

Comment

Interest in compounds capable of functioning as molecular devices has grown rapidly in the past fifteen years (Desilva et al., 1997[Desilva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Radamacher, J. T. & Rice, R. E. (1997). Chem. Rev. 97, 1515-1566.]). A fundamental requirement of these systems is the ability to communicate information to the user by some appropriate means. Photo-induced electron transfer or PET-based systems, which use fluorescence emission as a method to transmit relevant data, have been employed in a variety of circumstances. Indeed, PET mol­ecules capable of indicating the presence of cations, anions and neutral mol­ecules have been reported (Desilva et al., 1993[Desilva, A. P., Gunaratne, H. Q. N. & Maguire, G. E. M. (1993). J. Chem. Soc. Chem. Commun. 10, 1213-1214.]). The mechanism by which this particular family of sensor mol­ecules functions hinges on a `box' or modular logic approach (Bissell et al., 1993[Bissell, R. A., Desilva, A. P., Gunaratne, H. Q. N., Lynch, P. L. M., Maguire, G. E. M., McCoy, C. P. & Sandanayake, K. R. A. S. (1993). Top. Curr. Chem. 168, 223-264.]). We have previously reported the structure of a PET fluorescent saccharide sensor (Barkhuizen et al., 2004[Barkhuizen, D. A., Howie, R. A., Maguire, G. E. M. & Rademeyer, M. (2004). Acta Cryst. E60, o571-o573.]) based on a mol­ecule originally synthesized by Shinkai and his group (James et al., 1995[James, T. D., Sandanayake, K. R. A. S., Iuguchi, R. & Shinkai, S. (1995). J. Am. Chem. Soc. 117, 8982-8987.]). The title compound, (I[link]), presented here is representative of a subgroup of mol­ecules designed to operate as single mol­ecule pH PET sensors based on the same modular logic approach. Compound (I[link]) alters its fluorescence emission intensity as a function of the pH of its environment in aqueous methanol solutions (Desilva & Rupasinghe, 1985[Desilva, A. P. & Rupasinghe, R. A. D. D. (1985). J. Chem. Soc. Chem. Commun. pp. 1669-1670.]).[link]

[Scheme 1]

The mol­ecule of (I[link]) is shown in Fig. 1[link]. Selected bond lengths and angles, primarily for the methyl­diethyl­amine substituent, are given in Table 1[link]. These, along with C—C distances and internal angles in the anthracene fragment in the ranges, respectively, of 1.3588 (14)–1.4451 (13) Å and 116.86 (8)–121.39 (9)°, are as expected for this type of mol­ecule. The anthracene moiety is essentially planar with an r.m.s. dis­place­ment for the atoms (C1–C14) which define it of 0.0234 Å. The largest displacement is that of C4 at 0.0380 (8) Å, followed by that of C7 at 0.0355 (8) Å. The displacements from the anthracene least-squares plane of atoms C15, N1, C16, C17, C18 and C19 are −0.0534 (12), 1.2190 (13), 2.2643 (15), 3.6724 (17), 1.0212 (17) and 0.2988 (18) Å, respectively. That is, as expected, atom C15 is more or less in the plane of the ring system and N1 displaced from it. The atoms of the ethyl group defined by C16–C17 are still further displaced, in the same sense as N1, while the ethyl group defined by C18–C19 is directed back towards the plane of the ring system. The torsion angles around the C15—N1 bond given in Table 1[link] are entirely consistent with this interpretation. The intermolecular C—H⋯π contacts given in Table 2[link] and shown in Fig. 2[link] interconnect the mol­ecules to form layers parallel to (100). The layers are related to one another purely by cell translation in the direction of a.

[Figure 1]
Figure 1
The mol­ecule of (I[link]). Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The packing of (I[link]). Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms as small spheres of arbitrary radii. Dashed lines represent C—H⋯π contacts. Selected atoms are labelled. [Symmetry codes: (i) x, [{1 \over 2}] − y, z − [{1 \over 2}]; (ii) 1 − x, 1 − y, 1 − z; (iii) x, y, 1 + z; (iv) x, [{1 \over 2}] − y, z + [{1 \over 2}]; (v) 1 − x, [{1 \over 2}] + y, [{1 \over 2}] − z; (vi) 1 − x, [{1 \over 2}] − y, [{3 \over 2}] − z; (vii) 1 − x, 1 − y, 2 − z.]

Experimental

Compound (I[link]) was synthesized according to the procedure of Atkinson et al. (1973[Atkinson, R. S., Brimage, D. R. G., Davidson, R. S. & Gray, E. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 960-964.]). 9-Chloro­methyl­anthracene (0.52 g, 2.3 mmol) and diethyl­amine (0.34 g, 4.7 mmol) were added to a solution of triethyl­amine (1.1 g, 11 mmol) in an­hydro­us dichlorometh­ane (50 ml). The resulting solution was refluxed overnight, allowed to cool and washed with water (3 × 50 ml). The organic layer was retained, dried over an­hydro­us sodium sulfate and the solvent evaporated under reduced pressure. The residue was chromatographed on silica with an ethyl acetate/hexane mixture (1:3) as eluant. The resulting yellow solid was recrystallized from methanol affording 0.16 g (47%) of the product. Needle-shaped crystals of (I[link]) were grown from methanol in a refrigerator at 283 K (m.p. 360–361 K). 1H NMR (CDCl3, 300 MHz): δ 1.07 (t, J = 7.0 Hz, 6H), 2.60 (q, J = 7.0 Hz, 4H), 4.48 (s, 2H), 7.41–7.51 (m, 4H), 7.96 (AB, JAB = 8.0 Hz, 2 H), 7.99 (AB, JAB = 8.0 Hz, 2H), 8.38 (s, 1H), 8.52 (AB, JAB = 9.0 Hz, 2H), 8.55 (AB, JAB = 8.0 Hz, 2H).

Crystal data
  • C19H21N

  • Mr = 263.37

  • Monoclinic, P21/c

  • a = 8.523 (1) Å

  • b = 22.678 (5) Å

  • c = 7.769 (2) Å

  • β = 93.388 (15)°

  • V = 1499.0 (5) Å3

  • Z = 4

  • Dx = 1.167 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2017 reflections

  • θ = 4–32°

  • μ = 0.07 mm−1

  • T = 100 (2) K

  • Cut prism, colorless

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur2 area-detector diffractometer

  • ω–2θ scans

  • Absorption correction: none

  • 14548 measured reflections

  • 4796 independent reflections

  • 3585 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 31.9°

  • h = −12 → 12

  • k = −33 → 31

  • l = −11 → 8

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.06

  • 4796 reflections

  • 183 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0802P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—C15 1.4738 (12)
N1—C16 1.4753 (13)
N1—C18 1.4782 (12)
C1—C15 1.5201 (13)
C16—C17 1.5183 (15)
C18—C19 1.5215 (15)
C15—N1—C16 110.27 (7)
C15—N1—C18 109.24 (8)
C16—N1—C18 110.22 (8)
C14—C1—C15 118.57 (8)
C2—C1—C15 121.86 (8)
N1—C15—C1 113.06 (7)
N1—C16—C17 113.32 (8)
N1—C18—C19 113.92 (9)
C2—C1—C15—N1 −107.99 (9)
C14—C1—C15—N1 73.42 (10)
C1—C15—N1—C16 66.38 (10)
C1—C15—N1—C18 −172.35 (8)
C15—N1—C16—C17 −162.17 (8)
C15—N1—C18—C19 76.45 (11)

Table 2
Geometry (Å, °) of C—H⋯π contacts in (I)

C—H⋯Cga C—H H⋯Cg Hperpb γc C—H⋯Cg C⋯Cg
C6—H6⋯Cg1i 0.95 2.58 2.56 7 145.56 3.405
C8—H8⋯Cg3i 0.95 2.77 2.74 9 145.74 3.595
C17—H17BCg3ii 0.95 2.78 2.76 8 138.84 3.581
C19—H19ACg2iii 0.95 2.91 2.89 6 150.72 3.795
Notes: (a) Cg(n), n = 1 to 3, are the centroids of rings defined by C1–C2/C7–C9/C14, C2–C7 and C9–C14, respectively; (b) Hperp is the perpendicular distance of the H atom from the mean plane of the ring; (c) γ is the angle at hydrogen between H⋯Cg and Hperp. Symmetry codes: (i) [x, {\script{1\over 2}}-y, z-{\script{1\over 2}}]; (ii) 1-x, 1-y, 1-z; (iii) x, y, 1+z.

In the final stages of refinement, H atoms were introduced in calculated positions, with C—H distances of 0.95, 0.99 and 0.98 Å for aryl, methyl­ene and methyl H atoms, respectively, and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) otherwise. The orientation of the rigid body methyl groups was also refined.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxford, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxford, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

(Anthracen-9-ylmethyl)diethylamine at 100 K top
Crystal data top
C19H21NF(000) = 568
Mr = 263.37Dx = 1.167 Mg m3
Monoclinic, P21/cMelting point = 360–361 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.523 (1) ÅCell parameters from 2017 reflections
b = 22.678 (5) Åθ = 4–32°
c = 7.769 (2) ŵ = 0.07 mm1
β = 93.388 (15)°T = 100 K
V = 1499.0 (5) Å3Prism, colorless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Xcalibur2 area-detector
diffractometer
3585 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 31.9°, θmin = 4.3°
ω–2θ scansh = 1212
14548 measured reflectionsk = 3331
4796 independent reflectionsl = 118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0802P)2]
where P = (Fo2 + 2Fc2)/3
4796 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.5356 (0.0016) x + 19.2959 (0.0059) y - 3.4950 (0.0017) z = 5.6313 (0.0020)

* 0.0018 (0.0008) C1 * 0.0159 (0.0008) C2 * -0.0057 (0.0008) C3 * -0.0380 (0.0008) C4 * -0.0286 (0.0008) C5 * 0.0236 (0.0008) C6 * 0.0355 (0.0008) C7 * 0.0290 (0.0008) C8 * 0.0043 (0.0008) C9 * -0.0306 (0.0008) C10 * -0.0334 (0.0008) C11 * 0.0004 (0.0008) C12 * 0.0166 (0.0008) C13 * 0.0091 (0.0008) C14 - 0.0534 (0.0012) C15 2.2643 (0.0015) C16 3.6724 (0.0017) C17 1.0212 (0.0017) C18 0.2988 (0.0018) C19 1.2190 (0.0013) N1

Rms deviation of fitted atoms = 0.0234

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28466 (10)0.45869 (4)0.77896 (10)0.01573 (18)
C10.32807 (10)0.36296 (4)0.63016 (11)0.01304 (18)
C20.25325 (11)0.34470 (4)0.47101 (11)0.01319 (18)
C30.09093 (11)0.35617 (4)0.42278 (12)0.0178 (2)
H30.02980.37830.49820.021*
C40.02237 (12)0.33592 (5)0.27049 (13)0.0214 (2)
H40.08580.34370.24310.026*
C50.11017 (12)0.30347 (5)0.15230 (13)0.0209 (2)
H50.06060.28940.04750.025*
C60.26519 (12)0.29265 (4)0.19013 (12)0.0177 (2)
H60.32400.27180.10960.021*
C70.34132 (11)0.31209 (4)0.34929 (11)0.01392 (18)
C80.49882 (11)0.29836 (4)0.38961 (12)0.01495 (19)
H80.55610.27690.30910.018*
C90.57381 (10)0.31564 (4)0.54650 (11)0.01381 (18)
C100.73430 (11)0.30030 (4)0.58820 (12)0.0170 (2)
H100.79000.27760.50920.020*
C110.80842 (11)0.31788 (4)0.73983 (13)0.0195 (2)
H110.91500.30730.76600.023*
C120.72597 (12)0.35206 (4)0.85905 (13)0.0206 (2)
H120.77890.36470.96370.025*
C130.57198 (11)0.36699 (4)0.82513 (12)0.0176 (2)
H130.51930.38960.90700.021*
C140.48826 (11)0.34909 (4)0.66770 (11)0.01342 (18)
C150.23994 (11)0.39603 (4)0.76462 (12)0.01584 (19)
H15A0.12570.39330.73440.019*
H15B0.26070.37680.87810.019*
C160.23523 (12)0.49040 (4)0.61903 (13)0.0197 (2)
H16A0.12050.49750.61710.024*
H16B0.25600.46510.51900.024*
C170.31859 (14)0.54901 (5)0.60020 (14)0.0264 (2)
H17A0.29470.57500.69610.040*
H17B0.28260.56750.49090.040*
H17C0.43230.54240.60150.040*
C180.21012 (12)0.48517 (5)0.92764 (13)0.0233 (2)
H18A0.09890.47250.92520.028*
H18B0.21130.52860.91540.028*
C190.28961 (15)0.46879 (5)1.10158 (13)0.0280 (3)
H19A0.28350.42601.11810.042*
H19B0.23650.48881.19350.042*
H19C0.40010.48101.10520.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0197 (4)0.0139 (4)0.0136 (4)0.0019 (3)0.0014 (3)0.0014 (3)
C10.0153 (4)0.0115 (4)0.0124 (4)0.0006 (3)0.0009 (3)0.0011 (3)
C20.0147 (4)0.0112 (4)0.0136 (4)0.0010 (3)0.0005 (3)0.0017 (3)
C30.0168 (5)0.0199 (5)0.0167 (4)0.0004 (3)0.0006 (3)0.0016 (3)
C40.0166 (5)0.0262 (5)0.0208 (5)0.0013 (4)0.0032 (4)0.0033 (4)
C50.0253 (5)0.0217 (5)0.0150 (4)0.0042 (4)0.0050 (4)0.0004 (4)
C60.0237 (5)0.0150 (4)0.0141 (4)0.0018 (3)0.0007 (4)0.0013 (3)
C70.0175 (4)0.0116 (4)0.0126 (4)0.0016 (3)0.0000 (3)0.0004 (3)
C80.0178 (4)0.0126 (4)0.0145 (4)0.0000 (3)0.0021 (3)0.0007 (3)
C90.0150 (4)0.0114 (4)0.0150 (4)0.0012 (3)0.0005 (3)0.0014 (3)
C100.0160 (4)0.0151 (4)0.0200 (5)0.0000 (3)0.0016 (3)0.0014 (3)
C110.0149 (4)0.0183 (5)0.0249 (5)0.0003 (3)0.0034 (4)0.0035 (4)
C120.0234 (5)0.0186 (5)0.0188 (5)0.0008 (4)0.0067 (4)0.0002 (4)
C130.0221 (5)0.0151 (4)0.0154 (4)0.0012 (3)0.0019 (4)0.0010 (3)
C140.0160 (4)0.0107 (4)0.0134 (4)0.0010 (3)0.0005 (3)0.0013 (3)
C150.0182 (4)0.0148 (4)0.0147 (4)0.0007 (3)0.0021 (3)0.0002 (3)
C160.0239 (5)0.0166 (5)0.0182 (5)0.0020 (4)0.0028 (4)0.0014 (4)
C170.0341 (6)0.0174 (5)0.0275 (6)0.0000 (4)0.0009 (5)0.0038 (4)
C180.0268 (5)0.0231 (5)0.0206 (5)0.0046 (4)0.0051 (4)0.0064 (4)
C190.0420 (7)0.0260 (6)0.0163 (5)0.0029 (5)0.0045 (4)0.0038 (4)
Geometric parameters (Å, º) top
N1—C151.4738 (12)C10—H100.9500
N1—C161.4753 (13)C11—C121.4246 (15)
N1—C181.4782 (12)C11—H110.9500
C1—C141.4146 (13)C12—C131.3659 (14)
C1—C21.4191 (12)C12—H120.9500
C1—C151.5201 (13)C13—C141.4376 (13)
C2—C31.4355 (13)C13—H130.9500
C2—C71.4451 (13)C15—H15A0.9900
C3—C41.3677 (14)C15—H15B0.9900
C3—H30.9500C16—C171.5183 (15)
C4—C51.4234 (15)C16—H16A0.9900
C4—H40.9500C16—H16B0.9900
C5—C61.3588 (14)C17—H17A0.9800
C5—H50.9500C17—H17B0.9800
C6—C71.4316 (13)C17—H17C0.9800
C6—H60.9500C18—C191.5215 (15)
C7—C81.3954 (13)C18—H18A0.9900
C8—C91.3984 (13)C18—H18B0.9900
C8—H80.9500C19—H19A0.9800
C9—C101.4299 (13)C19—H19B0.9800
C9—C141.4403 (13)C19—H19C0.9800
C10—C111.3630 (13)
C15—N1—C16110.27 (7)C11—C12—H12119.5
C15—N1—C18109.24 (8)C12—C13—C14121.14 (9)
C16—N1—C18110.22 (8)C12—C13—H13119.4
C14—C1—C2119.56 (8)C14—C13—H13119.4
C14—C1—C15118.57 (8)C1—C14—C13122.49 (8)
C2—C1—C15121.86 (8)C1—C14—C9120.13 (8)
C1—C2—C3123.44 (8)C13—C14—C9117.38 (8)
C1—C2—C7119.70 (8)N1—C15—C1113.06 (7)
C3—C2—C7116.86 (8)N1—C15—H15A109.0
C4—C3—C2121.39 (9)C1—C15—H15A109.0
C4—C3—H3119.3N1—C15—H15B109.0
C2—C3—H3119.3C1—C15—H15B109.0
C3—C4—C5121.17 (9)H15A—C15—H15B107.8
C3—C4—H4119.4N1—C16—C17113.32 (8)
C5—C4—H4119.4N1—C16—H16A108.9
C6—C5—C4119.69 (9)C17—C16—H16A108.9
C6—C5—H5120.2N1—C16—H16B108.9
C4—C5—H5120.2C17—C16—H16B108.9
C5—C6—C7121.10 (9)H16A—C16—H16B107.7
C5—C6—H6119.4C16—C17—H17A109.5
C7—C6—H6119.4C16—C17—H17B109.5
C8—C7—C6120.41 (8)H17A—C17—H17B109.5
C8—C7—C2119.82 (8)C16—C17—H17C109.5
C6—C7—C2119.75 (8)H17A—C17—H17C109.5
C7—C8—C9121.15 (8)H17B—C17—H17C109.5
C7—C8—H8119.4N1—C18—C19113.92 (9)
C9—C8—H8119.4N1—C18—H18A108.8
C8—C9—C10120.74 (8)C19—C18—H18A108.8
C8—C9—C14119.63 (8)N1—C18—H18B108.8
C10—C9—C14119.63 (8)C19—C18—H18B108.8
C11—C10—C9120.86 (9)H18A—C18—H18B107.7
C11—C10—H10119.6C18—C19—H19A109.5
C9—C10—H10119.6C18—C19—H19B109.5
C10—C11—C12119.99 (9)H19A—C19—H19B109.5
C10—C11—H11120.0C18—C19—H19C109.5
C12—C11—H11120.0H19A—C19—H19C109.5
C13—C12—C11120.98 (9)H19B—C19—H19C109.5
C13—C12—H12119.5
C2—C1—C15—N1107.99 (9)C1—C15—N1—C18172.35 (8)
C14—C1—C15—N173.42 (10)C15—N1—C16—C17162.17 (8)
C1—C15—N1—C1666.38 (10)C15—N1—C18—C1976.45 (11)
Geometry (Å, °) of C—H..π contacts in (I) top
C—H..CgaC—HH..CgHperpbγcC-H..CgC..Cg
C6—H6···Cg1i0.952.582.567145.563.405
C8—H8···Cg3i0.952.772.749145.743.595
C17—H17B···Cg3ii0.952.782.768138.843.581
C19—H19A···Cg2iii0.952.912.896150.723.795
Notes: (a) Cg(n), n = 1 to 3, are the centroids of rings defined by C1–C2/C7–C9/C14, C2–C7 and C9–C14, respectively; (b) Hperp is the perpendicular distance of the H atom from the mean plane of the ring; (c) γ is the angle at hydrogen between H···Cg and Hperp. Symmetry codes: (i) x, 1/2-y, z-1/2; (ii) 1-x, 1-y, 1-z; (iii) x, y, 1+z.
 

Acknowledgements

GEMM acknowledges funding received for this work from the National Research Foundation of the Republic of South Africa (Economic Growth and Development Fund, Gun: 2053369). We thank Prof O. Munro, School of Chemical and Physical Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa, for obtaining the intensity data.

References

First citationAtkinson, R. S., Brimage, D. R. G., Davidson, R. S. & Gray, E. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 960–964.  CrossRef Web of Science Google Scholar
First citationBarkhuizen, D. A., Howie, R. A., Maguire, G. E. M. & Rademeyer, M. (2004). Acta Cryst. E60, o571–o573.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBissell, R. A., Desilva, A. P., Gunaratne, H. Q. N., Lynch, P. L. M., Maguire, G. E. M., McCoy, C. P. & Sandanayake, K. R. A. S. (1993). Top. Curr. Chem. 168, 223–264.  CrossRef CAS Google Scholar
First citationDesilva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Radamacher, J. T. & Rice, R. E. (1997). Chem. Rev. 97, 1515–1566.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDesilva, A. P., Gunaratne, H. Q. N. & Maguire, G. E. M. (1993). J. Chem. Soc. Chem. Commun. 10, 1213–1214.  Google Scholar
First citationDesilva, A. P. & Rupasinghe, R. A. D. D. (1985). J. Chem. Soc. Chem. Commun. pp. 1669–1670.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJames, T. D., Sandanayake, K. R. A. S., Iuguchi, R. & Shinkai, S. (1995). J. Am. Chem. Soc. 117, 8982–8987.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds