organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-tert-Butyl-1-(4-chloro­phenyl)-7,7-di­methyl-5,6,7,8-tetra­hydro­pyrazolo[3,4-b]quinolin-5-one: centrosymmetric dimers generated by C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: che562@abdn.ac.uk

(Received 30 November 2004; accepted 2 December 2004; online 11 December 2004)

Molecules of the title compound, C22H24ClN3O, are linked by two pairs of C—H⋯π(arene) hydrogen bonds into centrosymmetric dimers.

Keywords: .

Comment

We report here the structure of the title compound, (I)[link] (Fig. 1[link]), whose supramolecular aggregation shows some interesting differences from that in the unsubstituted analogue (II) (Low et al., 2004[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o479-o482.]).

[Scheme 1]

The bond lengths in (I)[link] are very similar to those in (II) and require no further discussion here. The ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the carbocyclic rings in (I)[link] and (II) are quite similar [for the atom sequence C4A—C5—C6—C7—C8—C8A, θ = 132.1 (4)° and φ = 351.0 (5) in (I)[link], and θ = 127.4 (3)° and φ = 353.8 (3) in (II)] and indicate an envelope conformation in each compound (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]).

The principal difference between (I)[link] and (II) arises from the intermolecular aggregation. In (I)[link], the molecules are linked into centrosymmetric dimers by two pairs of C—H⋯π(arene) interactions (Table 1[link]). Atoms C6 and C8 in the molecule at (x, y, z) act as donors, via the axial H atoms H6A and H8A, to the aryl and pyrazole rings, respectively, in the molecule at (−x, 1 − y, 1 − z) (Fig. 2[link]). There are no other types of intermolecular hydrogen bond in the structure of (I)[link] and there are no direction-specific interactions between the dimers. By contrast, in (II), the molecules are linked into chains by means of a C—H⋯N hydrogen bond, and C—H⋯π(arene) hydrogen bonds are absent from the structure of (II). It is striking that the presence of a single remote Cl substituent in (I)[link] is associated with such a change in the hydrogen bonding.

[Figure 1]
Figure 1
The molecule of compound (I)[link], showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Stereoview of part of the crystal structure of compound (I)[link], showing the formation of a centrosymmetric hydrogen-bonded dimer. For clarity, H atoms bonded to C atoms not involved in the motifs shown have been omitted. C—H⋯π hydrogen bonds are shown as dashed lines.

Experimental

A mixture of 5-amino-3-tert-butyl-1-(4-chloro­phenyl)pyrazole (1 mmol), 5,5-dimethyl-1,3-cyclo­hexane­dione (dimedone) (1 mmol) and formaldehyde (3 mmol) was placed in an open Pyrex-glass vessel and irradiated in a domestic microwave oven for 3 min (at 600 watts). After reaction, the mixture was extracted with ethanol; the extract was filtered and the product, (I)[link], was purified by column chromatography on silica gel, with dichloro­methane/hexane (7:3, v/v) as eluant. Yield 39%, m.p. 428 K. MS (EI 70 eV) m/z (%): 383/381 (15/49), 382 (12), 368/366 (37/100), 149 (16), 57 (11). Crystals suitable for single-crystal X-ray diffraction were grown from ethanol.

Crystal data
  • C22H24ClN3O

  • Mr = 381.89

  • Triclinic, P[\overline1]

  • a = 8.6851 (11) Å

  • b = 10.6167 (9) Å

  • c = 12.4330 (12) Å

  • α = 106.724 (8)°

  • β = 101.049 (10)°

  • γ = 107.406 (8)°

  • V = 998.1 (2) Å3

  • Z = 2

  • Dx = 1.271 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4289 reflections

  • θ = 5.0–27.5°

  • μ = 0.21 mm−1

  • T = 293 (2) K

  • Block, colourless

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (EVALCCD; Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.])

  • Tmin = 0.925, Tmax = 0.980

  • 13 573 measured reflections

  • 4289 independent reflections

  • 1940 reflections with I > 2σ(I)

  • Rint = 0.091

  • θmax = 27.5°

  • h = −11 → 11

  • k = −13 → 13

  • l = −13 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.122

  • S = 0.93

  • 4289 reflections

  • 250 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3921P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

  D—H H⋯A DA D—H⋯A
C6—H6ACg1i 0.97 2.77 3.649 (3) 151
C8—H8ACg2i 0.97 2.82 3.768 (3) 165
Symmetry code: (i) -x, -y+1, -z+1. Notes: Cg1 and Cg2 are the centroids of rings C11–C16 and N1/N2/C3/C3A/C9A, respectively.

All H atoms were located in difference maps and then treated as riding atoms, with C—H distances 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups. This structure was determined at room temperature and both the data completeness and the ratio of observed-to-unique reflections are rather low. Since this structure is, in all respects, similar to its non-chlorinated analogue (II), a second data-collection, at low temperature, was not justified.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

3-tert-Butyl-1-(4-chlorophenyl)-7,7-dimethyl-5,6,7,8- tetrahydroimidazo[3,4-b]quinolin-5-one top
Crystal data top
C22H24ClN3OZ = 2
Mr = 381.89F(000) = 404
Triclinic, P1Dx = 1.271 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6851 (11) ÅCell parameters from 4289 reflections
b = 10.6167 (9) Åθ = 5.0–27.5°
c = 12.4330 (12) ŵ = 0.21 mm1
α = 106.724 (8)°T = 293 K
β = 101.049 (10)°Block, colourless
γ = 107.406 (8)°0.40 × 0.20 × 0.10 mm
V = 998.1 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4289 independent reflections
Radiation source: fine-focus sealed X-ray tube1940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
φ and ω scansθmax = 27.5°, θmin = 5.0°
Absorption correction: multi-scan
EvalCCD, (Duisenberg et al., 2003)
h = 1111
Tmin = 0.925, Tmax = 0.980k = 1313
13573 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3921P]
where P = (Fo2 + 2Fc2)/3
4289 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.28 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl140.25042 (9)0.12483 (9)0.88047 (7)0.0675 (3)
O50.1443 (2)0.6703 (2)0.18979 (16)0.0659 (6)
N10.3639 (2)0.5147 (2)0.62204 (16)0.0367 (5)
N20.4930 (2)0.6473 (2)0.68344 (16)0.0388 (5)
N90.1388 (2)0.4006 (2)0.43698 (16)0.0363 (5)
C30.4865 (3)0.7244 (2)0.61863 (19)0.0350 (6)
C3A0.3525 (3)0.6432 (2)0.50982 (19)0.0348 (6)
C40.2845 (3)0.6615 (3)0.40730 (19)0.0377 (6)
C4A0.1440 (3)0.5504 (3)0.32209 (19)0.0351 (6)
C50.0714 (3)0.5675 (3)0.2111 (2)0.0411 (6)
C60.0937 (3)0.4546 (3)0.13021 (19)0.0403 (6)
C70.1159 (3)0.3051 (3)0.12727 (19)0.0373 (6)
C80.0857 (3)0.3079 (3)0.25340 (19)0.0410 (6)
C8A0.0735 (3)0.4244 (2)0.34112 (19)0.0353 (6)
C9A0.2751 (3)0.5102 (3)0.51641 (19)0.0341 (5)
C110.3375 (3)0.4160 (2)0.67918 (19)0.0351 (6)
C120.1866 (3)0.3007 (3)0.6409 (2)0.0436 (6)
C130.1620 (3)0.2101 (3)0.7022 (2)0.0468 (7)
C140.2860 (3)0.2358 (3)0.8012 (2)0.0441 (6)
C150.4363 (3)0.3484 (3)0.8392 (2)0.0528 (7)
C160.4628 (3)0.4393 (3)0.7780 (2)0.0484 (7)
C310.6009 (3)0.8794 (2)0.66531 (19)0.0388 (6)
C320.7361 (4)0.9172 (3)0.7800 (2)0.0710 (9)
C330.6879 (3)0.9129 (3)0.5760 (2)0.0653 (8)
C340.4916 (3)0.9676 (3)0.6879 (3)0.0637 (8)
C710.0095 (3)0.2563 (3)0.0723 (2)0.0521 (7)
C720.2966 (3)0.2042 (3)0.0534 (2)0.0531 (7)
H40.33190.74590.39610.045*
H6A0.18470.47820.15400.048*
H6E0.10440.45440.05110.048*
H8A0.18140.31770.27930.049*
H8E0.08180.21740.25310.049*
H120.10200.28400.57410.052*
H130.06110.13170.67610.056*
H150.52060.36410.90580.063*
H160.56510.51610.80360.058*
H32A0.68280.89790.83750.107*
H32B0.80661.01620.80870.107*
H32C0.80430.86140.76600.107*
H33A0.76080.86100.56490.098*
H33B0.75381.01280.60460.098*
H33C0.60400.88590.50230.098*
H34A0.40680.94430.61560.096*
H34B0.56171.06680.71750.096*
H34C0.43780.94720.74490.096*
H71A0.00360.26430.00360.078*
H71B0.01210.15920.06350.078*
H71C0.12300.31480.12250.078*
H72A0.31510.20140.02600.080*
H72B0.37520.23700.08630.080*
H72C0.31300.11070.05360.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl140.0747 (5)0.0743 (6)0.0797 (5)0.0312 (4)0.0329 (4)0.0558 (5)
O50.0719 (13)0.0574 (14)0.0505 (12)0.0006 (11)0.0009 (10)0.0324 (11)
N10.0409 (11)0.0282 (12)0.0303 (11)0.0050 (9)0.0027 (9)0.0096 (9)
N20.0402 (11)0.0304 (12)0.0341 (11)0.0060 (10)0.0034 (9)0.0080 (10)
N90.0400 (11)0.0315 (12)0.0290 (10)0.0064 (10)0.0053 (9)0.0099 (9)
C30.0365 (13)0.0309 (14)0.0307 (13)0.0087 (11)0.0067 (10)0.0079 (11)
C3A0.0404 (13)0.0293 (15)0.0306 (13)0.0092 (11)0.0102 (11)0.0095 (11)
C40.0455 (14)0.0316 (15)0.0350 (14)0.0103 (12)0.0119 (12)0.0154 (12)
C4A0.0389 (13)0.0335 (15)0.0272 (13)0.0093 (12)0.0059 (11)0.0104 (11)
C50.0472 (15)0.0380 (17)0.0352 (14)0.0138 (13)0.0114 (12)0.0125 (13)
C60.0426 (14)0.0478 (17)0.0286 (13)0.0175 (13)0.0074 (11)0.0134 (12)
C70.0376 (13)0.0388 (15)0.0277 (13)0.0114 (11)0.0027 (10)0.0092 (11)
C80.0416 (13)0.0383 (16)0.0339 (13)0.0063 (12)0.0062 (11)0.0128 (12)
C8A0.0392 (13)0.0347 (15)0.0288 (13)0.0115 (12)0.0103 (11)0.0096 (11)
C9A0.0400 (13)0.0328 (15)0.0260 (12)0.0105 (12)0.0079 (11)0.0104 (11)
C110.0395 (13)0.0331 (15)0.0319 (13)0.0124 (12)0.0117 (11)0.0120 (11)
C120.0478 (15)0.0410 (17)0.0356 (14)0.0108 (14)0.0072 (12)0.0146 (12)
C130.0483 (15)0.0391 (17)0.0484 (16)0.0087 (13)0.0142 (13)0.0180 (13)
C140.0527 (16)0.0453 (18)0.0472 (15)0.0222 (14)0.0213 (13)0.0273 (13)
C150.0472 (16)0.061 (2)0.0522 (17)0.0167 (16)0.0046 (13)0.0338 (15)
C160.0385 (13)0.0490 (18)0.0522 (16)0.0095 (13)0.0043 (12)0.0246 (14)
C310.0421 (13)0.0302 (15)0.0324 (13)0.0061 (12)0.0043 (11)0.0075 (11)
C320.0683 (19)0.0462 (19)0.0589 (19)0.0005 (15)0.0160 (15)0.0086 (15)
C330.0610 (18)0.055 (2)0.0609 (19)0.0015 (15)0.0218 (15)0.0169 (16)
C340.0635 (18)0.0392 (18)0.081 (2)0.0181 (15)0.0216 (16)0.0134 (16)
C710.0578 (16)0.0582 (19)0.0378 (14)0.0273 (15)0.0102 (12)0.0112 (13)
C720.0506 (15)0.0494 (18)0.0417 (15)0.0086 (14)0.0018 (12)0.0129 (13)
Geometric parameters (Å, º) top
N1—C9A1.370 (3)C34—H34B0.96
N1—N21.390 (2)C34—H34C0.96
N1—C111.415 (3)C3A—C41.390 (3)
C11—C161.381 (3)C3A—C9A1.404 (3)
C11—C121.381 (3)C4—C4A1.388 (3)
C12—C131.383 (3)C4—H40.93
C12—H120.93C4A—C8A1.403 (3)
C13—C141.368 (3)C4A—C51.488 (3)
C13—H130.93C5—O51.217 (3)
C14—C151.365 (3)C5—C61.493 (3)
C14—Cl141.738 (2)C6—C71.529 (3)
C15—C161.384 (3)C6—H6E0.97
C15—H150.93C6—H6A0.97
C16—H160.93C7—C81.530 (3)
N2—C31.309 (3)C7—C711.531 (3)
C3—C3A1.433 (3)C7—C721.526 (3)
C3—C311.511 (3)C71—H71A0.96
C31—C331.522 (3)C71—H71B0.96
C31—C321.523 (3)C71—H71C0.96
C31—C341.529 (3)C72—H72A0.96
C32—H32A0.96C72—H72B0.96
C32—H32B0.96C72—H72C0.96
C32—H32C0.96C8—C8A1.501 (3)
C33—H33A0.96C8—H8A0.97
C33—H33B0.96C8—H8E0.97
C33—H33C0.96C8A—N91.344 (3)
C34—H34A0.96N9—C9A1.341 (3)
C9A—N1—N2110.15 (18)C4—C3A—C9A116.4 (2)
C9A—N1—C11131.75 (19)C4—C3A—C3138.0 (2)
N2—N1—C11117.86 (17)C9A—C3A—C3105.5 (2)
C16—C11—C12119.6 (2)C4A—C4—C3A118.3 (2)
C16—C11—N1119.0 (2)C4A—C4—H4120.9
C12—C11—N1121.3 (2)C3A—C4—H4120.9
C11—C12—C13119.8 (2)C4—C4A—C8A120.0 (2)
C11—C12—H12120.1C4—C4A—C5118.9 (2)
C13—C12—H12120.1C8A—C4A—C5121.1 (2)
C14—C13—C12120.0 (2)O5—C5—C4A120.5 (2)
C14—C13—H13120.0O5—C5—C6122.7 (2)
C12—C13—H13120.0C4A—C5—C6116.8 (2)
C15—C14—C13120.8 (2)C5—C6—C7114.50 (19)
C15—C14—Cl14119.66 (19)C5—C6—H6E108.6
C13—C14—Cl14119.6 (2)C7—C6—H6E108.6
C14—C15—C16119.7 (2)C5—C6—H6A108.6
C14—C15—H15120.2C7—C6—H6A108.6
C16—C15—H15120.2H6E—C6—H6A107.6
C11—C16—C15120.1 (2)C72—C7—C6108.89 (18)
C11—C16—H16119.9C72—C7—C8109.43 (19)
C15—C16—H16119.9C6—C7—C8108.65 (19)
C3—N2—N1107.66 (17)C72—C7—C71109.6 (2)
N2—C3—C3A110.1 (2)C6—C7—C71109.7 (2)
N2—C3—C31120.81 (19)C8—C7—C71110.59 (18)
C3A—C3—C31128.9 (2)C7—C71—H71A109.5
C3—C31—C33110.5 (2)C7—C71—H71B109.5
C3—C31—C32110.7 (2)H71A—C71—H71B109.5
C33—C31—C32108.7 (2)C7—C71—H71C109.5
C3—C31—C34107.98 (19)H71A—C71—H71C109.5
C33—C31—C34109.6 (2)H71B—C71—H71C109.5
C32—C31—C34109.4 (2)C7—C72—H72A109.5
C31—C32—H32A109.5C7—C72—H72B109.5
C31—C32—H32B109.5H72A—C72—H72B109.5
H32A—C32—H32B109.5C7—C72—H72C109.5
C31—C32—H32C109.5H72A—C72—H72C109.5
H32A—C32—H32C109.5H72B—C72—H72C109.5
H32B—C32—H32C109.5C8A—C8—C7114.8 (2)
C31—C33—H33A109.5C8A—C8—H8A108.6
C31—C33—H33B109.5C7—C8—H8A108.6
H33A—C33—H33B109.5C8A—C8—H8E108.6
C31—C33—H33C109.5C7—C8—H8E108.6
H33A—C33—H33C109.5H8A—C8—H8E107.5
H33B—C33—H33C109.5N9—C8A—C4A123.6 (2)
C31—C34—H34A109.5N9—C8A—C8116.1 (2)
C31—C34—H34B109.5C4A—C8A—C8120.3 (2)
H34A—C34—H34B109.5C9A—N9—C8A114.3 (2)
C31—C34—H34C109.5N9—C9A—N1126.1 (2)
H34A—C34—H34C109.5N9—C9A—C3A127.4 (2)
H34B—C34—H34C109.5N1—C9A—C3A106.52 (19)
C9A—N1—C11—C16170.1 (2)C3A—C4—C4A—C5179.1 (2)
N2—N1—C11—C1616.2 (3)C4—C4A—C5—O57.9 (3)
C9A—N1—C11—C1212.6 (4)C8A—C4A—C5—O5171.7 (2)
N2—N1—C11—C12161.1 (2)C4—C4A—C5—C6171.2 (2)
C16—C11—C12—C130.4 (3)C8A—C4A—C5—C69.1 (3)
N1—C11—C12—C13176.9 (2)O5—C5—C6—C7145.9 (2)
C11—C12—C13—C140.8 (4)C4A—C5—C6—C735.0 (3)
C12—C13—C14—C151.6 (4)C5—C6—C7—C72173.2 (2)
C12—C13—C14—Cl14177.65 (19)C5—C6—C7—C854.1 (2)
C13—C14—C15—C161.1 (4)C5—C6—C7—C7166.9 (2)
Cl14—C14—C15—C16178.1 (2)C72—C7—C8—C8A168.0 (2)
C12—C11—C16—C150.8 (4)C6—C7—C8—C8A49.2 (2)
N1—C11—C16—C15176.5 (2)C71—C7—C8—C8A71.2 (3)
C14—C15—C16—C110.1 (4)C4—C4A—C8A—N93.0 (3)
C9A—N1—N2—C30.2 (2)C5—C4A—C8A—N9176.6 (2)
C11—N1—N2—C3175.16 (18)C4—C4A—C8A—C8175.6 (2)
N1—N2—C3—C3A0.9 (2)C5—C4A—C8A—C84.8 (3)
N1—N2—C3—C31174.51 (18)C7—C8—C8A—N9155.06 (19)
N2—C3—C31—C33131.2 (2)C7—C8—C8A—C4A26.2 (3)
C3A—C3—C31—C3354.4 (3)C4A—C8A—N9—C9A2.4 (3)
N2—C3—C31—C3210.7 (3)C8—C8A—N9—C9A176.26 (19)
C3A—C3—C31—C32174.8 (2)C8A—N9—C9A—N1179.0 (2)
N2—C3—C31—C34109.0 (2)C8A—N9—C9A—C3A0.6 (3)
C3A—C3—C31—C3465.4 (3)N2—N1—C9A—N9177.52 (19)
N2—C3—C3A—C4178.6 (2)C11—N1—C9A—N93.5 (4)
C31—C3—C3A—C46.5 (4)N2—N1—C9A—C3A1.2 (2)
N2—C3—C3A—C9A1.6 (2)C11—N1—C9A—C3A175.2 (2)
C31—C3—C3A—C9A173.3 (2)C4—C3A—C9A—N92.8 (3)
C9A—C3A—C4—C4A2.0 (3)C3—C3A—C9A—N9177.0 (2)
C3—C3A—C4—C4A177.7 (2)C4—C3A—C9A—N1178.53 (18)
C3A—C4—C4A—C8A0.6 (3)C3—C3A—C9A—N11.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cg1i0.972.773.649 (3)151
C8—H8A···Cg2i0.972.823.768 (3)165
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Correspondance address: Department of Electrical Engineering and Physics, School of Engineering and Physical Science, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

X-ray data were collected at the `Servicios Técnicos de Investigación', University of Jaén. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and JM thank COLCIENCIAS and UNIVALLE (Universidad del Valle) for financial support. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLow, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o479–o482.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds