metal-organic compounds
Bis(2,2′-bipyridine)nitratocopper(II) nitrate
aFaculty of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, bDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, England, and cComputational Biology Group, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, England
*Correspondence e-mail: sianc.davies@bbsrc.ac.uk
The title complex, [Cu(C10H8N2)2(NO3)]NO3, is the first reported unsolvated [Cu(bipy)2(NO3)]NO3 structure (bipy is 2,2′-bipyridine). The CuII atom of the [Cu(bipy)2(NO3)]+ complex is six-coordinated, forming a distorted octahedral geometry; bond lengths to the N atoms of the pyridine rings and one of the O atoms of the chelating NO3 ligand lie in the range 1.975 (5)–2.139 (6) Å, with the second O atom from the NO3 ligand less tightly coordinated at a distance of 2.520 (6) Å. The geometry of the CuN2N′2OO′ chromophore more closely resembles that of [Cu(bipy)2(NO2)]+ complexes than previously reported [Cu(bipy)2(NO3)]+ structures.
Comment
The Cu atom of the title complex, (I), is distorted octahedrally coordinated and is ligated by the four bipyridine N atoms and a chelating NO3 group, for which one of the O-atom donors lies further from the Cu atom due to Jahn–Teller distortions (Fig. 1).
The Cu atom has a (4 + 1′ + 1*) stereochemistry (Hathaway, 1973) with pseudo-C2 symmetry bisecting the NO3 ligand and passing between the bipyridine ligands. The atoms of the vectors N111⋯N221 and N121⋯O31 lie 3.965 (7) and 4.009 (8) Å apart, respectively, and are designated as forming the equatorial plane, with elongation of the N211⋯O32 distance to 4.512 (8) Å (designated as the axial atoms). The corresponding X—Cu—Y angles are also distorted from the ideal octahedral value of 180°, with N111—Cu—N221 = 176.2 (3)°, N121—Cu—O31 = 150.0 (2)° and N211—Cu—O32 = 154.4 (2)°. The distortions in the coordination geometry agree with observations reported (Walsh et al., 1981) for pseudo-Jahn–Teller structures, i.e. as one Cu—O bond lengthens, the other shortens, the Cu—N bond trans to each O atom lengthens or shortens, respectively, while the second Cu—N bond within the same bipyridine ligand also lengthens or shortens correspondingly but by a smaller amount.
The Cu—N bond lengths to the N atoms in the equatorial plane lie in the range 1.975 (5)–2.013 (6) Å, with the elongated axial Cu—N211 bond length being 2.106 (6) Å (see Table 1); the equatorial Cu—O31 bond length is not unusual, being 2.138 (6) Å (Orpen et al., 1989). The axial NO3 atom O32 lies 2.520 (6) Å from the Cu atom and constitutes the major distortion from regular octahedral coordination. There are no unusual bond dimensions within either the bipyridine ligands or the chelating NO3 ligand, where N—O bond lengths lie within the range 1.198 (7)–1.257 (7) Å. Within the nitrate anion, bond lengths lie in the range 1.194 (7)–1.235 (7) Å, as usual for this group.
The coordination geometry about the Cu atom in (I) is intermediate between reported (Chemical Database Service, Council for the Central Laboratory of the Research Councils, Daresbury Laboratory) [Cu(bipy)2(NO2)]+ structures, e.g. [Cu(bipy)2(NO2)]NO3 [(II) (Proctor & Stephens, 1969) and (III) (Simmons et al., 1983, 1987)], [Cu(bipy)2(NO2)]BF4 [(IV); Walsh et al., 1981], and the four reported [Cu(bipy)2(NO3)]NO3 structures [Cu(bipy)2(NO3)]NO3·H2O [(V) (Nakai, 1980), (VI) (Fereday et al., 1981), (VII) (Catalan et al., 1995)] and [Cu(bipy)2(NO3)]NO3·HDCI·H2O [(VIII); Prasad et al., 1999; HDCI is 4,5-dicyanoimidazole] (see Table 2). Coordination by the second O atom in (I) at 2.520 (6) Å is tighter than in the reported solvated [Cu(bipy)2(NO3)]+ complexes, but is looser than in the [Cu(bipy)2(NO2)]+ complexes at room temperature. However, angles about the Cu atom in (I) more closely resemble those in the NO2-ligated structures than the NO3-ligated structures, leading to a geometry closer to those in the unsolvated structures.
The crystal packing of the complex in (I) is also similar to that found in the three NO2-ligated structures, with the cations forming corrugated planes seen edge-on when viewed along the crystallographic c axis (Fig. 2). The anions in (I) lie at the apices of the ridges in the cationic `planes' and form correspondingly corrugated intercationic planes; the anions overlap the ligated NO3 groups to form chains parallel to the crystallographic c axis. This arrangement is as found in the crystal packing of (II), (III) and (IV), where the [BF4]− anion in (IV) occupies the same relative position as that of the [NO3]− anions in (II) and (III). The inclusion of solvent water in the four previously reported [Cu(bipy)2(NO3)]+ structures introduces hydrogen bonding between the anion and solvent molecules and the packing arrangements in these crystal structures differ from those of the NO2-ligated complexes. Structures (V), (VI) and (VIII) consist of alternating flat cationic and anionic planes. The ligated NO3 groups in (V) and (VI) lie within the anionic planes, with the water molecules lying within the cationic planes. In (VIII), the HDCI and water molecules all lie within the anionic planes. The packing arrangement in (VII) is different in that the cations form a three-dimensional framework, with the anions and water molecules lying in planes within this framework.
These results indicate the sensitivity of the Cu coordination geometry in [Cu(bipy)2(NO3)]+ structures to factors such as the identity of the anion and the presence of solvent in the The above examples of [Cu(bipy)(NO2)]+ coordination complexes crystallize in No. 14, P21/n, with similar unit cells and crystal packing. Hydrogen bonding in the solvated [Cu(bipy)2(NO3)]+ structures, however, leads to different molecular arrangements; most crystallize in P, with different unit cells but similar packing arrangements.
Complex (I) is the first reported unsolvated [Cu(bipy)2(NO3)]NO3 structure and, although the coordination geometry may be considered to be similar to that in the structure [Cu(bipy)2(NO3)]NO3·HDCI·H2O (Prasad et al., 1999), it more closely resembles the [Cu(bipy)2(NO2)]+ structures, both in coordination geometry about the Cu atom and in having a similar packing arrangement in the same viz. P21/n.
Experimental
The preparation of the title compound was carried out under a dinitrogen atmosphere. To a stirred solution of [Cu(NO3)(SC5H4NH)2] (0.26 g, 0.74 mmol), prepared according to the literature procedure of Davies et al. (1997), in MeOH (25 ml) was added bipyridine (bipy; 0.13 g, 1.20 mmol). The mixture was stirred for 20 h and then boiled under reflux for 1 h, giving a green solution. This was allowed to cool and was then filtered. The filtrate was concentrated to ca 4 ml in vacuo, giving a blue solid. This was filtered off, washed with diethyl ether and dried in vacuo as [Cu(bipy)2(NO3)]NO3 (yield 0.21 g, 80%). IR: 1600 (sh), 1580 (m), 1470 (m), 1320 (m), 1110 (m), 830 (w), 770 (s), 730 (m), 630 (w), 415 (w), 290 (w) cm−1. Recrystallization of (I) by slow diffusion of diethyl ether into a methanol solution gave turquoise-coloured crystals.
Crystal data
|
Data collection
Refinement
|
|
H atoms were geometrically constrained to ride on the parent atoms (C—H = 0.93 Å), with Uiso(H) = 1.2Ueq(parent atom).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell CAD-4 EXPRESS; data reduction: CAD-4 processing program (Hursthouse, 1976); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1971) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536804030788/sj6001sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804030788/sj6001Isup2.hkl
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell
CAD-4 EXPRESS; data reduction: CAD-4 processing program (Hursthouse, 1976); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1971) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.[Cu(C10H8N2)2(NO3)]NO3 | F(000) = 1020 |
Mr = 499.93 | Dx = 1.600 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 24 reflections |
a = 11.3309 (13) Å | θ = 10–11° |
b = 12.2714 (14) Å | µ = 1.11 mm−1 |
c = 15.0877 (15) Å | T = 293 K |
β = 98.281 (8)° | Prism, blue green |
V = 2076.0 (4) Å3 | 0.29 × 0.21 × 0.18 mm |
Z = 4 |
Enraf-Nonius CAD-4 diffractometer | 1128 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 23.0°, θmin = 1.5° |
scintillation counter; ω/θ scans | h = −11→11 |
Absorption correction: ψ scan (EMPABS; Sheldrick et al., 1977) | k = −1→12 |
Tmin = 0.751, Tmax = 0.820 | l = −1→15 |
3287 measured reflections | 3 standard reflections every 167 min |
2546 independent reflections | intensity decay: 2.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.97 | w = σ-2(Fo2) |
2546 reflections | (Δ/σ)max = 0.001 |
298 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 3287 reflections were collected to θmax of 23° (hmax, kmax, lmax of 12, 13, 16), with 2887 unique reflections and 1172 observed. Those greater than 22°, however, were found to be too unreliable and were not used in the final refinement, leaving 2546 unique reflections and 1128 observed. H atoms were geometrically constrained to ride on the parent atoms, with isotropic displacement parameters set to be 1.2Ueq of the parent atom. Data were corrected for Lorentz-polarization effects, decay of the intensities (Hursthouse, 1976), absorption (Sheldrick et al., 1977) and negative intensities (French et al., 1978) before structure solution and refinement. French, S. & Wilson, K. (1978). Acta Cryst. A34, 517–525. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.23885 (8) | 0.43850 (8) | 0.12480 (6) | 0.0508 (3) | |
N111 | 0.2036 (5) | 0.4497 (5) | 0.2489 (4) | 0.0543 (16) | |
C112 | 0.1041 (6) | 0.3999 (6) | 0.2653 (5) | 0.046 (2) | |
C113 | 0.0581 (6) | 0.4147 (7) | 0.3445 (5) | 0.063 (2) | |
H113 | −0.0127 | 0.3814 | 0.3541 | 0.076* | |
C114 | 0.1197 (8) | 0.4796 (7) | 0.4076 (6) | 0.074 (3) | |
H114 | 0.0904 | 0.4914 | 0.4613 | 0.089* | |
C115 | 0.2234 (8) | 0.5277 (7) | 0.3939 (6) | 0.087 (3) | |
H115 | 0.2676 | 0.5685 | 0.4390 | 0.104* | |
C116 | 0.2619 (7) | 0.5149 (7) | 0.3120 (6) | 0.076 (3) | |
H116 | 0.3295 | 0.5521 | 0.3002 | 0.091* | |
N121 | 0.1031 (5) | 0.3316 (5) | 0.1175 (4) | 0.0471 (17) | |
C122 | 0.0503 (6) | 0.3258 (6) | 0.1924 (5) | 0.048 (2) | |
C123 | −0.0407 (6) | 0.2512 (6) | 0.2003 (6) | 0.057 (2) | |
H123 | −0.0776 | 0.2486 | 0.2514 | 0.069* | |
C124 | −0.0733 (7) | 0.1822 (7) | 0.1301 (7) | 0.073 (3) | |
H124 | −0.1322 | 0.1306 | 0.1347 | 0.087* | |
C125 | −0.0226 (7) | 0.1861 (7) | 0.0535 (6) | 0.070 (3) | |
H125 | −0.0454 | 0.1390 | 0.0059 | 0.084* | |
C126 | 0.0649 (6) | 0.2647 (6) | 0.0509 (5) | 0.053 (2) | |
H126 | 0.0990 | 0.2707 | −0.0014 | 0.064* | |
N211 | 0.4007 (5) | 0.3514 (5) | 0.1403 (4) | 0.0487 (16) | |
C212 | 0.4419 (6) | 0.3379 (6) | 0.0608 (6) | 0.051 (2) | |
C213 | 0.5386 (7) | 0.2717 (7) | 0.0557 (6) | 0.071 (3) | |
H213 | 0.5665 | 0.2623 | 0.0012 | 0.085* | |
C214 | 0.5936 (8) | 0.2200 (7) | 0.1300 (8) | 0.092 (4) | |
H214 | 0.6582 | 0.1743 | 0.1264 | 0.111* | |
C215 | 0.5530 (9) | 0.2359 (7) | 0.2105 (7) | 0.085 (3) | |
H215 | 0.5904 | 0.2019 | 0.2621 | 0.101* | |
C216 | 0.4556 (7) | 0.3029 (7) | 0.2139 (6) | 0.072 (3) | |
H216 | 0.4281 | 0.3143 | 0.2683 | 0.087* | |
N221 | 0.2685 (5) | 0.4364 (5) | −0.0022 (3) | 0.0437 (14) | |
C222 | 0.3758 (6) | 0.3955 (5) | −0.0144 (5) | 0.0402 (18) | |
C223 | 0.4158 (6) | 0.4111 (6) | −0.0968 (5) | 0.052 (2) | |
H223 | 0.4903 | 0.3853 | −0.1058 | 0.062* | |
C224 | 0.3446 (8) | 0.4647 (7) | −0.1649 (5) | 0.067 (2) | |
H224 | 0.3713 | 0.4768 | −0.2195 | 0.080* | |
C225 | 0.2346 (8) | 0.4997 (6) | −0.1510 (5) | 0.067 (2) | |
H225 | 0.1842 | 0.5340 | −0.1968 | 0.081* | |
C226 | 0.1994 (6) | 0.4840 (6) | −0.0696 (5) | 0.058 (2) | |
H226 | 0.1240 | 0.5076 | −0.0608 | 0.069* | |
N3 | 0.2103 (7) | 0.6582 (7) | 0.1169 (4) | 0.063 (2) | |
O31 | 0.3019 (5) | 0.6029 (5) | 0.1307 (4) | 0.0780 (19) | |
O32 | 0.1127 (5) | 0.6081 (5) | 0.1012 (4) | 0.090 (2) | |
O33 | 0.2120 (6) | 0.7558 (5) | 0.1158 (5) | 0.124 (3) | |
N4 | 0.7290 (7) | 0.3951 (7) | 0.3817 (5) | 0.068 (2) | |
O41 | 0.7854 (5) | 0.4768 (5) | 0.3685 (4) | 0.0811 (19) | |
O42 | 0.6221 (5) | 0.4057 (5) | 0.3877 (4) | 0.091 (2) | |
O43 | 0.7756 (6) | 0.3078 (5) | 0.3912 (5) | 0.126 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0470 (5) | 0.0616 (6) | 0.0451 (5) | −0.0043 (6) | 0.0114 (4) | −0.0019 (6) |
N111 | 0.056 (4) | 0.070 (5) | 0.037 (4) | −0.006 (4) | 0.011 (3) | −0.006 (4) |
C112 | 0.043 (5) | 0.049 (5) | 0.050 (5) | 0.008 (4) | 0.015 (4) | −0.007 (4) |
C113 | 0.054 (5) | 0.073 (7) | 0.066 (6) | 0.008 (5) | 0.021 (5) | 0.009 (5) |
C114 | 0.082 (7) | 0.084 (7) | 0.057 (6) | 0.001 (6) | 0.017 (5) | −0.004 (5) |
C115 | 0.102 (8) | 0.103 (8) | 0.057 (7) | −0.034 (6) | 0.013 (5) | −0.024 (5) |
C116 | 0.085 (6) | 0.084 (7) | 0.060 (7) | −0.028 (5) | 0.011 (5) | −0.001 (6) |
N121 | 0.042 (4) | 0.051 (4) | 0.048 (4) | −0.002 (3) | 0.005 (3) | 0.003 (4) |
C122 | 0.040 (5) | 0.042 (5) | 0.061 (6) | 0.006 (4) | 0.006 (4) | 0.016 (5) |
C123 | 0.048 (5) | 0.061 (6) | 0.065 (6) | 0.000 (5) | 0.015 (5) | 0.018 (5) |
C124 | 0.064 (6) | 0.056 (6) | 0.093 (8) | −0.018 (5) | −0.005 (6) | 0.001 (6) |
C125 | 0.066 (6) | 0.066 (7) | 0.075 (7) | −0.010 (5) | −0.001 (5) | −0.010 (6) |
C126 | 0.048 (5) | 0.056 (6) | 0.056 (6) | −0.008 (5) | 0.006 (4) | −0.001 (5) |
N211 | 0.040 (4) | 0.051 (4) | 0.052 (4) | −0.004 (3) | −0.004 (4) | 0.000 (4) |
C212 | 0.038 (5) | 0.046 (5) | 0.067 (6) | −0.009 (4) | 0.003 (4) | −0.008 (5) |
C213 | 0.051 (6) | 0.073 (7) | 0.087 (7) | 0.020 (5) | 0.000 (5) | −0.017 (6) |
C214 | 0.054 (6) | 0.085 (8) | 0.129 (10) | 0.027 (5) | −0.020 (7) | −0.024 (8) |
C215 | 0.081 (8) | 0.067 (7) | 0.097 (9) | 0.007 (6) | −0.019 (6) | 0.017 (6) |
C216 | 0.067 (6) | 0.081 (7) | 0.063 (7) | 0.005 (5) | −0.013 (5) | −0.005 (5) |
N221 | 0.049 (4) | 0.050 (4) | 0.031 (4) | 0.006 (4) | 0.005 (3) | −0.005 (3) |
C222 | 0.052 (5) | 0.029 (4) | 0.041 (5) | 0.006 (4) | 0.009 (4) | −0.011 (4) |
C223 | 0.053 (5) | 0.051 (6) | 0.052 (5) | −0.006 (4) | 0.014 (4) | −0.016 (5) |
C224 | 0.085 (6) | 0.067 (7) | 0.053 (6) | −0.017 (5) | 0.025 (5) | −0.008 (5) |
C225 | 0.089 (7) | 0.064 (6) | 0.051 (6) | 0.011 (5) | 0.016 (5) | 0.005 (4) |
C226 | 0.065 (5) | 0.068 (6) | 0.042 (5) | 0.011 (4) | 0.011 (5) | 0.009 (5) |
N3 | 0.090 (7) | 0.061 (6) | 0.040 (4) | −0.004 (5) | 0.008 (5) | −0.003 (5) |
O31 | 0.067 (4) | 0.094 (5) | 0.077 (4) | 0.014 (4) | 0.024 (3) | 0.015 (4) |
O32 | 0.082 (4) | 0.097 (5) | 0.089 (5) | −0.014 (4) | 0.005 (4) | 0.000 (4) |
O33 | 0.166 (7) | 0.054 (4) | 0.143 (6) | −0.007 (5) | −0.013 (5) | −0.012 (5) |
N4 | 0.087 (7) | 0.063 (6) | 0.055 (5) | −0.006 (6) | 0.012 (5) | 0.007 (5) |
O41 | 0.081 (5) | 0.068 (4) | 0.097 (5) | 0.001 (3) | 0.021 (4) | 0.012 (4) |
O42 | 0.078 (4) | 0.096 (5) | 0.103 (5) | −0.013 (4) | 0.031 (4) | 0.000 (4) |
O43 | 0.132 (6) | 0.048 (4) | 0.198 (8) | 0.027 (4) | 0.026 (5) | 0.032 (5) |
Cu—N111 | 1.975 (5) | N211—C216 | 1.333 (8) |
Cu—N121 | 2.013 (6) | N211—C212 | 1.359 (8) |
Cu—N211 | 2.106 (6) | C212—C213 | 1.374 (9) |
Cu—N221 | 1.993 (5) | C212—C222 | 1.450 (9) |
Cu—O31 | 2.138 (6) | C213—C214 | 1.359 (11) |
Cu—O32 | 2.520 (6) | C213—H213 | 0.930 |
N111—C112 | 1.337 (7) | C214—C215 | 1.373 (11) |
N111—C116 | 1.342 (8) | C214—H214 | 0.930 |
C112—C113 | 1.383 (9) | C215—C216 | 1.382 (10) |
C112—C122 | 1.488 (9) | C215—H215 | 0.930 |
C113—C114 | 1.355 (9) | C216—H216 | 0.930 |
C113—H113 | 0.930 | N221—C226 | 1.326 (7) |
C114—C115 | 1.357 (9) | N221—C222 | 1.352 (7) |
C114—H114 | 0.930 | C222—C223 | 1.397 (9) |
C115—C116 | 1.378 (10) | C223—C224 | 1.378 (9) |
C115—H115 | 0.930 | C223—H223 | 0.930 |
C116—H116 | 0.930 | C224—C225 | 1.362 (9) |
N121—C126 | 1.322 (8) | C224—H224 | 0.930 |
N121—C122 | 1.354 (8) | C225—C226 | 1.359 (9) |
C122—C123 | 1.396 (9) | C225—H225 | 0.930 |
C123—C124 | 1.365 (9) | C226—H226 | 0.930 |
C123—H123 | 0.930 | N3—O33 | 1.198 (7) |
C124—C125 | 1.363 (10) | N3—O31 | 1.233 (7) |
C124—H124 | 0.930 | N3—O32 | 1.257 (7) |
C125—C126 | 1.388 (9) | N4—O43 | 1.194 (7) |
C125—H125 | 0.930 | N4—O41 | 1.220 (7) |
C126—H126 | 0.930 | N4—O42 | 1.235 (7) |
N111—Cu—N121 | 80.8 (3) | N121—C126—C125 | 124.5 (8) |
N111—Cu—N211 | 102.8 (3) | N121—C126—H126 | 117.8 |
N111—Cu—N221 | 176.2 (3) | C125—C126—H126 | 117.8 |
N121—Cu—N211 | 108.8 (2) | C216—N211—C212 | 120.1 (7) |
N221—Cu—N121 | 99.9 (2) | C216—N211—Cu | 127.9 (6) |
N221—Cu—N211 | 80.5 (2) | C212—N211—Cu | 111.7 (5) |
N111—Cu—O31 | 90.4 (2) | N211—C212—C213 | 120.0 (8) |
N121—Cu—O31 | 150.0 (2) | N211—C212—C222 | 115.2 (7) |
N211—Cu—O31 | 101.2 (2) | C213—C212—C222 | 124.8 (8) |
N221—Cu—O31 | 87.2 (2) | C214—C213—C212 | 120.3 (9) |
N111—Cu—O32 | 83.6 (2) | C214—C213—H213 | 119.9 |
N121—Cu—O32 | 96.7 (2) | C212—C213—H213 | 119.9 |
N211—Cu—O32 | 154.4 (2) | C213—C214—C215 | 119.5 (9) |
N221—Cu—O32 | 92.6 (2) | C213—C214—H214 | 120.3 |
O31—Cu—O32 | 53.57 (19) | C215—C214—H214 | 120.3 |
C112—N111—C116 | 118.9 (6) | C214—C215—C216 | 119.2 (9) |
C112—N111—Cu | 115.8 (5) | C214—C215—H215 | 120.4 |
C116—N111—Cu | 124.6 (6) | C216—C215—H215 | 120.4 |
N111—C112—C113 | 122.2 (7) | N211—C216—C215 | 121.0 (8) |
N111—C112—C122 | 114.2 (7) | N211—C216—H216 | 119.5 |
C113—C112—C122 | 123.6 (8) | C215—C216—H216 | 119.5 |
C114—C113—C112 | 117.7 (8) | C226—N221—C222 | 120.1 (6) |
C114—C113—H113 | 121.2 | C226—N221—Cu | 124.7 (5) |
C112—C113—H113 | 121.2 | C222—N221—Cu | 114.5 (4) |
C113—C114—C115 | 121.2 (8) | N221—C222—C223 | 118.9 (6) |
C113—C114—H114 | 119.4 | N221—C222—C212 | 116.6 (7) |
C115—C114—H114 | 119.4 | C223—C222—C212 | 124.4 (7) |
C114—C115—C116 | 118.7 (8) | C224—C223—C222 | 119.9 (7) |
C114—C115—H115 | 120.7 | C224—C223—H223 | 120.0 |
C116—C115—H115 | 120.7 | C222—C223—H223 | 120.0 |
N111—C116—C115 | 121.1 (8) | C225—C224—C223 | 119.1 (7) |
N111—C116—H116 | 119.4 | C225—C224—H224 | 120.4 |
C115—C116—H116 | 119.4 | C223—C224—H224 | 120.4 |
C126—N121—C122 | 117.8 (7) | C226—C225—C224 | 119.2 (8) |
C126—N121—Cu | 127.6 (5) | C226—C225—H225 | 120.4 |
C122—N121—Cu | 114.5 (5) | C224—C225—H225 | 120.4 |
N121—C122—C123 | 121.7 (7) | N221—C226—C225 | 122.6 (7) |
N121—C122—C112 | 113.7 (7) | N221—C226—H226 | 118.7 |
C123—C122—C112 | 124.5 (8) | C225—C226—H226 | 118.7 |
C124—C123—C122 | 117.5 (8) | O33—N3—O31 | 122.5 (8) |
C124—C123—H123 | 121.3 | O33—N3—O32 | 120.2 (9) |
C122—C123—H123 | 121.3 | O31—N3—O32 | 117.3 (8) |
C125—C124—C123 | 122.4 (9) | N3—O31—Cu | 104.1 (5) |
C125—C124—H124 | 118.8 | N3—O32—Cu | 85.0 (5) |
C123—C124—H124 | 118.8 | O43—N4—O41 | 121.7 (8) |
C124—C125—C126 | 116.0 (8) | O43—N4—O42 | 120.4 (9) |
C124—C125—H125 | 122.0 | O41—N4—O42 | 117.9 (8) |
C126—C125—H125 | 122.0 | ||
N121—Cu—N111—C112 | −9.4 (5) | N121—Cu—N211—C212 | 97.2 (5) |
N211—Cu—N111—C112 | −116.7 (5) | O31—Cu—N211—C212 | −85.3 (5) |
O31—Cu—N111—C112 | 141.7 (5) | O32—Cu—N211—C212 | −76.2 (7) |
O32—Cu—N111—C112 | 88.5 (5) | C216—N211—C212—C213 | 1.7 (11) |
N121—Cu—N111—C116 | −179.7 (6) | Cu—N211—C212—C213 | −172.0 (5) |
N211—Cu—N111—C116 | 73.0 (6) | C216—N211—C212—C222 | −179.4 (6) |
O31—Cu—N111—C116 | −28.5 (6) | Cu—N211—C212—C222 | 6.9 (7) |
O32—Cu—N111—C116 | −81.8 (6) | N211—C212—C213—C214 | −0.3 (12) |
C116—N111—C112—C113 | 1.2 (11) | C222—C212—C213—C214 | −179.1 (7) |
Cu—N111—C112—C113 | −169.7 (6) | C212—C213—C214—C215 | −1.1 (14) |
C116—N111—C112—C122 | −177.3 (6) | C213—C214—C215—C216 | 1.0 (15) |
Cu—N111—C112—C122 | 11.9 (8) | C212—N211—C216—C215 | −1.8 (11) |
N111—C112—C113—C114 | −2.1 (12) | Cu—N211—C216—C215 | 170.8 (6) |
C122—C112—C113—C114 | 176.2 (6) | C214—C215—C216—N211 | 0.4 (13) |
C112—C113—C114—C115 | −0.5 (12) | N121—Cu—N221—C226 | 74.6 (6) |
C113—C114—C115—C116 | 3.9 (14) | N211—Cu—N221—C226 | −177.8 (6) |
C112—N111—C116—C115 | 2.5 (12) | O31—Cu—N221—C226 | −76.0 (6) |
Cu—N111—C116—C115 | 172.4 (7) | O32—Cu—N221—C226 | −22.7 (6) |
C114—C115—C116—N111 | −5.0 (14) | N121—Cu—N221—C222 | −114.7 (5) |
N111—Cu—N121—C126 | −171.7 (6) | N211—Cu—N221—C222 | −7.1 (5) |
N221—Cu—N121—C126 | 12.1 (6) | O31—Cu—N221—C222 | 94.7 (5) |
N211—Cu—N121—C126 | −71.1 (6) | O32—Cu—N221—C222 | 148.0 (5) |
O31—Cu—N121—C126 | 113.9 (7) | C226—N221—C222—C223 | 4.5 (10) |
O32—Cu—N121—C126 | 106.0 (6) | Cu—N221—C222—C223 | −166.7 (5) |
N111—Cu—N121—C122 | 5.0 (5) | C226—N221—C222—C212 | −175.7 (6) |
N221—Cu—N121—C122 | −171.2 (5) | Cu—N221—C222—C212 | 13.1 (8) |
N211—Cu—N121—C122 | 105.5 (5) | N211—C212—C222—N221 | −13.4 (9) |
O31—Cu—N121—C122 | −69.5 (7) | C213—C212—C222—N221 | 165.5 (7) |
O32—Cu—N121—C122 | −77.4 (5) | N211—C212—C222—C223 | 166.4 (6) |
C126—N121—C122—C123 | 0.7 (10) | C213—C212—C222—C223 | −14.7 (11) |
Cu—N121—C122—C123 | −176.2 (5) | N221—C222—C223—C224 | −1.9 (10) |
C126—N121—C122—C112 | 176.8 (6) | C212—C222—C223—C224 | 178.3 (6) |
Cu—N121—C122—C112 | −0.2 (7) | C222—C223—C224—C225 | −1.4 (11) |
N111—C112—C122—N121 | −7.5 (9) | C223—C224—C225—C226 | 2.1 (12) |
C113—C112—C122—N121 | 174.0 (7) | C222—N221—C226—C225 | −3.9 (11) |
N111—C112—C122—C123 | 168.4 (7) | Cu—N221—C226—C225 | 166.3 (6) |
C113—C112—C122—C123 | −10.1 (11) | C224—C225—C226—N221 | 0.5 (12) |
N121—C122—C123—C124 | 1.3 (10) | O33—N3—O31—Cu | 179.6 (7) |
C112—C122—C123—C124 | −174.3 (7) | O32—N3—O31—Cu | −2.2 (8) |
C122—C123—C124—C125 | −1.7 (12) | N111—Cu—O31—N3 | −80.5 (5) |
C123—C124—C125—C126 | 0.1 (12) | N221—Cu—O31—N3 | 96.5 (5) |
C122—N121—C126—C125 | −2.5 (10) | N121—Cu—O31—N3 | −8.5 (8) |
Cu—N121—C126—C125 | 174.0 (5) | N211—Cu—O31—N3 | 176.3 (5) |
C124—C125—C126—N121 | 2.1 (12) | O32—Cu—O31—N3 | 1.2 (4) |
N111—Cu—N211—C216 | 8.6 (7) | O33—N3—O32—Cu | −180.0 (8) |
N221—Cu—N211—C216 | −173.3 (6) | O31—N3—O32—Cu | 1.8 (7) |
N121—Cu—N211—C216 | −75.9 (6) | N111—Cu—O32—N3 | 94.1 (5) |
O31—Cu—N211—C216 | 101.5 (6) | N221—Cu—O32—N3 | −85.7 (5) |
O32—Cu—N211—C216 | 110.7 (7) | N121—Cu—O32—N3 | 174.0 (5) |
N111—Cu—N211—C212 | −178.3 (5) | N211—Cu—O32—N3 | −12.3 (8) |
N221—Cu—N211—C212 | −0.1 (5) | O31—Cu—O32—N3 | −1.1 (4) |
(II) | (III) | (IV) | (I) | (V) | (VI) | (VII) | (VIII) | ||
Molecule 1/2 | |||||||||
Cu—N | 1.980 (11) | 1.980 (3) | 1.990 (5) | 1.975 (5) | 1.984 (5) | 1.986 (5) | 1.974 (3)/1.969 (3) | 1.980 (4) | |
Cu—NO | 2.065 (10) | 2.074 (4) | 2.052 (5) | 2.013 (6) | 2.022 (5) | 2.023 (5) | 2.021 (3)/2.036 (3) | 2.032 (3) | |
Cu—N* | 2.006 (10) | 1.988 (3) | 2.004 (5) | 1.993 (5) | 1.982 (5) | 1.973 (5) | 1.978 (3)/1.981 (3) | 2.008 (4) | |
Cu—NO* | 2.100 (9) | 2.085 (4) | 2.142 (5) | 2.106 (6) | 2.045 (5) | 2.051 (5) | 2.109 (3)/2.097 (3) | 2.185 (3) | |
Cu—O | 2.238 (10) | 2.230 (5) | 2.117 (6) | 2.138 (6) | 2.299 (7) | 2.301 (5) | 2.116a/2.184 (3) | 2.078 (3) | |
Cu—O* | 2.329 (10) | 2.320 (5) | 2.462 (6) | 2.520 (6) | 2.818 (7) | 2.832 (5) | 2.822 (4)/2.717 (3) | 2.639 (4) | |
O—Cu—NO | 157.8 (4) | 157.7 (2) | 164.1 (1) | 150.0 (2) | 127.8 (3) | 127.5 (2) | 143.77 (13)/135.28 (12) | 161.5 (1) | |
O*—Cu—NO* | 151.1 (4) | 151.3 (2) | 149.2 (1) | 154.4 (2) | 139.5 (4) | 139.2 (1) | 138.11 (12)/144.49 (11) | 141.8a,b | |
N—Cu—N* | 179.6 (4) | 179.7 (2) | 178.6 (1) | 176.2 (3) | 170.9 (3) | 170.7 (1) | 177.05 (14)/177.46 (13) | 176.7 (1) | |
O—Cu—O* | 52.5 (4) | 52.8 (2) | 52.7 (2) | 53.6 (2) | 47.7 (4) | 47.7 (1) | 48.25 (11)/50.66 (10) | 53.0a,b | |
O—Cu—NO* | 99.2 (4) | 99.3 (2) | 97.3 (2) | 101.2 (2) | 92.1 (3) | 91.8 (2) | 90.64 (12)/94.69 (11) | 90.8 (1) | |
O*—Cu—NO | 105.6 (4) | 105.4 (1) | 111.9 (2) | 96.7 (2) | 80.3 (4) | 80.0 (1) | 96.10 (12)/85.13 (11) | 109.5a,b | |
NO-Cu-NO* | 103.0 (4) | 102.8 (1) | 98.5 (2) | 108.8 (2) | 140.2 (3) | 140.7 (1) | 125.52 (13)/130.01 (13) | 107.5 (1) | |
O-Cu-N | 93.5 (4) | 93.7 (2) | 94.1 (2) | 90.4 (2) | 86.7 (3) | 86.3 (2) | 88.86 (13)/89.74 (12) | 92.5 (1) | |
O-Cu-N* | 86.8 (4) | 86.5 (2) | 87.2 (2) | 87.2 (2) | 85.5 (3) | 85.5 (2) | 89.88 (13)/88.00 (12) | 88.1 (1) | |
O*-Cu-N | 89.1 (4) | 89.3 (1) | 89.5 (2) | 83.6 (2) | 81.8 (4) | 81.6 (1)b | 86.56 (13)/88.14 (12) | 90.6a,b | |
O*-Cu-N* | 91.2 (4) | 90.7 (2) | 90.9 (2) | 92.6 (2) | 89.5 (4) | 89.6 (1)b | 90.62 (14)/89.53 (12) | 87.3a,b | |
N-Cu-NO | 81.1 (4) | 80.0 (2) | 80.8 (2) | 80.8 (3) | 81.1 (3) | 81.5 (2) | 81.60 (14)/81.40 (13) | 81.1 (1) | |
N-Cu-NO* | 99.4 (4) | 100.6 (1) | 101.0 (2) | 102.8 (3) | 103.6 (3) | 103.7 (2) | 102.55 (13)/100.72 (13) | 104.2 (1) | |
N*-Cu-NO | 98.7 (4) | 99.8 (2) | 97.8 (2) | 99.9 (2) | 100.0 (3) | 100.0 (2) | 97.88 (14)/99.40 (13) | 97.4 (1) | |
N*-Cu-NO* | 80.3 (4) | 79.6 (2) | 79.4 (2) | 80.5 (2) | 81.4 (3) | 81.0 (2) | 80.13 (13)/80.63 (13) | 79.0 (1) |
Notes: (a) s.u. values not reported; (b) value was not reported and was calculated using GEOM (Owen, 1981); NO denotes N trans to an O atom; * denotes the loosely coordinated axial O atom, the axial N atom trans to it and the second (equatorial) N atom within the same bipyridine ligand. |
Acknowledgements
KM thanks FOCTTU, Tehran, for financial support.
References
Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171. CSD CrossRef CAS Web of Science Google Scholar
Davies, S. C., Durrant, M. C., Hughes, D. L., Leidenberger, K., Stapper, C. & Richards, R. L. (1997). J. Chem. Soc. Dalton Trans. pp. 2409–2418. CSD CrossRef Web of Science Google Scholar
Enraf–Nonius (1992). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fereday, R. J., Hodgson, P., Tyagi, S. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 2070–2077. CSD CrossRef Web of Science Google Scholar
Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49–67. CrossRef CAS Google Scholar
Hursthouse, M. B. (1976). CAD-4 processing program. Queen Mary College, London. Google Scholar
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Nakai, H. (1980). Bull. Chem. Soc. Jpn, 53, 1321–1326. CrossRef CAS Web of Science Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83. CrossRef Web of Science Google Scholar
Owen, J. D. (1981). GEOM. Rothamsted Experimental Station, Harpenden, Herts, England. Google Scholar
Prasad, B. L. V., Sato, H., Enoki, T., Cohen, S. & Radhakrishnan, T. P. (1999). J. Chem. Soc. Dalton Trans. pp. 25–29. Web of Science CSD CrossRef Google Scholar
Proctor, I. M. & Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1248–1256. Google Scholar
Sheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford, Abstracts, p. 147. Google Scholar
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Simmons, C. J., Clearfield, A., Fitzgerald, W., Tyagi, S. & Hathaway, B. (1983). J. Chem. Soc. Chem. Commun. pp. 189–190. CrossRef Web of Science Google Scholar
Simmons, C. J., Hathaway, B. J., Amornjarusiri, K., Santarsiero, B. D. & Clearfield, A. (1987). J. Am. Chem. Soc. 109, 1947–1958. CSD CrossRef CAS Web of Science Google Scholar
Walsh, A., Walsh, B., Murphy, B. & Hathaway, B. J. (1981). Acta Cryst. B37, 1512–1520. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.