metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine)­nitratocopper(II) nitrate

aFaculty of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, bDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, England, and cComputational Biology Group, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, England
*Correspondence e-mail: sianc.davies@bbsrc.ac.uk

(Received 16 August 2004; accepted 22 November 2004; online 4 December 2004)

The title complex, [Cu(C10H8N2)2(NO3)]NO3, is the first reported unsolvated [Cu(bipy)2(NO3)]NO3 structure (bipy is 2,2′-bi­pyridine). The CuII atom of the [Cu(bipy)2(NO3)]+ complex is six-coordinated, forming a distorted octahedral geometry; bond lengths to the N atoms of the pyridine rings and one of the O atoms of the chelating NO3 ligand lie in the range 1.975 (5)–2.139 (6) Å, with the second O atom from the NO3 ligand less tightly coordinated at a distance of 2.520 (6) Å. The geometry of the CuN2N′2OO′ chromophore more closely resembles that of [Cu(bipy)2(NO2)]+ complexes than previously reported [Cu(bipy)2(NO3)]+ structures.

Comment

The Cu atom of the title complex, (I[link]), is distorted octahedrally coordinated and is ligated by the four bipyridine N atoms and a chelating NO3 group, for which one of the O-atom donors lies further from the Cu atom due to Jahn–Teller distortions (Fig. 1[link]). [link]

[Scheme 1]

The Cu atom has a (4 + 1′ + 1*) stereochemistry (Hathaway, 1973[Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49-67.]) with pseudo-C2 symmetry bisecting the NO3 ligand and passing between the bi­pyridine ligands. The atoms of the vectors N111⋯N221 and N121⋯O31 lie 3.965 (7) and 4.009 (8) Å apart, respectively, and are designated as forming the equatorial plane, with elongation of the N211⋯O32 distance to 4.512 (8) Å (designated as the axial atoms). The corres­ponding X—Cu—Y angles are also distorted from the ideal octahedral value of 180°, with N111—Cu—N221 = 176.2 (3)°, N121—Cu—O31 = 150.0 (2)° and N211—Cu—O32 = 154.4 (2)°. The distortions in the coordination geometry agree with observations reported (Walsh et al., 1981[Walsh, A., Walsh, B., Murphy, B. & Hathaway, B. J. (1981). Acta Cryst. B37, 1512-1520.]) for pseudo-Jahn–Teller structures, i.e. as one Cu—O bond lengthens, the other shortens, the Cu—N bond trans to each O atom lengthens or shortens, respectively, while the second Cu—N bond within the same bi­pyridine ligand also lengthens or shortens correspondingly but by a smaller amount.

The Cu—N bond lengths to the N atoms in the equatorial plane lie in the range 1.975 (5)–2.013 (6) Å, with the elongated axial Cu—N211 bond length being 2.106 (6) Å (see Table 1[link]); the equatorial Cu—O31 bond length is not unusual, being 2.138 (6) Å (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]). The axial NO3 atom O32 lies 2.520 (6) Å from the Cu atom and constitutes the major distortion from regular octahedral coordination. There are no unusual bond dimensions within either the bi­pyridine ligands or the chelating NO3 ligand, where N—O bond lengths lie within the range 1.198 (7)–1.257 (7) Å. Within the nitrate anion, bond lengths lie in the range 1.194 (7)–1.235 (7) Å, as usual for this group.

The coordination geometry about the Cu atom in (I[link]) is intermediate between reported (Chemical Database Service, Council for the Central Laboratory of the Research Councils, Daresbury Laboratory) [Cu(bipy)2(NO2)]+ structures, e.g. [Cu(bipy)2(NO2)]NO3 [(II) (Proctor & Stephens, 1969[Proctor, I. M. & Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1248-1256.]) and (III) (Simmons et al., 1983[Simmons, C. J., Clearfield, A., Fitzgerald, W., Tyagi, S. & Hathaway, B. (1983). J. Chem. Soc. Chem. Commun. pp. 189-190.], 1987[Simmons, C. J., Hathaway, B. J., Amornjarusiri, K., Santarsiero, B. D. & Clearfield, A. (1987). J. Am. Chem. Soc. 109, 1947-1958.])], [Cu(bipy)2(NO2)]BF4 [(IV); Walsh et al., 1981[Walsh, A., Walsh, B., Murphy, B. & Hathaway, B. J. (1981). Acta Cryst. B37, 1512-1520.]], and the four reported [Cu(bipy)2(NO3)]NO3 structures [Cu(bipy)2(NO3)]NO3·H2O [(V) (Nakai, 1980[Nakai, H. (1980). Bull. Chem. Soc. Jpn, 53, 1321-1326.]), (VI) (Fereday et al., 1981[Fereday, R. J., Hodgson, P., Tyagi, S. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 2070-2077.]), (VII) (Catalan et al., 1995[Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165-2171.])] and [Cu(bipy)2(NO3)]NO3·HDCI·H2O [(VIII); Prasad et al., 1999[Prasad, B. L. V., Sato, H., Enoki, T., Cohen, S. & Radhakrishnan, T. P. (1999). J. Chem. Soc. Dalton Trans. pp. 25-29.]; HDCI is 4,5-di­cyano­imidazole] (see Table 2[link]). Coordination by the second O atom in (I[link]) at 2.520 (6) Å is tighter than in the reported solvated [Cu(bipy)2(NO3)]+ complexes, but is looser than in the [Cu(bipy)2(NO2)]+ complexes at room temperature. However, angles about the Cu atom in (I[link]) more closely resemble those in the NO2-ligated structures than the NO3-ligated structures, leading to a geometry closer to those in the unsolvated structures.

The crystal packing of the complex in (I[link]) is also similar to that found in the three NO2-ligated structures, with the cations forming corrugated planes seen edge-on when viewed along the crystallographic c axis (Fig. 2[link]). The anions in (I[link]) lie at the apices of the ridges in the cationic `planes' and form corres­pondingly corrugated intercationic planes; the anions overlap the ligated NO3 groups to form chains parallel to the crystallographic c axis. This arrangement is as found in the crystal packing of (II), (III) and (IV), where the [BF4] anion in (IV) occupies the same relative position as that of the [NO3] anions in (II) and (III). The inclusion of solvent water in the four previously reported [Cu(bipy)2(NO3)]+ structures introduces hydrogen bonding between the anion and solvent mol­ecules and the packing arrangements in these crystal structures differ from those of the NO2-ligated complexes. Structures (V), (VI) and (VIII) consist of alternating flat cationic and anionic planes. The ligated NO3 groups in (V) and (VI) lie within the anionic planes, with the water mol­ecules lying within the cationic planes. In (VIII), the HDCI and water mol­ecules all lie within the anionic planes. The packing arrangement in (VII) is different in that the cations form a three-dimensional framework, with the anions and water mol­ecules lying in planes within this framework.

These results indicate the sensitivity of the Cu coordination geometry in [Cu(bipy)2(NO3)]+ structures to factors such as the identity of the anion and the presence of solvent in the crystal structure. The above examples of [Cu(bipy)(NO2)]+ coordination complexes crystallize in space group No. 14, P21/n, with similar unit cells and crystal packing. Hydro­gen bonding in the solvated [Cu(bipy)2(NO3)]+ structures, however, leads to different molecular arrangements; most crystallize in space group P[\overline 1], with different unit cells but similar packing arrangements.

Complex (I[link]) is the first reported unsolvated [Cu(bipy)2(NO3)]NO3 structure and, although the coordination geometry may be considered to be similar to that in the structure [Cu(bipy)2(NO3)]NO3·HDCI·H2O (Prasad et al., 1999[Prasad, B. L. V., Sato, H., Enoki, T., Cohen, S. & Radhakrishnan, T. P. (1999). J. Chem. Soc. Dalton Trans. pp. 25-29.]), it more closely resembles the [Cu(bipy)2(NO2)]+ structures, both in coordination geometry about the Cu atom and in having a similar packing arrangement in the same space group, viz. P21/n.

[Figure 1]
Figure 1
A view of the cation of (I[link]). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Packing diagram of (I[link]), viewed along the crystallographic c axis. Atoms are represented by arbitrary spheres. H atoms have been omitted.

Experimental

The preparation of the title compound was carried out under a di­nitro­gen atmosphere. To a stirred solution of [Cu(NO3)(SC5H4NH)2] (0.26 g, 0.74 mmol), prepared according to the literature procedure of Davies et al. (1997[Davies, S. C., Durrant, M. C., Hughes, D. L., Leidenberger, K., Stapper, C. & Richards, R. L. (1997). J. Chem. Soc. Dalton Trans. pp. 2409-2418.]), in MeOH (25 ml) was added bi­pyridine (bipy; 0.13 g, 1.20 mmol). The mixture was stirred for 20 h and then boiled under reflux for 1 h, giving a green solution. This was allowed to cool and was then filtered. The filtrate was concentrated to ca 4 ml in vacuo, giving a blue solid. This was filtered off, washed with diethyl ether and dried in vacuo as [Cu(bipy)2(NO3)]NO3 (yield 0.21 g, 80%). IR: 1600 (sh), 1580 (m), 1470 (m), 1320 (m), 1110 (m), 830 (w), 770 (s), 730 (m), 630 (w), 415 (w), 290 (w) cm−1. Recrystallization of (I[link]) by slow diffusion of diethyl ether into a methanol solution gave turquoise-coloured crystals.

Crystal data
  • [Cu(C10H8N2)2(NO3)]NO3

  • Mr = 499.93

  • Monoclinic, P21/n

  • a = 11.3309 (13) Å

  • b = 12.2714 (14) Å

  • c = 15.0877 (15) Å

  • β = 98.281 (8)°

  • V = 2076.0 (4) Å3

  • Z = 4

  • Dx = 1.600 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 24 reflections

  • θ = 10–11°

  • μ = 1.11 mm−1

  • T = 293 (2) K

  • Prism, blue–green Or turquoise?

  • 0.29 × 0.21 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/θ scans

  • Absorption correction: ψ scan (EMPABS; Sheldrick et al., 1977[Sheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford, Abstracts, p. 147.]) Tmin = 0.751, Tmax = 0.820

  • 3287 measured reflections

  • 2546 independent reflections

  • 1128 reflections with I> 2σ(I)

  • Rint = 0.028

  • θmax = 23.0°

  • h = −11 → 11

  • k = −1 → 12

  • l = −1 → 15

  • 3 standard reflections frequency: 167 min intensity decay: 2.0%

Refinement
  • Refinement on F2

  • R[F2> 2σ(F2)] = 0.049

  • wR(F2) = 0.092

  • S = 0.97

  • 2546 reflections

  • 298 parameters

  • H-atom parameters constrained

  • w = σ−2(Fo2)

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu—N111 1.975 (5)
Cu—N121 2.013 (6)
Cu—N211 2.106 (6)
Cu—N221 1.993 (5)
Cu—O31 2.138 (6)
Cu—O32 2.520 (6)
N111—Cu—N121 80.8 (3)
N111—Cu—N211 102.8 (3)
N111—Cu—N221 176.2 (3)
N121—Cu—N211 108.8 (2)
N221—Cu—N121 99.9 (2)
N221—Cu—N211 80.5 (2)
N111—Cu—O31 90.4 (2)
N121—Cu—O31 150.0 (2)
N211—Cu—O31 101.2 (2)
N221—Cu—O31 87.2 (2)
N111—Cu—O32 83.6 (2)
N121—Cu—O32 96.7 (2)
N211—Cu—O32 154.4 (2)
N221—Cu—O32 92.6 (2)
O31—Cu—O32 53.57 (19)

Table 2
Comparison of bond dimensions (Å,°) for (I[link]) and related structures

  (II) (III) (IV) (I) (V) (VI) (VII) Molecule 1/2 (VIII)
Cu—N 1.980 (11) 1.980 (3) 1.990 (5) 1.975 (5) 1.984 (5) 1.986 (5) 1.974 (3)/1.969 (3) 1.980 (4)
Cu—NO 2.065 (10) 2.074 (4) 2.052 (5) 2.013 (6) 2.022 (5) 2.023 (5) 2.021 (3)/2.036 (3) 2.032 (3)
Cu—N* 2.006 (10) 1.988 (3) 2.004 (5) 1.993 (5) 1.982 (5) 1.973 (5) 1.978 (3)/1.981 (3) 2.008 (4)
Cu—NO* 2.100 (9) 2.085 (4) 2.142 (5) 2.106 (6) 2.045 (5) 2.051 (5) 2.109 (3)/2.097 (3) 2.185 (3)
Cu—O 2.238 (10) 2.230 (5) 2.117 (6) 2.138 (6) 2.299 (7) 2.301 (5) 2.116a/2.184 (3) 2.078 (3)
Cu—O* 2.329 (10) 2.320 (5) 2.462 (6) 2.520 (6) 2.818 (7) 2.832 (5) 2.822 (4)/2.717 (3) 2.639 (4)
                 
O—Cu—NO 157.8 (4) 157.7 (2) 164.1 (1) 150.0 (2) 127.8 (3) 127.5 (2) 143.77 (13)/135.28 (12) 161.5 (1)
O*—Cu—NO* 151.1 (4) 151.3 (2) 149.2 (1) 154.4 (2) 139.5 (4) 139.2 (1) 138.11 (12)/144.49 (11) 141.8a,b
N—Cu—N* 179.6 (4) 179.7 (2) 178.6 (1) 176.2 (3) 170.9 (3) 170.7 (1) 177.05 (14)/177.46 (13) 176.7 (1)
O—Cu—O*  52.5 (4)  52.8 (2)  52.7 (2)  53.6 (2)  47.7 (4)  47.7 (1)  48.25 (11)/50.66 (10)  53.0a,b
O—Cu—NO*  99.2 (4)  99.3 (2)  97.3 (2) 101.2 (2)  92.1 (3)  91.8 (2)  90.64 (12)/94.69 (11)  90.8 (1)
O*—Cu—NO 105.6 (4) 105.4 (1) 111.9 (2)  96.7 (2)  80.3 (4)  80.0 (1)  96.10 (12)/85.13 (11) 109.5a,b
NO—Cu—NO* 103.0 (4) 102.8 (1)  98.5 (2) 108.8 (2) 140.2 (3) 140.7 (1) 125.52 (13)/130.01 (13) 107.5 (1)
O—Cu—N  93.5 (4)  93.7 (2)  94.1 (2)  90.4 (2)  86.7 (3)  86.3 (2)  88.86 (13)/89.74 (12)  92.5 (1)
O—Cu—N*  86.8 (4)  86.5 (2)  87.2 (2)  87.2 (2)  85.5 (3)  85.5 (2)  89.88 (13)/88.00 (12)  88.1 (1)
O*—Cu—N  89.1 (4)  89.3 (1)  89.5 (2)  83.6 (2)  81.8 (4)  81.6(1)b  86.56 (13)/88.14 (12)  90.6a,b
O*—Cu—N*  91.2 (4)  90.7 (2)  90.9 (2)  92.6 (2)  89.5 (4)  89.6(1)b  90.62 (14)/89.53 (12)  87.3a,b
N—Cu—NO  81.1 (4)  80.0 (2)  80.8 (2)  80.8 (3)  81.1 (3)  81.5 (2)  81.60 (14)/81.40 (13)  81.1 (1)
N—Cu—NO*  99.4 (4) 100.6 (1) 101.0 (2) 102.8 (3) 103.6 (3) 103.7 (2) 102.55 (13)/100.72 (13) 104.2 (1)
N*—Cu—NO  98.7 (4)  99.8 (2)  97.8 (2)  99.9 (2) 100.0 (3) 100.0 (2)  97.88 (14)/99.40 (13)  97.4 (1)
N*—Cu—NO*  80.3 (4)  79.6 (2)  79.4 (2)  80.5 (2)  81.4 (3)  81.0 (2)  80.13 (13)/80.63 (13)  79.0 (1)
Notes: (a) s.u. values not reported; (b) value was not reported and was calculated using GEOM (Owen, 1981[Owen, J. D. (1981). GEOM. Rothamsted Experimental Station, Harpenden, Herts, England.]); NO denotes N trans to an O atom; * denotes the loosely coordinated axial O atom, the axial N atom trans to it and the second (equatorial) N atom within the same bipyridine ligand.

H atoms were geometrically constrained to ride on the parent atoms (C—H = 0.93 Å), with Uiso(H) = 1.2Ueq(parent atom).

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 processing program (Hursthouse, 1976[Hursthouse, M. B. (1976). CAD-4 processing program. Queen Mary College, London.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985[Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP (Johnson, 1971[Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 processing program (Hursthouse, 1976); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1971) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Bis(2,2'-bipyridine)nitratocopper(II) nitrate top
Crystal data top
[Cu(C10H8N2)2(NO3)]NO3F(000) = 1020
Mr = 499.93Dx = 1.600 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 24 reflections
a = 11.3309 (13) Åθ = 10–11°
b = 12.2714 (14) ŵ = 1.11 mm1
c = 15.0877 (15) ÅT = 293 K
β = 98.281 (8)°Prism, blue green
V = 2076.0 (4) Å30.29 × 0.21 × 0.18 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
1128 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 23.0°, θmin = 1.5°
scintillation counter; ω/θ scansh = 1111
Absorption correction: ψ scan
(EMPABS; Sheldrick et al., 1977)
k = 112
Tmin = 0.751, Tmax = 0.820l = 115
3287 measured reflections3 standard reflections every 167 min
2546 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.97 w = σ-2(Fo2)
2546 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

3287 reflections were collected to θmax of 23° (hmax, kmax, lmax of 12, 13, 16), with 2887 unique reflections and 1172 observed. Those greater than 22°, however, were found to be too unreliable and were not used in the final refinement, leaving 2546 unique reflections and 1128 observed. H atoms were geometrically constrained to ride on the parent atoms, with isotropic displacement parameters set to be 1.2Ueq of the parent atom. Data were corrected for Lorentz-polarization effects, decay of the intensities (Hursthouse, 1976), absorption (Sheldrick et al., 1977) and negative intensities (French et al., 1978) before structure solution and refinement.

French, S. & Wilson, K. (1978). Acta Cryst. A34, 517–525.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.23885 (8)0.43850 (8)0.12480 (6)0.0508 (3)
N1110.2036 (5)0.4497 (5)0.2489 (4)0.0543 (16)
C1120.1041 (6)0.3999 (6)0.2653 (5)0.046 (2)
C1130.0581 (6)0.4147 (7)0.3445 (5)0.063 (2)
H1130.01270.38140.35410.076*
C1140.1197 (8)0.4796 (7)0.4076 (6)0.074 (3)
H1140.09040.49140.46130.089*
C1150.2234 (8)0.5277 (7)0.3939 (6)0.087 (3)
H1150.26760.56850.43900.104*
C1160.2619 (7)0.5149 (7)0.3120 (6)0.076 (3)
H1160.32950.55210.30020.091*
N1210.1031 (5)0.3316 (5)0.1175 (4)0.0471 (17)
C1220.0503 (6)0.3258 (6)0.1924 (5)0.048 (2)
C1230.0407 (6)0.2512 (6)0.2003 (6)0.057 (2)
H1230.07760.24860.25140.069*
C1240.0733 (7)0.1822 (7)0.1301 (7)0.073 (3)
H1240.13220.13060.13470.087*
C1250.0226 (7)0.1861 (7)0.0535 (6)0.070 (3)
H1250.04540.13900.00590.084*
C1260.0649 (6)0.2647 (6)0.0509 (5)0.053 (2)
H1260.09900.27070.00140.064*
N2110.4007 (5)0.3514 (5)0.1403 (4)0.0487 (16)
C2120.4419 (6)0.3379 (6)0.0608 (6)0.051 (2)
C2130.5386 (7)0.2717 (7)0.0557 (6)0.071 (3)
H2130.56650.26230.00120.085*
C2140.5936 (8)0.2200 (7)0.1300 (8)0.092 (4)
H2140.65820.17430.12640.111*
C2150.5530 (9)0.2359 (7)0.2105 (7)0.085 (3)
H2150.59040.20190.26210.101*
C2160.4556 (7)0.3029 (7)0.2139 (6)0.072 (3)
H2160.42810.31430.26830.087*
N2210.2685 (5)0.4364 (5)0.0022 (3)0.0437 (14)
C2220.3758 (6)0.3955 (5)0.0144 (5)0.0402 (18)
C2230.4158 (6)0.4111 (6)0.0968 (5)0.052 (2)
H2230.49030.38530.10580.062*
C2240.3446 (8)0.4647 (7)0.1649 (5)0.067 (2)
H2240.37130.47680.21950.080*
C2250.2346 (8)0.4997 (6)0.1510 (5)0.067 (2)
H2250.18420.53400.19680.081*
C2260.1994 (6)0.4840 (6)0.0696 (5)0.058 (2)
H2260.12400.50760.06080.069*
N30.2103 (7)0.6582 (7)0.1169 (4)0.063 (2)
O310.3019 (5)0.6029 (5)0.1307 (4)0.0780 (19)
O320.1127 (5)0.6081 (5)0.1012 (4)0.090 (2)
O330.2120 (6)0.7558 (5)0.1158 (5)0.124 (3)
N40.7290 (7)0.3951 (7)0.3817 (5)0.068 (2)
O410.7854 (5)0.4768 (5)0.3685 (4)0.0811 (19)
O420.6221 (5)0.4057 (5)0.3877 (4)0.091 (2)
O430.7756 (6)0.3078 (5)0.3912 (5)0.126 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0470 (5)0.0616 (6)0.0451 (5)0.0043 (6)0.0114 (4)0.0019 (6)
N1110.056 (4)0.070 (5)0.037 (4)0.006 (4)0.011 (3)0.006 (4)
C1120.043 (5)0.049 (5)0.050 (5)0.008 (4)0.015 (4)0.007 (4)
C1130.054 (5)0.073 (7)0.066 (6)0.008 (5)0.021 (5)0.009 (5)
C1140.082 (7)0.084 (7)0.057 (6)0.001 (6)0.017 (5)0.004 (5)
C1150.102 (8)0.103 (8)0.057 (7)0.034 (6)0.013 (5)0.024 (5)
C1160.085 (6)0.084 (7)0.060 (7)0.028 (5)0.011 (5)0.001 (6)
N1210.042 (4)0.051 (4)0.048 (4)0.002 (3)0.005 (3)0.003 (4)
C1220.040 (5)0.042 (5)0.061 (6)0.006 (4)0.006 (4)0.016 (5)
C1230.048 (5)0.061 (6)0.065 (6)0.000 (5)0.015 (5)0.018 (5)
C1240.064 (6)0.056 (6)0.093 (8)0.018 (5)0.005 (6)0.001 (6)
C1250.066 (6)0.066 (7)0.075 (7)0.010 (5)0.001 (5)0.010 (6)
C1260.048 (5)0.056 (6)0.056 (6)0.008 (5)0.006 (4)0.001 (5)
N2110.040 (4)0.051 (4)0.052 (4)0.004 (3)0.004 (4)0.000 (4)
C2120.038 (5)0.046 (5)0.067 (6)0.009 (4)0.003 (4)0.008 (5)
C2130.051 (6)0.073 (7)0.087 (7)0.020 (5)0.000 (5)0.017 (6)
C2140.054 (6)0.085 (8)0.129 (10)0.027 (5)0.020 (7)0.024 (8)
C2150.081 (8)0.067 (7)0.097 (9)0.007 (6)0.019 (6)0.017 (6)
C2160.067 (6)0.081 (7)0.063 (7)0.005 (5)0.013 (5)0.005 (5)
N2210.049 (4)0.050 (4)0.031 (4)0.006 (4)0.005 (3)0.005 (3)
C2220.052 (5)0.029 (4)0.041 (5)0.006 (4)0.009 (4)0.011 (4)
C2230.053 (5)0.051 (6)0.052 (5)0.006 (4)0.014 (4)0.016 (5)
C2240.085 (6)0.067 (7)0.053 (6)0.017 (5)0.025 (5)0.008 (5)
C2250.089 (7)0.064 (6)0.051 (6)0.011 (5)0.016 (5)0.005 (4)
C2260.065 (5)0.068 (6)0.042 (5)0.011 (4)0.011 (5)0.009 (5)
N30.090 (7)0.061 (6)0.040 (4)0.004 (5)0.008 (5)0.003 (5)
O310.067 (4)0.094 (5)0.077 (4)0.014 (4)0.024 (3)0.015 (4)
O320.082 (4)0.097 (5)0.089 (5)0.014 (4)0.005 (4)0.000 (4)
O330.166 (7)0.054 (4)0.143 (6)0.007 (5)0.013 (5)0.012 (5)
N40.087 (7)0.063 (6)0.055 (5)0.006 (6)0.012 (5)0.007 (5)
O410.081 (5)0.068 (4)0.097 (5)0.001 (3)0.021 (4)0.012 (4)
O420.078 (4)0.096 (5)0.103 (5)0.013 (4)0.031 (4)0.000 (4)
O430.132 (6)0.048 (4)0.198 (8)0.027 (4)0.026 (5)0.032 (5)
Geometric parameters (Å, º) top
Cu—N1111.975 (5)N211—C2161.333 (8)
Cu—N1212.013 (6)N211—C2121.359 (8)
Cu—N2112.106 (6)C212—C2131.374 (9)
Cu—N2211.993 (5)C212—C2221.450 (9)
Cu—O312.138 (6)C213—C2141.359 (11)
Cu—O322.520 (6)C213—H2130.930
N111—C1121.337 (7)C214—C2151.373 (11)
N111—C1161.342 (8)C214—H2140.930
C112—C1131.383 (9)C215—C2161.382 (10)
C112—C1221.488 (9)C215—H2150.930
C113—C1141.355 (9)C216—H2160.930
C113—H1130.930N221—C2261.326 (7)
C114—C1151.357 (9)N221—C2221.352 (7)
C114—H1140.930C222—C2231.397 (9)
C115—C1161.378 (10)C223—C2241.378 (9)
C115—H1150.930C223—H2230.930
C116—H1160.930C224—C2251.362 (9)
N121—C1261.322 (8)C224—H2240.930
N121—C1221.354 (8)C225—C2261.359 (9)
C122—C1231.396 (9)C225—H2250.930
C123—C1241.365 (9)C226—H2260.930
C123—H1230.930N3—O331.198 (7)
C124—C1251.363 (10)N3—O311.233 (7)
C124—H1240.930N3—O321.257 (7)
C125—C1261.388 (9)N4—O431.194 (7)
C125—H1250.930N4—O411.220 (7)
C126—H1260.930N4—O421.235 (7)
N111—Cu—N12180.8 (3)N121—C126—C125124.5 (8)
N111—Cu—N211102.8 (3)N121—C126—H126117.8
N111—Cu—N221176.2 (3)C125—C126—H126117.8
N121—Cu—N211108.8 (2)C216—N211—C212120.1 (7)
N221—Cu—N12199.9 (2)C216—N211—Cu127.9 (6)
N221—Cu—N21180.5 (2)C212—N211—Cu111.7 (5)
N111—Cu—O3190.4 (2)N211—C212—C213120.0 (8)
N121—Cu—O31150.0 (2)N211—C212—C222115.2 (7)
N211—Cu—O31101.2 (2)C213—C212—C222124.8 (8)
N221—Cu—O3187.2 (2)C214—C213—C212120.3 (9)
N111—Cu—O3283.6 (2)C214—C213—H213119.9
N121—Cu—O3296.7 (2)C212—C213—H213119.9
N211—Cu—O32154.4 (2)C213—C214—C215119.5 (9)
N221—Cu—O3292.6 (2)C213—C214—H214120.3
O31—Cu—O3253.57 (19)C215—C214—H214120.3
C112—N111—C116118.9 (6)C214—C215—C216119.2 (9)
C112—N111—Cu115.8 (5)C214—C215—H215120.4
C116—N111—Cu124.6 (6)C216—C215—H215120.4
N111—C112—C113122.2 (7)N211—C216—C215121.0 (8)
N111—C112—C122114.2 (7)N211—C216—H216119.5
C113—C112—C122123.6 (8)C215—C216—H216119.5
C114—C113—C112117.7 (8)C226—N221—C222120.1 (6)
C114—C113—H113121.2C226—N221—Cu124.7 (5)
C112—C113—H113121.2C222—N221—Cu114.5 (4)
C113—C114—C115121.2 (8)N221—C222—C223118.9 (6)
C113—C114—H114119.4N221—C222—C212116.6 (7)
C115—C114—H114119.4C223—C222—C212124.4 (7)
C114—C115—C116118.7 (8)C224—C223—C222119.9 (7)
C114—C115—H115120.7C224—C223—H223120.0
C116—C115—H115120.7C222—C223—H223120.0
N111—C116—C115121.1 (8)C225—C224—C223119.1 (7)
N111—C116—H116119.4C225—C224—H224120.4
C115—C116—H116119.4C223—C224—H224120.4
C126—N121—C122117.8 (7)C226—C225—C224119.2 (8)
C126—N121—Cu127.6 (5)C226—C225—H225120.4
C122—N121—Cu114.5 (5)C224—C225—H225120.4
N121—C122—C123121.7 (7)N221—C226—C225122.6 (7)
N121—C122—C112113.7 (7)N221—C226—H226118.7
C123—C122—C112124.5 (8)C225—C226—H226118.7
C124—C123—C122117.5 (8)O33—N3—O31122.5 (8)
C124—C123—H123121.3O33—N3—O32120.2 (9)
C122—C123—H123121.3O31—N3—O32117.3 (8)
C125—C124—C123122.4 (9)N3—O31—Cu104.1 (5)
C125—C124—H124118.8N3—O32—Cu85.0 (5)
C123—C124—H124118.8O43—N4—O41121.7 (8)
C124—C125—C126116.0 (8)O43—N4—O42120.4 (9)
C124—C125—H125122.0O41—N4—O42117.9 (8)
C126—C125—H125122.0
N121—Cu—N111—C1129.4 (5)N121—Cu—N211—C21297.2 (5)
N211—Cu—N111—C112116.7 (5)O31—Cu—N211—C21285.3 (5)
O31—Cu—N111—C112141.7 (5)O32—Cu—N211—C21276.2 (7)
O32—Cu—N111—C11288.5 (5)C216—N211—C212—C2131.7 (11)
N121—Cu—N111—C116179.7 (6)Cu—N211—C212—C213172.0 (5)
N211—Cu—N111—C11673.0 (6)C216—N211—C212—C222179.4 (6)
O31—Cu—N111—C11628.5 (6)Cu—N211—C212—C2226.9 (7)
O32—Cu—N111—C11681.8 (6)N211—C212—C213—C2140.3 (12)
C116—N111—C112—C1131.2 (11)C222—C212—C213—C214179.1 (7)
Cu—N111—C112—C113169.7 (6)C212—C213—C214—C2151.1 (14)
C116—N111—C112—C122177.3 (6)C213—C214—C215—C2161.0 (15)
Cu—N111—C112—C12211.9 (8)C212—N211—C216—C2151.8 (11)
N111—C112—C113—C1142.1 (12)Cu—N211—C216—C215170.8 (6)
C122—C112—C113—C114176.2 (6)C214—C215—C216—N2110.4 (13)
C112—C113—C114—C1150.5 (12)N121—Cu—N221—C22674.6 (6)
C113—C114—C115—C1163.9 (14)N211—Cu—N221—C226177.8 (6)
C112—N111—C116—C1152.5 (12)O31—Cu—N221—C22676.0 (6)
Cu—N111—C116—C115172.4 (7)O32—Cu—N221—C22622.7 (6)
C114—C115—C116—N1115.0 (14)N121—Cu—N221—C222114.7 (5)
N111—Cu—N121—C126171.7 (6)N211—Cu—N221—C2227.1 (5)
N221—Cu—N121—C12612.1 (6)O31—Cu—N221—C22294.7 (5)
N211—Cu—N121—C12671.1 (6)O32—Cu—N221—C222148.0 (5)
O31—Cu—N121—C126113.9 (7)C226—N221—C222—C2234.5 (10)
O32—Cu—N121—C126106.0 (6)Cu—N221—C222—C223166.7 (5)
N111—Cu—N121—C1225.0 (5)C226—N221—C222—C212175.7 (6)
N221—Cu—N121—C122171.2 (5)Cu—N221—C222—C21213.1 (8)
N211—Cu—N121—C122105.5 (5)N211—C212—C222—N22113.4 (9)
O31—Cu—N121—C12269.5 (7)C213—C212—C222—N221165.5 (7)
O32—Cu—N121—C12277.4 (5)N211—C212—C222—C223166.4 (6)
C126—N121—C122—C1230.7 (10)C213—C212—C222—C22314.7 (11)
Cu—N121—C122—C123176.2 (5)N221—C222—C223—C2241.9 (10)
C126—N121—C122—C112176.8 (6)C212—C222—C223—C224178.3 (6)
Cu—N121—C122—C1120.2 (7)C222—C223—C224—C2251.4 (11)
N111—C112—C122—N1217.5 (9)C223—C224—C225—C2262.1 (12)
C113—C112—C122—N121174.0 (7)C222—N221—C226—C2253.9 (11)
N111—C112—C122—C123168.4 (7)Cu—N221—C226—C225166.3 (6)
C113—C112—C122—C12310.1 (11)C224—C225—C226—N2210.5 (12)
N121—C122—C123—C1241.3 (10)O33—N3—O31—Cu179.6 (7)
C112—C122—C123—C124174.3 (7)O32—N3—O31—Cu2.2 (8)
C122—C123—C124—C1251.7 (12)N111—Cu—O31—N380.5 (5)
C123—C124—C125—C1260.1 (12)N221—Cu—O31—N396.5 (5)
C122—N121—C126—C1252.5 (10)N121—Cu—O31—N38.5 (8)
Cu—N121—C126—C125174.0 (5)N211—Cu—O31—N3176.3 (5)
C124—C125—C126—N1212.1 (12)O32—Cu—O31—N31.2 (4)
N111—Cu—N211—C2168.6 (7)O33—N3—O32—Cu180.0 (8)
N221—Cu—N211—C216173.3 (6)O31—N3—O32—Cu1.8 (7)
N121—Cu—N211—C21675.9 (6)N111—Cu—O32—N394.1 (5)
O31—Cu—N211—C216101.5 (6)N221—Cu—O32—N385.7 (5)
O32—Cu—N211—C216110.7 (7)N121—Cu—O32—N3174.0 (5)
N111—Cu—N211—C212178.3 (5)N211—Cu—O32—N312.3 (8)
N221—Cu—N211—C2120.1 (5)O31—Cu—O32—N31.1 (4)
Comparison of bond dimensions (Å, °) for (I) and related structures top
(II)(III)(IV)(I)(V)(VI)(VII)(VIII)
Molecule 1/2
Cu—N1.980 (11)1.980 (3)1.990 (5)1.975 (5)1.984 (5)1.986 (5)1.974 (3)/1.969 (3)1.980 (4)
Cu—NO2.065 (10)2.074 (4)2.052 (5)2.013 (6)2.022 (5)2.023 (5)2.021 (3)/2.036 (3)2.032 (3)
Cu—N*2.006 (10)1.988 (3)2.004 (5)1.993 (5)1.982 (5)1.973 (5)1.978 (3)/1.981 (3)2.008 (4)
Cu—NO*2.100 (9)2.085 (4)2.142 (5)2.106 (6)2.045 (5)2.051 (5)2.109 (3)/2.097 (3)2.185 (3)
Cu—O2.238 (10)2.230 (5)2.117 (6)2.138 (6)2.299 (7)2.301 (5)2.116a/2.184 (3)2.078 (3)
Cu—O*2.329 (10)2.320 (5)2.462 (6)2.520 (6)2.818 (7)2.832 (5)2.822 (4)/2.717 (3)2.639 (4)
O—Cu—NO157.8 (4)157.7 (2)164.1 (1)150.0 (2)127.8 (3)127.5 (2)143.77 (13)/135.28 (12)161.5 (1)
O*—Cu—NO*151.1 (4)151.3 (2)149.2 (1)154.4 (2)139.5 (4)139.2 (1)138.11 (12)/144.49 (11)141.8a,b
N—Cu—N*179.6 (4)179.7 (2)178.6 (1)176.2 (3)170.9 (3)170.7 (1)177.05 (14)/177.46 (13)176.7 (1)
O—Cu—O*52.5 (4)52.8 (2)52.7 (2)53.6 (2)47.7 (4)47.7 (1)48.25 (11)/50.66 (10)53.0a,b
O—Cu—NO*99.2 (4)99.3 (2)97.3 (2)101.2 (2)92.1 (3)91.8 (2)90.64 (12)/94.69 (11)90.8 (1)
O*—Cu—NO105.6 (4)105.4 (1)111.9 (2)96.7 (2)80.3 (4)80.0 (1)96.10 (12)/85.13 (11)109.5a,b
NO-Cu-NO*103.0 (4)102.8 (1)98.5 (2)108.8 (2)140.2 (3)140.7 (1)125.52 (13)/130.01 (13)107.5 (1)
O-Cu-N93.5 (4)93.7 (2)94.1 (2)90.4 (2)86.7 (3)86.3 (2)88.86 (13)/89.74 (12)92.5 (1)
O-Cu-N*86.8 (4)86.5 (2)87.2 (2)87.2 (2)85.5 (3)85.5 (2)89.88 (13)/88.00 (12)88.1 (1)
O*-Cu-N89.1 (4)89.3 (1)89.5 (2)83.6 (2)81.8 (4)81.6 (1)b86.56 (13)/88.14 (12)90.6a,b
O*-Cu-N*91.2 (4)90.7 (2)90.9 (2)92.6 (2)89.5 (4)89.6 (1)b90.62 (14)/89.53 (12)87.3a,b
N-Cu-NO81.1 (4)80.0 (2)80.8 (2)80.8 (3)81.1 (3)81.5 (2)81.60 (14)/81.40 (13)81.1 (1)
N-Cu-NO*99.4 (4)100.6 (1)101.0 (2)102.8 (3)103.6 (3)103.7 (2)102.55 (13)/100.72 (13)104.2 (1)
N*-Cu-NO98.7 (4)99.8 (2)97.8 (2)99.9 (2)100.0 (3)100.0 (2)97.88 (14)/99.40 (13)97.4 (1)
N*-Cu-NO*80.3 (4)79.6 (2)79.4 (2)80.5 (2)81.4 (3)81.0 (2)80.13 (13)/80.63 (13)79.0 (1)
Notes: (a) s.u. values not reported; (b) value was not reported and was calculated using GEOM (Owen, 1981); NO denotes N trans to an O atom; * denotes the loosely coordinated axial O atom, the axial N atom trans to it and the second (equatorial) N atom within the same bipyridine ligand.
 

Acknowledgements

KM thanks FOCTTU, Tehran, for financial support.

References

First citationCatalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171.  CSD CrossRef CAS Web of Science Google Scholar
First citationDavies, S. C., Durrant, M. C., Hughes, D. L., Leidenberger, K., Stapper, C. & Richards, R. L. (1997). J. Chem. Soc. Dalton Trans. pp. 2409–2418.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1992). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFereday, R. J., Hodgson, P., Tyagi, S. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 2070–2077.  CSD CrossRef Web of Science Google Scholar
First citationHathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49–67.  CrossRef CAS Google Scholar
First citationHursthouse, M. B. (1976). CAD-4 processing program. Queen Mary College, London.  Google Scholar
First citationJohnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationNakai, H. (1980). Bull. Chem. Soc. Jpn, 53, 1321–1326.  CrossRef CAS Web of Science Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationOwen, J. D. (1981). GEOM. Rothamsted Experimental Station, Harpenden, Herts, England.  Google Scholar
First citationPrasad, B. L. V., Sato, H., Enoki, T., Cohen, S. & Radhakrishnan, T. P. (1999). J. Chem. Soc. Dalton Trans. pp. 25–29.  Web of Science CSD CrossRef Google Scholar
First citationProctor, I. M. & Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1248–1256.  Google Scholar
First citationSheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford, Abstracts, p. 147.  Google Scholar
First citationSheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSimmons, C. J., Clearfield, A., Fitzgerald, W., Tyagi, S. & Hathaway, B. (1983). J. Chem. Soc. Chem. Commun. pp. 189–190.  CrossRef Web of Science Google Scholar
First citationSimmons, C. J., Hathaway, B. J., Amornjarusiri, K., Santarsiero, B. D. & Clearfield, A. (1987). J. Am. Chem. Soc. 109, 1947–1958.  CSD CrossRef CAS Web of Science Google Scholar
First citationWalsh, A., Walsh, B., Murphy, B. & Hathaway, B. J. (1981). Acta Cryst. B37, 1512–1520.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds