organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,5S)-2-Tri­chloro­methyl-3-oxa-1-aza­bi­cyclo­[3.3.0]­octane-4,8-dione

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and dMedicinal Chemistry II, GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex CM19 5AW, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk

(Received 25 November 2004; accepted 30 November 2004; online 11 December 2004)

The crystal structure of the title bicyclic oxazolidindione, C7H6Cl3NO3, confirmed the absolute stereochemistry as 2R,5S.

Comment

Natural α-amino acids are at the core of many natural products (Ikota, 1992[Ikota, N. (1992). Tetrahedron Lett. 33, 2553-2556.]). (S)-pyroglutamic acid, in particular, forms the core of many excitatory amino acids, such as kaitocephalin (Watanabe et al., 2002[Watanabe, H., Okue, M., Kobayashi, H. & Kitahara T. (2002). Tetrahedron Lett. 43, 857-860.]) and kainic acid (Oppolzer & Thirring, 1982[Oppolzer, W. & Thirring, K. (1982). J. Am. Chem. Soc. 104, 4978-4979.]). Synthetic routes to these classes of compounds require stereochemical control at various positions around a pyrrolidine ring. Seebach's method of the so-called self-reproduction of chirality involves a dual protection of the amine and carboxyl­ic acid of (S)-proline with piv­aldehyde to give a bicyclic system (Seebach et al., 1983[Seebach, D., Boes, M., Naef, R. & Schweizer, W. B. (1983). J. Am. Chem. Soc. 105, 5390-5398.]). The analogous protection of (S)-pyroglutamic acid was found to be unfavourable for piv­aldehyde, the resulting product being particularly unstable (Dikshit et al., 1995[Dikshit, D. K., Maheshwari, A. & Panday, S. K. (1995). Tetrahedron Lett. 36, 6131-6134.]). However, analogous protection of (S)-pyroglutamic acid with chloral (Amedjkouh & Ahlberg, 2002[Amedjkouh, M. & Ahlberg, P. (2002). Tetrahedron Asymmetry, 13, 2229-2234.]) provided the title compound, (3[link]) (shown in Fig. 1[link] and Table 1[link]), as an air-stable crystalline solid.

[Scheme 1]
[Figure 1]
Figure 1
The molecular structure of (3), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary. Cl atoms are displayed in bright green.
[Figure 2]
Figure 2
Packing diagram of (3), viewed down the a axis.

Experimental

The title compound was prepared by the method described by Amedjkouh & Ahlberg (2002[Amedjkouh, M. & Ahlberg, P. (2002). Tetrahedron Asymmetry, 13, 2229-2234.]). Slow recrystallization from ethyl acetate gave colourless needle-like crystals. These tend to fracture when cut and therefore a large crystal was used. The multi-scan technique was used to correct for changes in the illuminated volume.

Crystal data
  • C7H6Cl3NO3

  • Mr = 258.49

  • Orthorhombic, P212121

  • a = 6.0480 (1) Å

  • b = 10.1735 (3) Å

  • c = 15.5791 (4) Å

  • V = 958.57 (4) Å3

  • Z = 4

  • Dx = 1.791 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1485 reflections

  • θ = 5–30°

  • μ = 0.93 mm−1

  • T = 190 K

  • Needle, colourless

  • 0.80 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: none

  • 2708 measured reflections

  • 2692 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 30.0°

  • h = −8 → 8

  • k = −14 → 14

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.064

  • S = 0.95

  • 2692 reflections

  • 128 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + 0.02 + 0.49p] where p = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1104 Friedel pairs

  • Flack parameter = 0.01 (6)

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.544 (2)
C1—Cl12 1.7638 (16)
C1—Cl13 1.7617 (17)
C1—Cl14 1.7716 (16)
C2—N3 1.4352 (19)
C2—O6 1.4314 (19)
N3—C4 1.457 (2)
N3—C10 1.391 (2)
C4—C5 1.516 (2)
C4—C8 1.547 (2)
C5—O6 1.366 (2)
C5—O7 1.191 (2)
C8—C9 1.531 (3)
C9—C10 1.514 (3)
C10—O11 1.207 (2)
C2—C1—Cl12 110.98 (10)
C2—C1—Cl13 108.10 (11)
Cl12—C1—Cl13 110.16 (9)
C2—C1—Cl14 108.76 (11)
Cl12—C1—Cl14 109.83 (9)
Cl13—C1—Cl14 108.97 (8)
C1—C2—N3 113.21 (12)
C1—C2—O6 108.34 (12)
N3—C2—O6 105.82 (11)
C2—N3—C4 110.58 (12)
C2—N3—C10 121.30 (13)
C4—N3—C10 112.34 (13)
N3—C4—C5 102.17 (14)
N3—C4—C8 105.25 (13)
C5—C4—C8 117.03 (14)
C4—C5—O6 109.41 (14)
C4—C5—O7 129.11 (18)
O6—C5—O7 121.44 (16)
C2—O6—C5 110.71 (12)
C4—C8—C9 102.61 (13)
C8—C9—C10 104.36 (14)
C9—C10—N3 106.57 (14)
C9—C10—O11 129.32 (16)
N3—C10—O11 124.11 (16)

The H atoms were all seen in a difference map but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bonds to regularize their geometry [bond lengths to accepted values, angles either set by symmetry or to accepted values, and Uiso(H) dependent on the adjacent bonded atom], after which they were refined with riding constraints only. C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 1997–2001[Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(2R,5S)-2-Trichloromethyl-3-oxa-1-azabicyclo[3,3,0]octane-4,8-dione top
Crystal data top
C7H6Cl3NO3Dx = 1.791 Mg m3
Mr = 258.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1485 reflections
a = 6.0480 (1) Åθ = 5–30°
b = 10.1735 (3) ŵ = 0.93 mm1
c = 15.5791 (4) ÅT = 190 K
V = 958.57 (4) Å3Needle, colourless
Z = 40.80 × 0.20 × 0.20 mm
F(000) = 520
Data collection top
Nonius KappaCCD
diffractometer
2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 30.0°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.83, Tmax = 0.83k = 1414
2708 measured reflectionsl = 2121
2692 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[sigma2(F2) + 0.02 + 0.49p]
where p = (max(Fo2,0) + 2Fc2)/3 Method = SHELXL 97 (Sheldrick, 1997)
wR(F2) = 0.064(Δ/σ)max = 0.001
S = 0.96Δρmax = 0.27 e Å3
2692 reflectionsΔρmin = 0.26 e Å3
128 parametersAbsolute structure: Flack, (1983), 1104 Friedel-pairs
0 restraintsAbsolute structure parameter: 0.01 (6)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8490 (2)0.15246 (16)0.24808 (9)0.0240
C20.8540 (2)0.14921 (15)0.14903 (9)0.0205
N30.9665 (2)0.03633 (13)0.11515 (8)0.0210
C41.1804 (3)0.07368 (16)0.07969 (10)0.0247
C51.1657 (3)0.22241 (17)0.07900 (10)0.0286
O60.9761 (2)0.26093 (11)0.11948 (7)0.0252
O71.2939 (3)0.30057 (14)0.05136 (10)0.0485
C81.1938 (3)0.00394 (17)0.00842 (11)0.0296
C91.0262 (3)0.10780 (18)0.00128 (12)0.0322
C100.8571 (3)0.05505 (15)0.06413 (10)0.0258
O110.6642 (2)0.08309 (13)0.07187 (9)0.0354
Cl121.11902 (7)0.15831 (5)0.29063 (3)0.0363
Cl130.71158 (9)0.01009 (4)0.28416 (3)0.0407
Cl140.69808 (8)0.29265 (4)0.28155 (3)0.0352
H210.70080.15310.12780.0237*
H411.30210.04550.11810.0286*
H811.33880.03190.01720.0351*
H821.14860.06560.05330.0354*
H911.10020.18590.02640.0391*
H920.95710.13570.05330.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (7)0.0219 (7)0.0259 (6)0.0005 (7)0.0032 (5)0.0002 (6)
C20.0194 (6)0.0182 (6)0.0240 (6)0.0008 (6)0.0022 (5)0.0006 (6)
N30.0192 (6)0.0211 (6)0.0227 (6)0.0007 (5)0.0001 (5)0.0013 (5)
C40.0212 (7)0.0296 (8)0.0233 (7)0.0000 (6)0.0009 (6)0.0030 (6)
C50.0334 (9)0.0304 (8)0.0219 (7)0.0084 (7)0.0034 (6)0.0047 (6)
O60.0324 (6)0.0197 (5)0.0235 (5)0.0020 (5)0.0008 (5)0.0012 (4)
O70.0617 (10)0.0415 (7)0.0423 (7)0.0242 (7)0.0251 (7)0.0099 (6)
C80.0294 (8)0.0336 (8)0.0257 (7)0.0051 (7)0.0026 (6)0.0059 (6)
C90.0408 (10)0.0271 (8)0.0286 (8)0.0018 (7)0.0021 (7)0.0071 (6)
C100.0301 (8)0.0200 (7)0.0272 (7)0.0006 (6)0.0058 (6)0.0000 (6)
O110.0297 (6)0.0305 (6)0.0458 (7)0.0069 (5)0.0053 (5)0.0043 (5)
Cl120.03185 (19)0.0504 (2)0.02677 (17)0.0041 (2)0.00816 (15)0.0008 (2)
Cl130.0530 (3)0.02717 (19)0.0420 (2)0.00685 (19)0.0198 (2)0.00310 (18)
Cl140.0385 (2)0.02754 (19)0.0396 (2)0.00699 (17)0.00566 (19)0.00887 (17)
Geometric parameters (Å, º) top
C1—C21.544 (2)C4—H410.991
C1—Cl121.7638 (16)C5—O61.366 (2)
C1—Cl131.7617 (17)C5—O71.191 (2)
C1—Cl141.7716 (16)C8—C91.531 (3)
C2—N31.4352 (19)C8—H810.960
C2—O61.4314 (19)C8—H820.978
C2—H210.985C9—C101.514 (3)
N3—C41.457 (2)C9—H910.993
N3—C101.391 (2)C9—H920.989
C4—C51.516 (2)C10—O111.207 (2)
C4—C81.547 (2)
C2—C1—Cl12110.98 (10)C8—C4—H41111.354
C2—C1—Cl13108.10 (11)C4—C5—O6109.41 (14)
Cl12—C1—Cl13110.16 (9)C4—C5—O7129.11 (18)
C2—C1—Cl14108.76 (11)O6—C5—O7121.44 (16)
Cl12—C1—Cl14109.83 (9)C2—O6—C5110.71 (12)
Cl13—C1—Cl14108.97 (8)C4—C8—C9102.61 (13)
C1—C2—N3113.21 (12)C4—C8—H81110.425
C1—C2—O6108.34 (12)C9—C8—H81109.705
N3—C2—O6105.82 (11)C4—C8—H82108.963
C1—C2—H21108.457C9—C8—H82111.198
N3—C2—H21110.761H81—C8—H82113.404
O6—C2—H21110.199C8—C9—C10104.36 (14)
C2—N3—C4110.58 (12)C8—C9—H91109.562
C2—N3—C10121.30 (13)C10—C9—H91109.503
C4—N3—C10112.34 (13)C8—C9—H92114.037
N3—C4—C5102.17 (14)C10—C9—H92111.890
N3—C4—C8105.25 (13)H91—C9—H92107.434
C5—C4—C8117.03 (14)C9—C10—N3106.57 (14)
N3—C4—H41110.794C9—C10—O11129.32 (16)
C5—C4—H41109.699N3—C10—O11124.11 (16)
 

Footnotes

Visiting scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.

Acknowledgements

RP thanks the EPSRC for a grant and GlaxoSmithKline for a CASE award.

References

First citationAltomare, A., Cascarano, G., Giacovazzo G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.  CrossRef IUCr Journals Google Scholar
First citationAmedjkouh, M. & Ahlberg, P. (2002). Tetrahedron Asymmetry, 13, 2229–2234.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDikshit, D. K., Maheshwari, A. & Panday, S. K. (1995). Tetrahedron Lett. 36, 6131–6134.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIkota, N. (1992). Tetrahedron Lett. 33, 2553–2556.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOppolzer, W. & Thirring, K. (1982). J. Am. Chem. Soc. 104, 4978–4979.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeebach, D., Boes, M., Naef, R. & Schweizer, W. B. (1983). J. Am. Chem. Soc. 105, 5390–5398.  CSD CrossRef CAS Web of Science Google Scholar
First citationWatanabe, H., Okue, M., Kobayashi, H. & Kitahara T. (2002). Tetrahedron Lett. 43, 857–860.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds