organic compounds
(2R,5S)-2-Trichloromethyl-3-oxa-1-azabicyclo[3.3.0]octane-4,8-dione
aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and dMedicinal Chemistry II, GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex CM19 5AW, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk
The 7H6Cl3NO3, confirmed the absolute stereochemistry as 2R,5S.
of the title bicyclic oxazolidindione, CComment
Natural α-amino acids are at the core of many natural products (Ikota, 1992). (S)-pyroglutamic acid, in particular, forms the core of many excitatory amino acids, such as kaitocephalin (Watanabe et al., 2002) and kainic acid (Oppolzer & Thirring, 1982). Synthetic routes to these classes of compounds require stereochemical control at various positions around a pyrrolidine ring. Seebach's method of the so-called self-reproduction of involves a dual protection of the amine and carboxylic acid of (S)-proline with pivaldehyde to give a bicyclic system (Seebach et al., 1983). The analogous protection of (S)-pyroglutamic acid was found to be unfavourable for pivaldehyde, the resulting product being particularly unstable (Dikshit et al., 1995). However, analogous protection of (S)-pyroglutamic acid with chloral (Amedjkouh & Ahlberg, 2002) provided the title compound, (3) (shown in Fig. 1 and Table 1), as an air-stable crystalline solid.
Experimental
The title compound was prepared by the method described by Amedjkouh & Ahlberg (2002). Slow recrystallization from ethyl acetate gave colourless needle-like crystals. These tend to fracture when cut and therefore a large crystal was used. The multi-scan technique was used to correct for changes in the illuminated volume.
Crystal data
|
Data collection
|
Refinement
|
|
The H atoms were all seen in a difference map but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bonds to regularize their geometry [bond lengths to accepted values, angles either set by symmetry or to accepted values, and Uiso(H) dependent on the adjacent bonded atom], after which they were refined with riding constraints only. C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 1997–2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536804031605/sj6035sup1.cif
contains datablocks 3, global. DOI:Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S1600536804031605/sj60353sup2.hkl
Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C7H6Cl3NO3 | Dx = 1.791 Mg m−3 |
Mr = 258.49 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1485 reflections |
a = 6.0480 (1) Å | θ = 5–30° |
b = 10.1735 (3) Å | µ = 0.93 mm−1 |
c = 15.5791 (4) Å | T = 190 K |
V = 958.57 (4) Å3 | Needle, colourless |
Z = 4 | 0.80 × 0.20 × 0.20 mm |
F(000) = 520 |
Nonius KappaCCD diffractometer | 2545 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 30.0°, θmin = 5.2° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −8→8 |
Tmin = 0.83, Tmax = 0.83 | k = −14→14 |
2708 measured reflections | l = −21→21 |
2692 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[sigma2(F2) + 0.02 + 0.49p] where p = (max(Fo2,0) + 2Fc2)/3 Method = SHELXL 97 (Sheldrick, 1997) |
wR(F2) = 0.064 | (Δ/σ)max = 0.001 |
S = 0.96 | Δρmax = 0.27 e Å−3 |
2692 reflections | Δρmin = −0.26 e Å−3 |
128 parameters | Absolute structure: Flack, (1983), 1104 Friedel-pairs |
0 restraints | Absolute structure parameter: 0.01 (6) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8490 (2) | 0.15246 (16) | 0.24808 (9) | 0.0240 | |
C2 | 0.8540 (2) | 0.14921 (15) | 0.14903 (9) | 0.0205 | |
N3 | 0.9665 (2) | 0.03633 (13) | 0.11515 (8) | 0.0210 | |
C4 | 1.1804 (3) | 0.07368 (16) | 0.07969 (10) | 0.0247 | |
C5 | 1.1657 (3) | 0.22241 (17) | 0.07900 (10) | 0.0286 | |
O6 | 0.9761 (2) | 0.26093 (11) | 0.11948 (7) | 0.0252 | |
O7 | 1.2939 (3) | 0.30057 (14) | 0.05136 (10) | 0.0485 | |
C8 | 1.1938 (3) | 0.00394 (17) | −0.00842 (11) | 0.0296 | |
C9 | 1.0262 (3) | −0.10780 (18) | 0.00128 (12) | 0.0322 | |
C10 | 0.8571 (3) | −0.05505 (15) | 0.06413 (10) | 0.0258 | |
O11 | 0.6642 (2) | −0.08309 (13) | 0.07187 (9) | 0.0354 | |
Cl12 | 1.11902 (7) | 0.15831 (5) | 0.29063 (3) | 0.0363 | |
Cl13 | 0.71158 (9) | 0.01009 (4) | 0.28416 (3) | 0.0407 | |
Cl14 | 0.69808 (8) | 0.29265 (4) | 0.28155 (3) | 0.0352 | |
H21 | 0.7008 | 0.1531 | 0.1278 | 0.0237* | |
H41 | 1.3021 | 0.0455 | 0.1181 | 0.0286* | |
H81 | 1.3388 | −0.0319 | −0.0172 | 0.0351* | |
H82 | 1.1486 | 0.0656 | −0.0533 | 0.0354* | |
H91 | 1.1002 | −0.1859 | 0.0264 | 0.0391* | |
H92 | 0.9571 | −0.1357 | −0.0533 | 0.0390* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0243 (7) | 0.0219 (7) | 0.0259 (6) | 0.0005 (7) | 0.0032 (5) | 0.0002 (6) |
C2 | 0.0194 (6) | 0.0182 (6) | 0.0240 (6) | 0.0008 (6) | −0.0022 (5) | 0.0006 (6) |
N3 | 0.0192 (6) | 0.0211 (6) | 0.0227 (6) | 0.0007 (5) | −0.0001 (5) | −0.0013 (5) |
C4 | 0.0212 (7) | 0.0296 (8) | 0.0233 (7) | 0.0000 (6) | 0.0009 (6) | −0.0030 (6) |
C5 | 0.0334 (9) | 0.0304 (8) | 0.0219 (7) | −0.0084 (7) | 0.0034 (6) | −0.0047 (6) |
O6 | 0.0324 (6) | 0.0197 (5) | 0.0235 (5) | −0.0020 (5) | 0.0008 (5) | 0.0012 (4) |
O7 | 0.0617 (10) | 0.0415 (7) | 0.0423 (7) | −0.0242 (7) | 0.0251 (7) | −0.0099 (6) |
C8 | 0.0294 (8) | 0.0336 (8) | 0.0257 (7) | 0.0051 (7) | 0.0026 (6) | −0.0059 (6) |
C9 | 0.0408 (10) | 0.0271 (8) | 0.0286 (8) | 0.0018 (7) | −0.0021 (7) | −0.0071 (6) |
C10 | 0.0301 (8) | 0.0200 (7) | 0.0272 (7) | −0.0006 (6) | −0.0058 (6) | 0.0000 (6) |
O11 | 0.0297 (6) | 0.0305 (6) | 0.0458 (7) | −0.0069 (5) | −0.0053 (5) | −0.0043 (5) |
Cl12 | 0.03185 (19) | 0.0504 (2) | 0.02677 (17) | 0.0041 (2) | −0.00816 (15) | −0.0008 (2) |
Cl13 | 0.0530 (3) | 0.02717 (19) | 0.0420 (2) | −0.00685 (19) | 0.0198 (2) | 0.00310 (18) |
Cl14 | 0.0385 (2) | 0.02754 (19) | 0.0396 (2) | 0.00699 (17) | 0.00566 (19) | −0.00887 (17) |
C1—C2 | 1.544 (2) | C4—H41 | 0.991 |
C1—Cl12 | 1.7638 (16) | C5—O6 | 1.366 (2) |
C1—Cl13 | 1.7617 (17) | C5—O7 | 1.191 (2) |
C1—Cl14 | 1.7716 (16) | C8—C9 | 1.531 (3) |
C2—N3 | 1.4352 (19) | C8—H81 | 0.960 |
C2—O6 | 1.4314 (19) | C8—H82 | 0.978 |
C2—H21 | 0.985 | C9—C10 | 1.514 (3) |
N3—C4 | 1.457 (2) | C9—H91 | 0.993 |
N3—C10 | 1.391 (2) | C9—H92 | 0.989 |
C4—C5 | 1.516 (2) | C10—O11 | 1.207 (2) |
C4—C8 | 1.547 (2) | ||
C2—C1—Cl12 | 110.98 (10) | C8—C4—H41 | 111.354 |
C2—C1—Cl13 | 108.10 (11) | C4—C5—O6 | 109.41 (14) |
Cl12—C1—Cl13 | 110.16 (9) | C4—C5—O7 | 129.11 (18) |
C2—C1—Cl14 | 108.76 (11) | O6—C5—O7 | 121.44 (16) |
Cl12—C1—Cl14 | 109.83 (9) | C2—O6—C5 | 110.71 (12) |
Cl13—C1—Cl14 | 108.97 (8) | C4—C8—C9 | 102.61 (13) |
C1—C2—N3 | 113.21 (12) | C4—C8—H81 | 110.425 |
C1—C2—O6 | 108.34 (12) | C9—C8—H81 | 109.705 |
N3—C2—O6 | 105.82 (11) | C4—C8—H82 | 108.963 |
C1—C2—H21 | 108.457 | C9—C8—H82 | 111.198 |
N3—C2—H21 | 110.761 | H81—C8—H82 | 113.404 |
O6—C2—H21 | 110.199 | C8—C9—C10 | 104.36 (14) |
C2—N3—C4 | 110.58 (12) | C8—C9—H91 | 109.562 |
C2—N3—C10 | 121.30 (13) | C10—C9—H91 | 109.503 |
C4—N3—C10 | 112.34 (13) | C8—C9—H92 | 114.037 |
N3—C4—C5 | 102.17 (14) | C10—C9—H92 | 111.890 |
N3—C4—C8 | 105.25 (13) | H91—C9—H92 | 107.434 |
C5—C4—C8 | 117.03 (14) | C9—C10—N3 | 106.57 (14) |
N3—C4—H41 | 110.794 | C9—C10—O11 | 129.32 (16) |
C5—C4—H41 | 109.699 | N3—C10—O11 | 124.11 (16) |
Footnotes
‡Visiting scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.
Acknowledgements
RP thanks the EPSRC for a grant and GlaxoSmithKline for a CASE award.
References
Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435. CrossRef IUCr Journals Google Scholar
Amedjkouh, M. & Ahlberg, P. (2002). Tetrahedron Asymmetry, 13, 2229–2234. Web of Science CrossRef CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Dikshit, D. K., Maheshwari, A. & Panday, S. K. (1995). Tetrahedron Lett. 36, 6131–6134. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ikota, N. (1992). Tetrahedron Lett. 33, 2553–2556. CrossRef CAS Web of Science Google Scholar
Nonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Oppolzer, W. & Thirring, K. (1982). J. Am. Chem. Soc. 104, 4978–4979. CrossRef CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Seebach, D., Boes, M., Naef, R. & Schweizer, W. B. (1983). J. Am. Chem. Soc. 105, 5390–5398. CSD CrossRef CAS Web of Science Google Scholar
Watanabe, H., Okue, M., Kobayashi, H. & Kitahara T. (2002). Tetrahedron Lett. 43, 857–860. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.