organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Phenyl­ene-bis-(3,4-di­chloro-5-phenyl­carbamoyl-1H-pyrrole-2-carbox­amide) bis­(tetra­butyl­ammonium chloride) aceto­nitrile disolvate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Highfield, Southampton, England SO17 1BJ
*Correspondence e-mail: light@soton.ac.uk

(Received 22 March 2005; accepted 6 April 2005; online 9 April 2005)

The title compound, C30H20N6O4Cl4.2C16H36N+·2Cl·2C2H3N, contains two hydrogen-bonded chloride anions bound to 1,4-phenyl­ene-bis-(3,4-di­chloro-5-phenyl­carbamoyl-1H-pyrrole-2-carbox­amide) as the tetra­butyl­ammonium salt. There is also a short pyrrolic hydrogen bond (N⋯Cl = 3.068 (3) Å), and two longer ones to the amino H atoms [N⋯Cl = 3.269 (3) Å and 3.275 (3) Å]. The neutral mol­ecule lies on an inversion centre situated at the centre of the central benzene ring.

Comment

1,4-Phenyl­ene-bis-(3,4-di­chloro-5-phenyl­carbamoyl-1H-pyrrole-2-carbox­amide) crystallizes from tetra­butyl­ammonium chloride aceto­nitrile solution as a tetra­butyl­ammonium chloride aceto­nitrile solvate, (I[link]). [link]

[Scheme 1]

The receptor adopts an S-shaped conformation around a centre of inversion with one chloride bound on each side. The pyrrole and terminal benzene ring pairs are coplanar, and the angle between the central and terminal benzene rings is 32.02 (4)°. Of the three hydrogen bonds to the chloride, the pyrrolic one is the shortest, with an N⋯Cl distance of 3.068 (3) Å, whilst the two either side are longer, with distances of 3.269 (3) Å and 3.275 (3) Å.

[Figure 1]
Figure 1
Structure of the title compound, with displacement ellipsoids drawn at the 35% probability level and non-acidic H atoms omitted for clarity. Both disorder components are shown.

Experimental

The receptor mol­ecule, 1,4-phenyl­ene-bis-(3,4-di­chloro-5-phenyl­carbamoyl-1H-pyrrole-2-carbox­amide), (1), was synthesized according to literature methods (Gale et al., 2002[Gale, P. A., Navakhun, K., Camiolo, S., Light, M. E. & Hursthouse, M. B., (2002). J. Am. Chem. Soc. 124, 11228-11229.]). Crystals of the aceto­nitrile solvate of the tetra­butyl­ammonium chloride complex were grown by slow evaporation of an aceto­nitrile solution of (1) in aceto­nitrile in the presence of excess tetra­butyl­ammonium chloride.

Crystal data
  • C30H20N6O4Cl4·2C16H36N+·2Cl·2C2H3N

  • Mr = 1308.24

  • Monoclinic, P21/c

  • a = 8.5720 (2) Å

  • b = 21.1088 (5) Å

  • c = 19.3520 (6) Å

  • β = 93.5560 (10)° precision OK?

  • V = 3494.90 (16) Å3

  • Z = 2

  • Dx = 1.243 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 35384 reflections

  • θ = 2.9–26.4°

  • μ = 0.30 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.15 × 0.07 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.906, Tmax = 0.990

  • 13653 measured reflections

  • 7107 independent reflections

  • 4902 reflections with I > 2σ(I)

  • Rint = 0.046

  • θmax = 26.4°

  • h = −10 → 10

  • k = −26 → 25

  • l = −24 → 24

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.144

  • S = 1.11

  • 7107 reflections

  • 395 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0389P)2 + 4.3109P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.70 e Å−3

  • Δρmin = −1.05 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0023 (4)

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H91⋯Cl3 0.88 2.40 3.269 (3) 171.6
N2—H92⋯Cl3 0.88 2.20 3.068 (3) 166.8
N3—H93⋯Cl3 0.88 2.40 3.275 (3) 171.2

H atoms were identified in a difference map and then placed in calculated positions (N—H 0.88, aromatic C—H 0.95, methylene C—H 0.99, methyl C—H 0.98) and refined using a riding model [Uiso(H) = 1.2 or 1.5 times Ueq(parent atom)]. One arm of the tetra­butyl­ammonium is disordered. It has been modelled as split over two possible orientations with one third and two thirds occupancy. C—C and C—N distances were restrained to standard values and the displacement parameters of split atom pairs were constrained to be equal. The deepest hole is located 1.28 Å from C9.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski and Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin, et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1998).

(I) top
Crystal data top
C30H20N6O4Cl4·2C16H36N+·2Cl·2C2H3NF(000) = 1396
Mr = 1308.24Dx = 1.243 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5720 (2) ÅCell parameters from 35384 reflections
b = 21.1088 (5) Åθ = 2.9–26.4°
c = 19.3520 (6) ŵ = 0.30 mm1
β = 93.556 (1)°T = 120 K
V = 3494.90 (16) Å3Needle, colourless
Z = 20.15 × 0.07 × 0.05 mm
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
7107 independent reflections
Radiation source: Rotating Anode, Bruker Nonius FR5914902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 26.4°, θmin = 3.1°
φ and ω scans to fill the asymmetric unith = 1010
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
k = 2625
Tmin = 0.906, Tmax = 0.990l = 2424
13653 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0389P)2 + 4.3109P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
7107 reflectionsΔρmax = 0.70 e Å3
395 parametersΔρmin = 1.05 e Å3
71 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.16835 (9)0.70673 (4)0.60764 (4)0.0322 (2)
Cl20.38459 (10)0.57889 (4)0.64814 (4)0.0336 (2)
Cl30.18791 (9)0.69400 (4)0.95662 (4)0.0282 (2)
N10.0570 (3)0.78167 (12)0.82639 (13)0.0269 (6)
H910.10080.75710.85880.032*
N20.2000 (3)0.66144 (12)0.80256 (13)0.0253 (6)
H920.18280.66670.84650.030*
N30.3598 (3)0.57156 (13)0.89035 (13)0.0299 (6)
H930.30700.60470.90370.036*
O10.0100 (3)0.78668 (13)0.71095 (13)0.0488 (7)
O20.4268 (3)0.51780 (11)0.79409 (12)0.0354 (6)
C10.1002 (4)0.87948 (16)0.80754 (19)0.0338 (8)
H10.13080.86770.76130.041*
C20.1505 (4)0.93640 (17)0.8346 (2)0.0385 (9)
H20.21620.96350.80640.046*
C30.1069 (4)0.95440 (17)0.90160 (19)0.0386 (9)
H30.14040.99380.91910.046*
C40.0142 (4)0.91450 (18)0.94291 (19)0.0398 (9)
H40.01500.92630.98930.048*
C50.0367 (4)0.85722 (16)0.91719 (18)0.0326 (8)
H50.09990.82980.94600.039*
C60.0048 (3)0.84006 (15)0.84902 (17)0.0268 (7)
C70.0562 (4)0.75944 (16)0.76053 (17)0.0291 (7)
C80.1449 (3)0.70049 (15)0.75015 (16)0.0259 (7)
C90.1974 (3)0.67619 (15)0.68946 (16)0.0251 (7)
C100.2860 (3)0.62214 (15)0.70655 (16)0.0248 (7)
C110.2856 (3)0.61305 (15)0.77710 (16)0.0249 (7)
C120.3633 (4)0.56283 (15)0.82090 (16)0.0268 (7)
C130.3841 (4)0.54326 (15)1.01052 (17)0.0287 (7)
H130.30420.57331.01780.034*
C140.4311 (4)0.53353 (14)0.94363 (16)0.0254 (7)
C150.5488 (4)0.48980 (15)0.93349 (17)0.0276 (7)
H150.58300.48270.88840.033*
N40.6730 (3)0.78866 (15)0.53584 (13)0.0369 (7)
C160.6876 (4)0.71763 (18)0.53514 (19)0.0428 (10)
H16A0.71300.70290.58310.051*
H16B0.77630.70610.50730.051*
C170.5423 (4)0.68249 (18)0.5063 (2)0.0448 (10)
H17A0.46250.68270.54110.054*
H17B0.49810.70470.46450.054*
C180.5802 (5)0.6145 (2)0.4878 (2)0.0587 (12)
H18A0.66250.61450.45410.070*
H18B0.62230.59230.53000.070*
C190.4393 (5)0.5784 (2)0.4572 (2)0.0608 (12)
H19A0.36080.57500.49180.091*
H19B0.47160.53590.44370.091*
H19C0.39450.60100.41640.091*
C20A0.630 (3)0.8185 (17)0.4688 (7)0.0422 (16)0.33
H20A0.61170.86390.47790.051*0.33
H20B0.52790.80030.45210.051*0.33
C21A0.7378 (10)0.8148 (5)0.4082 (4)0.0301 (12)0.33
H21A0.84000.83420.42240.036*0.33
H21B0.75610.76990.39660.036*0.33
C22A0.6656 (11)0.8494 (5)0.3439 (3)0.0382 (13)0.33
H22A0.55580.83560.33490.046*0.33
H22B0.66540.89560.35280.046*0.33
C23A0.7577 (14)0.8357 (6)0.2797 (4)0.0549 (15)0.33
H23A0.86260.85400.28630.082*0.33
H23B0.70310.85460.23870.082*0.33
H23C0.76590.78980.27330.082*0.33
C20B0.6322 (15)0.8116 (7)0.4628 (3)0.0422 (16)0.67
H20C0.64920.85800.46130.051*0.67
H20D0.51960.80380.45160.051*0.67
C21B0.7262 (6)0.7803 (2)0.4067 (2)0.0301 (12)0.67
H21C0.83860.78030.42190.036*0.67
H21D0.69220.73570.40040.036*0.67
C22B0.7025 (6)0.8158 (2)0.33735 (16)0.0382 (13)0.67
H22C0.74770.79060.30040.046*0.67
H22D0.58930.82090.32530.046*0.67
C23B0.7807 (7)0.8815 (2)0.3413 (3)0.0549 (15)0.67
H23D0.72790.90820.37410.082*0.67
H23E0.77290.90120.29540.082*0.67
H23F0.89100.87680.35700.082*0.67
C240.8284 (4)0.81522 (18)0.56291 (18)0.0407 (9)
H24A0.90600.80690.52820.049*
H24B0.86270.79190.60550.049*
C250.8304 (4)0.8857 (2)0.5793 (2)0.0481 (11)
H25A0.76680.89380.61940.058*
H25B0.78310.90940.53910.058*
C260.9971 (4)0.9094 (2)0.5959 (2)0.0523 (11)
H26A1.04390.88540.63600.063*
H26B1.06030.90080.55590.063*
C271.0042 (5)0.9796 (2)0.6125 (3)0.0670 (14)
H27A0.95531.00360.57360.101*
H27B1.11360.99270.62030.101*
H27C0.94840.98790.65420.101*
C280.5439 (4)0.80920 (18)0.58037 (17)0.0355 (8)
H28A0.44460.79080.56070.043*
H28B0.53420.85590.57710.043*
C290.5623 (4)0.79135 (17)0.65683 (17)0.0345 (8)
H29A0.67070.80000.67510.041*
H29B0.54140.74560.66240.041*
C300.4476 (4)0.83005 (18)0.69701 (18)0.0394 (9)
H30A0.46910.87570.69060.047*
H30B0.33990.82160.67780.047*
C310.4579 (5)0.8149 (2)0.77423 (19)0.0489 (10)
H31A0.43980.76950.78090.073*
H31B0.37860.83920.79710.073*
H31C0.56200.82610.79430.073*
N50.1513 (5)0.4085 (2)0.3604 (2)0.0760 (8)
C320.1877 (6)0.4529 (3)0.3326 (3)0.0760 (8)
C330.2353 (6)0.5087 (3)0.2980 (3)0.0760 (8)
H33A0.22600.54540.32850.114*
H33B0.16840.51490.25560.114*
H33C0.34420.50420.28610.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0372 (4)0.0405 (5)0.0186 (4)0.0071 (3)0.0002 (3)0.0055 (3)
Cl20.0420 (5)0.0354 (5)0.0238 (4)0.0068 (4)0.0060 (3)0.0001 (4)
Cl30.0298 (4)0.0346 (5)0.0200 (4)0.0070 (3)0.0008 (3)0.0006 (3)
N10.0307 (14)0.0291 (15)0.0204 (15)0.0052 (11)0.0017 (11)0.0040 (11)
N20.0288 (14)0.0290 (15)0.0177 (14)0.0060 (11)0.0010 (10)0.0017 (11)
N30.0402 (16)0.0271 (15)0.0225 (15)0.0138 (12)0.0019 (11)0.0038 (12)
O10.0698 (18)0.0513 (17)0.0244 (14)0.0326 (14)0.0060 (12)0.0028 (12)
O20.0508 (15)0.0314 (14)0.0236 (13)0.0146 (11)0.0002 (10)0.0012 (10)
C10.0354 (19)0.035 (2)0.031 (2)0.0050 (15)0.0032 (14)0.0037 (16)
C20.040 (2)0.033 (2)0.043 (2)0.0071 (15)0.0041 (16)0.0038 (17)
C30.040 (2)0.032 (2)0.044 (2)0.0012 (16)0.0071 (16)0.0070 (17)
C40.041 (2)0.044 (2)0.034 (2)0.0001 (17)0.0039 (16)0.0102 (17)
C50.0302 (18)0.035 (2)0.032 (2)0.0011 (14)0.0031 (14)0.0003 (15)
C60.0255 (16)0.0262 (17)0.0287 (18)0.0005 (13)0.0029 (13)0.0001 (14)
C70.0286 (17)0.0354 (19)0.0233 (18)0.0080 (14)0.0003 (13)0.0060 (15)
C80.0265 (16)0.0316 (18)0.0190 (17)0.0040 (13)0.0029 (12)0.0038 (13)
C90.0278 (16)0.0277 (18)0.0193 (17)0.0001 (13)0.0012 (12)0.0037 (13)
C100.0242 (16)0.0280 (18)0.0223 (17)0.0017 (13)0.0008 (12)0.0010 (13)
C110.0266 (16)0.0265 (17)0.0211 (17)0.0016 (13)0.0014 (12)0.0009 (13)
C120.0292 (17)0.0295 (18)0.0214 (18)0.0030 (13)0.0003 (13)0.0029 (14)
C130.0343 (18)0.0258 (18)0.0264 (18)0.0104 (13)0.0048 (13)0.0019 (14)
C140.0319 (17)0.0219 (17)0.0222 (17)0.0040 (13)0.0001 (13)0.0041 (13)
C150.0353 (18)0.0259 (18)0.0221 (17)0.0049 (13)0.0050 (13)0.0006 (14)
N40.0233 (14)0.065 (2)0.0223 (15)0.0097 (13)0.0012 (11)0.0114 (14)
C160.037 (2)0.063 (3)0.029 (2)0.0218 (18)0.0035 (15)0.0039 (18)
C170.033 (2)0.064 (3)0.037 (2)0.0110 (18)0.0034 (16)0.0024 (19)
C180.053 (3)0.074 (3)0.050 (3)0.022 (2)0.007 (2)0.009 (2)
C190.064 (3)0.071 (3)0.046 (3)0.008 (2)0.007 (2)0.005 (2)
C20A0.0237 (18)0.084 (4)0.019 (2)0.005 (2)0.0002 (16)0.016 (3)
C21A0.026 (2)0.039 (4)0.026 (2)0.004 (3)0.0019 (16)0.007 (3)
C22A0.043 (3)0.047 (4)0.025 (2)0.007 (3)0.004 (2)0.004 (3)
C23A0.064 (4)0.048 (3)0.055 (4)0.007 (3)0.028 (3)0.015 (3)
C20B0.0237 (18)0.084 (4)0.019 (2)0.005 (2)0.0002 (16)0.016 (3)
C21B0.026 (2)0.039 (4)0.026 (2)0.004 (3)0.0019 (16)0.007 (3)
C22B0.043 (3)0.047 (4)0.025 (2)0.007 (3)0.004 (2)0.004 (3)
C23B0.064 (4)0.048 (3)0.055 (4)0.007 (3)0.028 (3)0.015 (3)
C240.0272 (18)0.069 (3)0.0257 (19)0.0113 (17)0.0005 (14)0.0096 (18)
C250.0283 (19)0.081 (3)0.035 (2)0.0079 (19)0.0012 (15)0.010 (2)
C260.034 (2)0.078 (3)0.046 (3)0.005 (2)0.0065 (17)0.005 (2)
C270.043 (3)0.095 (4)0.063 (3)0.002 (2)0.003 (2)0.006 (3)
C280.0253 (17)0.050 (2)0.032 (2)0.0070 (15)0.0060 (14)0.0088 (17)
C290.0330 (18)0.041 (2)0.030 (2)0.0041 (15)0.0050 (14)0.0069 (16)
C300.041 (2)0.043 (2)0.036 (2)0.0016 (16)0.0100 (16)0.0028 (17)
C310.045 (2)0.066 (3)0.037 (2)0.011 (2)0.0103 (17)0.008 (2)
N50.0679 (17)0.079 (2)0.079 (2)0.0018 (16)0.0066 (14)0.0135 (16)
C320.0679 (17)0.079 (2)0.079 (2)0.0018 (16)0.0066 (14)0.0135 (16)
C330.0679 (17)0.079 (2)0.079 (2)0.0018 (16)0.0066 (14)0.0135 (16)
Geometric parameters (Å, º) top
Cl1—C91.713 (3)C4—H40.9500
Cl2—C101.716 (3)C5—H50.9500
N1—C71.358 (4)C13—H130.9500
N1—C61.421 (4)C15—H150.9500
N2—C111.367 (4)C16—H16A0.9900
N2—C81.368 (4)C16—H16B0.9900
N3—C121.359 (4)C17—H17A0.9900
N3—C141.416 (4)C17—H17B0.9900
O1—C71.227 (4)C18—H18A0.9900
O2—C121.226 (4)C18—H18B0.9900
C1—C61.387 (4)C19—H19A0.9800
C1—C21.390 (5)C19—H19B0.9800
C2—C31.381 (5)C19—H19C0.9800
C3—C41.379 (5)C20A—H20A0.9900
C4—C51.388 (5)C20A—H20B0.9900
C5—C61.393 (5)C21A—H21A0.9900
C7—C81.478 (4)C21A—H21B0.9900
C8—C91.382 (4)C22A—H22A0.9900
C9—C101.399 (4)C22A—H22B0.9900
C10—C111.379 (4)C23A—H23A0.9800
C11—C121.489 (4)C23A—H23B0.9800
C13—C15i1.384 (4)C23A—H23C0.9800
C13—C141.395 (4)C20B—H20C0.9900
C14—C151.390 (4)C20B—H20D0.9900
C15—C13i1.384 (4)C21B—H21C0.9900
N4—C20A1.469 (8)C21B—H21D0.9900
N4—C161.505 (4)C22B—H22C0.9900
N4—C241.508 (4)C22B—H22D0.9900
N4—C281.508 (4)C23B—H23D0.9800
N4—C20B1.514 (5)C23B—H23E0.9800
C16—C171.525 (5)C23B—H23F0.9800
C17—C181.519 (5)C24—H24A0.9900
C18—C191.517 (5)C24—H24B0.9900
C20A—C21A1.5399 (11)C25—H25A0.9900
C21A—C22A1.5398 (11)C25—H25B0.9900
C22A—C23A1.5396 (11)C26—H26A0.9900
C20B—C21B1.5405 (11)C26—H26B0.9900
C21B—C22B1.5403 (10)C27—H27A0.9800
C22B—C23B1.5393 (11)C27—H27B0.9800
C24—C251.522 (5)C27—H27C0.9800
C25—C261.529 (5)C28—H28A0.9900
C26—C271.518 (5)C28—H28B0.9900
C28—C291.525 (4)C29—H29A0.9900
C29—C301.528 (5)C29—H29B0.9900
C30—C311.526 (5)C30—H30A0.9900
N5—C321.135 (6)C30—H30B0.9900
C32—C331.427 (7)C31—H31A0.9800
N1—H910.8800C31—H31B0.9800
N2—H920.8800C31—H31C0.9800
N3—H930.8800C33—H33A0.9800
C1—H10.9500C33—H33B0.9800
C2—H20.9500C33—H33C0.9800
C3—H30.9500
C7—N1—C6127.5 (3)C17—C18—H18B109.0
C11—N2—C8110.6 (3)H18A—C18—H18B107.8
C12—N3—C14127.5 (3)C18—C19—H19A109.5
C6—C1—C2119.1 (3)C18—C19—H19B109.5
C3—C2—C1121.3 (3)H19A—C19—H19B109.5
C2—C3—C4119.3 (3)C18—C19—H19C109.5
C3—C4—C5120.5 (3)H19A—C19—H19C109.5
C4—C5—C6119.9 (3)H19B—C19—H19C109.5
C1—C6—C5119.9 (3)N4—C20A—H20A107.0
C1—C6—N1124.0 (3)C21A—C20A—H20A107.0
C5—C6—N1116.0 (3)N4—C20A—H20B107.0
O1—C7—N1123.2 (3)C21A—C20A—H20B107.0
O1—C7—C8120.3 (3)H20A—C20A—H20B106.7
N1—C7—C8116.5 (3)C22A—C21A—H21A109.4
N2—C8—C9106.9 (3)C20A—C21A—H21A109.4
N2—C8—C7124.3 (3)C22A—C21A—H21B109.4
C9—C8—C7128.7 (3)C20A—C21A—H21B109.4
C8—C9—C10107.6 (3)H21A—C21A—H21B108.0
C8—C9—Cl1127.5 (2)C23A—C22A—H22A109.4
C10—C9—Cl1124.8 (2)C21A—C22A—H22A109.4
C11—C10—C9108.2 (3)C23A—C22A—H22B109.4
C11—C10—Cl2127.6 (2)C21A—C22A—H22B109.4
C9—C10—Cl2124.1 (2)H22A—C22A—H22B108.0
N2—C11—C10106.7 (3)N4—C20B—H20C108.6
N2—C11—C12123.9 (3)C21B—C20B—H20C108.6
C10—C11—C12129.4 (3)N4—C20B—H20D108.6
O2—C12—N3124.2 (3)C21B—C20B—H20D108.6
O2—C12—C11120.4 (3)H20C—C20B—H20D107.5
N3—C12—C11115.4 (3)C22B—C21B—H21C109.4
C15i—C13—C14121.5 (3)C20B—C21B—H21C109.4
C15—C14—C13118.9 (3)C22B—C21B—H21D109.4
C15—C14—N3123.9 (3)C20B—C21B—H21D109.4
C13—C14—N3117.1 (3)H21C—C21B—H21D108.0
C13i—C15—C14119.6 (3)C23B—C22B—H22C109.4
C20A—N4—C16115.8 (15)C21B—C22B—H22C109.4
C20A—N4—C24108.5 (15)C23B—C22B—H22D109.4
C16—N4—C24107.6 (3)C21B—C22B—H22D109.4
C20A—N4—C28103.2 (5)H22C—C22B—H22D108.0
C16—N4—C28110.8 (3)C22B—C23B—H23D109.5
C24—N4—C28111.0 (3)C22B—C23B—H23E109.5
C16—N4—C20B109.0 (6)H23D—C23B—H23E109.5
C24—N4—C20B110.7 (7)C22B—C23B—H23F109.5
C28—N4—C20B107.8 (3)H23D—C23B—H23F109.5
N4—C16—C17115.0 (3)H23E—C23B—H23F109.5
C18—C17—C16111.4 (3)N4—C24—H24A108.3
C19—C18—C17112.9 (3)C25—C24—H24A108.3
N4—C20A—C21A121.4 (7)N4—C24—H24B108.3
C22A—C21A—C20A111.18 (11)C25—C24—H24B108.3
C23A—C22A—C21A111.22 (11)H24A—C24—H24B107.4
N4—C20B—C21B114.8 (4)C24—C25—H25A109.4
C22B—C21B—C20B111.06 (10)C26—C25—H25A109.4
C23B—C22B—C21B111.19 (10)C24—C25—H25B109.4
N4—C24—C25115.8 (3)C26—C25—H25B109.4
C24—C25—C26111.2 (3)H25A—C25—H25B108.0
C27—C26—C25112.9 (3)C27—C26—H26A109.0
N4—C28—C29116.6 (3)C25—C26—H26A109.0
C28—C29—C30109.3 (3)C27—C26—H26B109.0
C31—C30—C29112.7 (3)C25—C26—H26B109.0
N5—C32—C33179.3 (6)H26A—C26—H26B107.8
C7—N1—H91116.3C26—C27—H27A109.5
C6—N1—H91116.3C26—C27—H27B109.5
C11—N2—H92124.7H27A—C27—H27B109.5
C8—N2—H92124.7C26—C27—H27C109.5
C12—N3—H93116.3H27A—C27—H27C109.5
C14—N3—H93116.3H27B—C27—H27C109.5
C6—C1—H1120.4N4—C28—H28A108.1
C2—C1—H1120.4C29—C28—H28A108.1
C3—C2—H2119.4N4—C28—H28B108.1
C1—C2—H2119.4C29—C28—H28B108.1
C4—C3—H3120.4H28A—C28—H28B107.3
C2—C3—H3120.4C28—C29—H29A109.8
C3—C4—H4119.8C30—C29—H29A109.8
C5—C4—H4119.8C28—C29—H29B109.8
C4—C5—H5120.0C30—C29—H29B109.8
C6—C5—H5120.0H29A—C29—H29B108.3
C15i—C13—H13119.2C31—C30—H30A109.0
C14—C13—H13119.2C29—C30—H30A109.0
C13i—C15—H15120.2C31—C30—H30B109.0
C14—C15—H15120.2C29—C30—H30B109.0
N4—C16—H16A108.5H30A—C30—H30B107.8
C17—C16—H16A108.5C30—C31—H31A109.5
N4—C16—H16B108.5C30—C31—H31B109.5
C17—C16—H16B108.5H31A—C31—H31B109.5
H16A—C16—H16B107.5C30—C31—H31C109.5
C18—C17—H17A109.4H31A—C31—H31C109.5
C16—C17—H17A109.4H31B—C31—H31C109.5
C18—C17—H17B109.4C32—C33—H33A109.5
C16—C17—H17B109.4C32—C33—H33B109.5
H17A—C17—H17B108.0H33A—C33—H33B109.5
C19—C18—H18A109.0C32—C33—H33C109.5
C17—C18—H18A109.0H33A—C33—H33C109.5
C19—C18—H18B109.0H33B—C33—H33C109.5
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H91···Cl30.882.403.269 (3)172
N2—H92···Cl30.882.203.068 (3)167
N3—H93···Cl30.882.403.275 (3)171
 

Acknowledgements

The authors thank the EPSRC for funding the crystallographic facilities. PAG thanks the Royal Society for a University Research Fellowship and Universities UK for an ORS studentship to KN.

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGale, P. A., Navakhun, K., Camiolo, S., Light, M. E. & Hursthouse, M. B., (2002). J. Am. Chem. Soc. 124, 11228–11229.  Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds