organic compounds
2-C-Methyl-D-allono-1,4-lactone
aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: christopher.harding@seh.ox.ac.uk
The relative stereochemistry at the quaternary C atom in the title compound, C7H12O6, a 1,4-lactone formed from a protected D-ribonolactone, is firmly established by X-ray crystallographic analysis.
Comment
The potential of the Kiliani ascension of et al., 2005; Hotchkiss et al., 2004; Shallard-Brown et al., 2004); such materials are likely to be of value as a new family of chirons. A further class of branched carbohydrate building blocks may be available from the reaction of cyanide with 1-deoxyketoses, themselves prepared by addition of organometallic reagents to sugar lactones.
to provide readily available branched scaffolds has been recognized (HardingFor example, when such a sequence was performed on the acetonide of D-erythronolactone (1), 2-C-methyl-D-arabinonolactone (2) was formed (Punzo et al., 2005), in which the 2,3-diol unit is trans; none of the epimeric ribonolactone was isolated during the course of the synthesis. When a similar synthetic sequence was applied to the protected D-ribonolactone (3), the crystalline product (4) was isolated, in which the 2,3-diol unit is cis. There is no reliable spectroscopic technique to establish the relative stereochemistry in (4), so its was unambiguously defined by X-ray crystallographic analysis; the absolute stereochemistry was defined by the use of D-ribonolactone as a starting material. The reactions are being studied further in order to understand the difference in the stereochemical outcome of the two sequences.
The ab plane. The layers are made up of columns of molecules along the b axis held together by a zigzag chain of hydrogen bonds, which are in turn tied together by a helical hydrogen-bonding network (Figs. 3 and 4).
is made up of layers of strongly hydrogen-bonded molecules which lie in theExperimental
Crystals of the title compound were obtained by evaporation of a solution in an ethyl acetate/cyclohexane mixture, yielding colourless crystals. The full synthetic procedure will be published separately (Jenkinson et al., 2005).
Crystal data
|
Data collection
|
Refinement
|
All H atoms were observed in a difference Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O)], then made to ride on their parent atoms. In the absence of significant effects, Friedel pairs were merged. The is known from the synthesis.
and were refined using slack restraints to optimize their geometry [C—H = 0.98 Å, O—H = 0.82 Å, withData collection: COLLECT (Nonius, 1997); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536805012328/cf6418sup1.cif
contains datablocks 4, global. DOI:Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S1600536805012328/cf64184sup2.hkl
Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C7H12O6 | F(000) = 204 |
Mr = 192.17 | Dx = 1.493 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1283 reflections |
a = 6.1521 (5) Å | θ = 5–27° |
b = 7.5495 (7) Å | µ = 0.13 mm−1 |
c = 9.3055 (8) Å | T = 190 K |
β = 98.501 (5)° | Block, colourless |
V = 427.45 (6) Å3 | 0.20 × 0.10 × 0.10 mm |
Z = 2 |
Nonius KappaCCD diffractometer | Rint = 0.026 |
Graphite monochromator | θmax = 27.5°, θmin = 5.2° |
ω scans | h = −7→7 |
2940 measured reflections | k = −9→8 |
1025 independent reflections | l = −11→12 |
905 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(F2) + (0.04P)2], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 1.05 | (Δ/σ)max = 0.000076 |
1025 reflections | Δρmax = 0.27 e Å−3 |
118 parameters | Δρmin = −0.22 e Å−3 |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0984 (3) | 0.3222 (3) | 0.2531 (2) | 0.0320 | |
C2 | −0.1385 (4) | 0.5174 (3) | 0.2177 (2) | 0.0296 | |
C3 | 0.0955 (3) | 0.5864 (3) | 0.2218 (2) | 0.0290 | |
C4 | 0.1288 (3) | 0.7823 (3) | 0.2541 (2) | 0.0304 | |
C5 | 0.3673 (3) | 0.8415 (3) | 0.2636 (3) | 0.0357 | |
O6 | 0.4517 (2) | 0.8076 (2) | 0.13170 (17) | 0.0386 | |
O7 | −0.0091 (3) | 0.8810 (2) | 0.14479 (17) | 0.0312 | |
O8 | 0.2203 (2) | 0.4860 (2) | 0.34013 (17) | 0.0345 | |
C9 | 0.1124 (3) | 0.3352 (3) | 0.3624 (2) | 0.0324 | |
O10 | 0.1853 (3) | 0.2291 (3) | 0.45428 (18) | 0.0440 | |
O11 | −0.2766 (2) | 0.5436 (2) | 0.08380 (15) | 0.0339 | |
O12 | −0.0337 (3) | 0.2406 (2) | 0.12701 (17) | 0.0373 | |
C13 | −0.2852 (4) | 0.2248 (4) | 0.3069 (3) | 0.0449 | |
H21 | −0.1993 | 0.5739 | 0.2957 | 0.0336* | |
H31 | 0.1497 | 0.5606 | 0.1295 | 0.0337* | |
H41 | 0.0760 | 0.8081 | 0.3461 | 0.0353* | |
H51 | 0.3799 | 0.9682 | 0.2861 | 0.0430* | |
H52 | 0.4571 | 0.7735 | 0.3426 | 0.0409* | |
H131 | −0.2364 | 0.1024 | 0.3341 | 0.0549* | |
H132 | −0.3180 | 0.2916 | 0.3959 | 0.0531* | |
H133 | −0.4211 | 0.2216 | 0.2324 | 0.0543* | |
H4 | −0.0218 | 0.1243 | 0.1329 | 0.0585* | |
H6 | −0.3733 | 0.6401 | 0.0949 | 0.0487* | |
H8 | 0.3924 | 0.8804 | 0.0718 | 0.0768* | |
H14 | 0.0116 | 0.8276 | 0.0546 | 0.0746* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0369 (11) | 0.0294 (12) | 0.0292 (10) | −0.0010 (10) | 0.0033 (8) | 0.0017 (10) |
C2 | 0.0316 (10) | 0.0281 (13) | 0.0281 (10) | −0.0016 (9) | 0.0013 (8) | −0.0015 (9) |
C3 | 0.0320 (11) | 0.0250 (12) | 0.0296 (10) | 0.0002 (9) | 0.0030 (8) | 0.0013 (9) |
C4 | 0.0349 (11) | 0.0269 (12) | 0.0290 (10) | −0.0001 (9) | 0.0031 (8) | 0.0004 (8) |
C5 | 0.0342 (11) | 0.0322 (12) | 0.0394 (11) | −0.0033 (10) | 0.0015 (9) | −0.0013 (10) |
O6 | 0.0329 (8) | 0.0388 (10) | 0.0449 (9) | 0.0061 (8) | 0.0085 (7) | 0.0091 (8) |
O7 | 0.0344 (7) | 0.0237 (8) | 0.0345 (8) | 0.0016 (6) | 0.0020 (6) | 0.0003 (7) |
O8 | 0.0342 (8) | 0.0295 (9) | 0.0381 (8) | 0.0004 (7) | −0.0006 (7) | 0.0044 (7) |
C9 | 0.0351 (11) | 0.0317 (12) | 0.0305 (11) | 0.0008 (10) | 0.0055 (8) | 0.0029 (9) |
O10 | 0.0488 (9) | 0.0425 (11) | 0.0396 (9) | 0.0022 (9) | 0.0025 (7) | 0.0134 (8) |
O11 | 0.0378 (8) | 0.0290 (9) | 0.0324 (7) | 0.0044 (7) | −0.0036 (6) | −0.0028 (7) |
O12 | 0.0527 (10) | 0.0240 (8) | 0.0354 (9) | 0.0027 (8) | 0.0070 (7) | −0.0009 (7) |
C13 | 0.0451 (13) | 0.0413 (15) | 0.0475 (14) | −0.0076 (12) | 0.0043 (11) | 0.0082 (12) |
C1—C2 | 1.522 (3) | C5—O6 | 1.425 (3) |
C1—C9 | 1.528 (3) | C5—H51 | 0.980 |
C1—O12 | 1.432 (3) | C5—H52 | 0.994 |
C1—C13 | 1.511 (4) | O6—H8 | 0.828 |
C2—C3 | 1.526 (3) | O7—H14 | 0.956 |
C2—O11 | 1.415 (2) | O8—C9 | 1.349 (3) |
C2—H21 | 0.964 | C9—O10 | 1.208 (3) |
C3—C4 | 1.517 (3) | O11—H6 | 0.956 |
C3—O8 | 1.459 (2) | O12—H4 | 0.882 |
C3—H31 | 0.986 | C13—H131 | 0.993 |
C4—C5 | 1.524 (3) | C13—H132 | 1.015 |
C4—O7 | 1.433 (3) | C13—H133 | 1.004 |
C4—H41 | 0.979 | ||
C2—C1—C9 | 100.2 (2) | C5—C4—H41 | 109.4 |
C2—C1—O12 | 107.2 (2) | O7—C4—H41 | 106.2 |
C9—C1—O12 | 105.2 (2) | C4—C5—O6 | 111.6 (2) |
C2—C1—C13 | 115.8 (2) | C4—C5—H51 | 110.1 |
C9—C1—C13 | 115.0 (2) | O6—C5—H51 | 109.4 |
O12—C1—C13 | 112.3 (2) | C4—C5—H52 | 108.4 |
C1—C2—C3 | 101.7 (2) | O6—C5—H52 | 108.1 |
C1—C2—O11 | 112.5 (2) | H51—C5—H52 | 109.2 |
C3—C2—O11 | 114.6 (2) | C5—O6—H8 | 106.3 |
C1—C2—H21 | 109.5 | C4—O7—H14 | 105.2 |
C3—C2—H21 | 107.5 | C3—O8—C9 | 109.8 (2) |
O11—C2—H21 | 110.6 | C1—C9—O8 | 109.9 (2) |
C2—C3—C4 | 115.9 (2) | C1—C9—O10 | 128.2 (2) |
C2—C3—O8 | 103.3 (2) | O8—C9—O10 | 121.9 (2) |
C4—C3—O8 | 108.5 (2) | C2—O11—H6 | 108.3 |
C2—C3—H31 | 110.5 | C1—O12—H4 | 114.0 |
C4—C3—H31 | 108.2 | C1—C13—H131 | 108.7 |
O8—C3—H31 | 110.3 | C1—C13—H132 | 106.3 |
C3—C4—C5 | 113.5 (2) | H131—C13—H132 | 110.1 |
C3—C4—O7 | 108.5 (2) | C1—C13—H133 | 112.3 |
C5—C4—O7 | 110.6 (2) | H131—C13—H133 | 110.1 |
C3—C4—H41 | 108.4 | H132—C13—H133 | 109.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H4···O7i | 0.88 | 1.84 | 2.723 (2) | 178 |
O11—H6···O6ii | 0.96 | 1.73 | 2.681 (2) | 175 |
O6—H8···O11iii | 0.83 | 1.95 | 2.778 (2) | 174 |
O7—H14···O12iii | 0.96 | 1.84 | 2.791 (2) | 175 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) −x, y+1/2, −z. |
References
Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Harding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o250–o252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Jenkinson, S. F., Sawyer, N. K. & Fleet, G. W. J. (2005). Tetrahedron Lett. In preparation. Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o326–o327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163–o2164. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.