organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-C-Methyl-D-allono-1,4-lactone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: christopher.harding@seh.ox.ac.uk

(Received 15 March 2005; accepted 19 April 2005; online 27 April 2005)

The relative stereochemistry at the quaternary C atom in the title compound, C7H12O6, a 1,4-lactone formed from a protected D-ribonolactone, is firmly established by X-ray crystallographic analysis.

Comment

The potential of the Kiliani ascension of ketoses to provide readily available branched scaffolds has been recognized (Harding et al., 2005[Harding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o250-o252.]; Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]; Shallard-Brown et al., 2004[Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163-o2164.]); such materials are likely to be of value as a new family of chirons. A further class of branched carbohydrate building blocks may be available from the reaction of cyanide with 1-deoxy­ketoses, themselves prepared by addition of organometallic reagents to sugar lactones.[link]

[Scheme 1]

For example, when such a sequence was performed on the acetonide of D-erythronolactone (1[link]), 2-C-methyl-D-arabinonolactone (2[link]) was formed (Punzo et al., 2005[Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o326-o327.]), in which the 2,3-diol unit is trans; none of the epimeric ribonolactone was isolated during the course of the synthesis. When a similar synthetic sequence was applied to the protected D-ribonolactone (3[link]), the crystalline product (4[link]) was isolated, in which the 2,3-diol unit is cis. There is no reliable spectroscopic technique to establish the relative stereochemistry in (4[link]), so its relative configuration was unambiguously defined by X-ray crystallographic analysis; the absolute stereochemistry was defined by the use of D-ribonolactone as a starting material. The reactions are being studied further in order to understand the difference in the stereochemical outcome of the two sequences.

The crystal structure is made up of layers of strongly hydrogen-bonded mol­ecules which lie in the ab plane. The layers are made up of columns of mol­ecules along the b axis held together by a zigzag chain of hydrogen bonds, which are in turn tied together by a helical hydrogen-bonding network (Figs. 3[link] and 4[link]).

[Figure 1]
Figure 1
The molecular structure of (4[link]), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram for the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
Hydro­gen bonding (dashed lines): the zigzag network, forming columns of mol­ecules.
[Figure 4]
Figure 4
Hydro­gen bonding (dashed lines): the helical network which links the columns of mol­ecules together to form a sheet.

Experimental

Crystals of the title compound were obtained by evaporation of a solution in an ethyl acetate/cyclohexane mixture, yielding colourless crystals. The full synthetic procedure will be published separately (Jenkinson et al., 2005[Jenkinson, S. F., Sawyer, N. K. & Fleet, G. W. J. (2005). Tetrahedron Lett. In preparation.]).

Crystal data
  • C7H12O6

  • Mr = 192.17

  • Monoclinic, P21

  • a = 6.1521 (5) Å

  • b = 7.5495 (7) Å

  • c = 9.3055 (8) Å

  • β = 98.501 (5)°

  • V = 427.45 (6) Å3

  • Z = 2

  • Dx = 1.493 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1283 reflections

  • θ = 5–27°

  • μ = 0.13 mm−1

  • T = 190 K

  • Block, colourless

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: none

  • 2940 measured reflections

  • 1025 independent reflections

  • 905 reflections with I > 2σ(I)

  • Rint = 0.026

  • θmax = 27.5°

  • h = −7 → 7

  • k = −9 → 8

  • l = −11 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.05

  • 1025 reflections

  • 118 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.04P)2], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H4⋯O7i 0.88 1.84 2.723 (2) 178
O11—H6⋯O6ii 0.96 1.73 2.681 (2) 175
O6—H8⋯O11iii 0.83 1.95 2.778 (2) 174
O7—H14⋯O12iii 0.96 1.84 2.791 (2) 175
Symmetry codes: (i) x,y-1,z; (ii) x-1,y,z; (iii) [-x,{\script{1\over 2}}+y,-z].

All H atoms were observed in a difference electron density map and were refined using slack restraints to optimize their geometry [C—H = 0.98 Å, O—H = 0.82 Å, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O)], then made to ride on their parent atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration is known from the synthesis.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-C-Methyl-D-allono-1,4-lactone top
Crystal data top
C7H12O6F(000) = 204
Mr = 192.17Dx = 1.493 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1283 reflections
a = 6.1521 (5) Åθ = 5–27°
b = 7.5495 (7) ŵ = 0.13 mm1
c = 9.3055 (8) ÅT = 190 K
β = 98.501 (5)°Block, colourless
V = 427.45 (6) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 5.2°
ω scansh = 77
2940 measured reflectionsk = 98
1025 independent reflectionsl = 1112
905 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(F2) + (0.04P)2],
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.05(Δ/σ)max = 0.000076
1025 reflectionsΔρmax = 0.27 e Å3
118 parametersΔρmin = 0.22 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0984 (3)0.3222 (3)0.2531 (2)0.0320
C20.1385 (4)0.5174 (3)0.2177 (2)0.0296
C30.0955 (3)0.5864 (3)0.2218 (2)0.0290
C40.1288 (3)0.7823 (3)0.2541 (2)0.0304
C50.3673 (3)0.8415 (3)0.2636 (3)0.0357
O60.4517 (2)0.8076 (2)0.13170 (17)0.0386
O70.0091 (3)0.8810 (2)0.14479 (17)0.0312
O80.2203 (2)0.4860 (2)0.34013 (17)0.0345
C90.1124 (3)0.3352 (3)0.3624 (2)0.0324
O100.1853 (3)0.2291 (3)0.45428 (18)0.0440
O110.2766 (2)0.5436 (2)0.08380 (15)0.0339
O120.0337 (3)0.2406 (2)0.12701 (17)0.0373
C130.2852 (4)0.2248 (4)0.3069 (3)0.0449
H210.19930.57390.29570.0336*
H310.14970.56060.12950.0337*
H410.07600.80810.34610.0353*
H510.37990.96820.28610.0430*
H520.45710.77350.34260.0409*
H1310.23640.10240.33410.0549*
H1320.31800.29160.39590.0531*
H1330.42110.22160.23240.0543*
H40.02180.12430.13290.0585*
H60.37330.64010.09490.0487*
H80.39240.88040.07180.0768*
H140.01160.82760.05460.0746*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (11)0.0294 (12)0.0292 (10)0.0010 (10)0.0033 (8)0.0017 (10)
C20.0316 (10)0.0281 (13)0.0281 (10)0.0016 (9)0.0013 (8)0.0015 (9)
C30.0320 (11)0.0250 (12)0.0296 (10)0.0002 (9)0.0030 (8)0.0013 (9)
C40.0349 (11)0.0269 (12)0.0290 (10)0.0001 (9)0.0031 (8)0.0004 (8)
C50.0342 (11)0.0322 (12)0.0394 (11)0.0033 (10)0.0015 (9)0.0013 (10)
O60.0329 (8)0.0388 (10)0.0449 (9)0.0061 (8)0.0085 (7)0.0091 (8)
O70.0344 (7)0.0237 (8)0.0345 (8)0.0016 (6)0.0020 (6)0.0003 (7)
O80.0342 (8)0.0295 (9)0.0381 (8)0.0004 (7)0.0006 (7)0.0044 (7)
C90.0351 (11)0.0317 (12)0.0305 (11)0.0008 (10)0.0055 (8)0.0029 (9)
O100.0488 (9)0.0425 (11)0.0396 (9)0.0022 (9)0.0025 (7)0.0134 (8)
O110.0378 (8)0.0290 (9)0.0324 (7)0.0044 (7)0.0036 (6)0.0028 (7)
O120.0527 (10)0.0240 (8)0.0354 (9)0.0027 (8)0.0070 (7)0.0009 (7)
C130.0451 (13)0.0413 (15)0.0475 (14)0.0076 (12)0.0043 (11)0.0082 (12)
Geometric parameters (Å, º) top
C1—C21.522 (3)C5—O61.425 (3)
C1—C91.528 (3)C5—H510.980
C1—O121.432 (3)C5—H520.994
C1—C131.511 (4)O6—H80.828
C2—C31.526 (3)O7—H140.956
C2—O111.415 (2)O8—C91.349 (3)
C2—H210.964C9—O101.208 (3)
C3—C41.517 (3)O11—H60.956
C3—O81.459 (2)O12—H40.882
C3—H310.986C13—H1310.993
C4—C51.524 (3)C13—H1321.015
C4—O71.433 (3)C13—H1331.004
C4—H410.979
C2—C1—C9100.2 (2)C5—C4—H41109.4
C2—C1—O12107.2 (2)O7—C4—H41106.2
C9—C1—O12105.2 (2)C4—C5—O6111.6 (2)
C2—C1—C13115.8 (2)C4—C5—H51110.1
C9—C1—C13115.0 (2)O6—C5—H51109.4
O12—C1—C13112.3 (2)C4—C5—H52108.4
C1—C2—C3101.7 (2)O6—C5—H52108.1
C1—C2—O11112.5 (2)H51—C5—H52109.2
C3—C2—O11114.6 (2)C5—O6—H8106.3
C1—C2—H21109.5C4—O7—H14105.2
C3—C2—H21107.5C3—O8—C9109.8 (2)
O11—C2—H21110.6C1—C9—O8109.9 (2)
C2—C3—C4115.9 (2)C1—C9—O10128.2 (2)
C2—C3—O8103.3 (2)O8—C9—O10121.9 (2)
C4—C3—O8108.5 (2)C2—O11—H6108.3
C2—C3—H31110.5C1—O12—H4114.0
C4—C3—H31108.2C1—C13—H131108.7
O8—C3—H31110.3C1—C13—H132106.3
C3—C4—C5113.5 (2)H131—C13—H132110.1
C3—C4—O7108.5 (2)C1—C13—H133112.3
C5—C4—O7110.6 (2)H131—C13—H133110.1
C3—C4—H41108.4H132—C13—H133109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H4···O7i0.881.842.723 (2)178
O11—H6···O6ii0.961.732.681 (2)175
O6—H8···O11iii0.831.952.778 (2)174
O7—H14···O12iii0.961.842.791 (2)175
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x, y+1/2, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o250–o252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationJenkinson, S. F., Sawyer, N. K. & Fleet, G. W. J. (2005). Tetrahedron Lett. In preparation.  Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o326–o327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163–o2164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds